Properties

Label 693.4.a.o.1.4
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.18888\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.18888 q^{2} -3.20880 q^{4} -7.60736 q^{5} +7.00000 q^{7} -24.5347 q^{8} +O(q^{10})\) \(q+2.18888 q^{2} -3.20880 q^{4} -7.60736 q^{5} +7.00000 q^{7} -24.5347 q^{8} -16.6516 q^{10} -11.0000 q^{11} +0.174238 q^{13} +15.3222 q^{14} -28.0332 q^{16} -128.863 q^{17} +141.685 q^{19} +24.4105 q^{20} -24.0777 q^{22} +133.369 q^{23} -67.1280 q^{25} +0.381386 q^{26} -22.4616 q^{28} +177.002 q^{29} +48.2757 q^{31} +134.917 q^{32} -282.065 q^{34} -53.2515 q^{35} +161.625 q^{37} +310.131 q^{38} +186.645 q^{40} +195.689 q^{41} -488.447 q^{43} +35.2968 q^{44} +291.928 q^{46} +171.705 q^{47} +49.0000 q^{49} -146.935 q^{50} -0.559095 q^{52} +431.477 q^{53} +83.6810 q^{55} -171.743 q^{56} +387.437 q^{58} -194.176 q^{59} +585.008 q^{61} +105.670 q^{62} +519.582 q^{64} -1.32549 q^{65} +155.905 q^{67} +413.496 q^{68} -116.561 q^{70} +374.994 q^{71} +210.419 q^{73} +353.778 q^{74} -454.639 q^{76} -77.0000 q^{77} -7.00618 q^{79} +213.258 q^{80} +428.339 q^{82} +93.6417 q^{83} +980.307 q^{85} -1069.15 q^{86} +269.882 q^{88} +307.119 q^{89} +1.21967 q^{91} -427.954 q^{92} +375.842 q^{94} -1077.85 q^{95} +965.991 q^{97} +107.255 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 45 q^{4} + 24 q^{5} + 35 q^{7} - 57 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - q^{2} + 45 q^{4} + 24 q^{5} + 35 q^{7} - 57 q^{8} - 10 q^{10} - 55 q^{11} - 50 q^{13} - 7 q^{14} + 433 q^{16} - 222 q^{17} + 160 q^{19} + 430 q^{20} + 11 q^{22} - 54 q^{23} + 125 q^{25} + 1026 q^{26} + 315 q^{28} - 14 q^{29} - 34 q^{31} + 583 q^{32} - 750 q^{34} + 168 q^{35} + 1044 q^{37} + 156 q^{38} + 1158 q^{40} + 114 q^{41} + 672 q^{43} - 495 q^{44} - 1224 q^{46} + 292 q^{47} + 245 q^{49} - 1143 q^{50} - 914 q^{52} + 710 q^{53} - 264 q^{55} - 399 q^{56} - 810 q^{58} - 270 q^{59} + 138 q^{61} + 480 q^{62} + 3001 q^{64} + 196 q^{65} + 1942 q^{67} - 3130 q^{68} - 70 q^{70} + 278 q^{71} - 338 q^{73} - 462 q^{74} - 1332 q^{76} - 385 q^{77} + 576 q^{79} + 1602 q^{80} + 1386 q^{82} - 1644 q^{83} + 360 q^{85} - 2020 q^{86} + 627 q^{88} + 3656 q^{89} - 350 q^{91} + 748 q^{92} + 976 q^{94} + 1276 q^{95} + 692 q^{97} - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18888 0.773886 0.386943 0.922104i \(-0.373531\pi\)
0.386943 + 0.922104i \(0.373531\pi\)
\(3\) 0 0
\(4\) −3.20880 −0.401100
\(5\) −7.60736 −0.680423 −0.340212 0.940349i \(-0.610499\pi\)
−0.340212 + 0.940349i \(0.610499\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −24.5347 −1.08429
\(9\) 0 0
\(10\) −16.6516 −0.526570
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 0.174238 0.00371730 0.00185865 0.999998i \(-0.499408\pi\)
0.00185865 + 0.999998i \(0.499408\pi\)
\(14\) 15.3222 0.292501
\(15\) 0 0
\(16\) −28.0332 −0.438018
\(17\) −128.863 −1.83846 −0.919231 0.393719i \(-0.871188\pi\)
−0.919231 + 0.393719i \(0.871188\pi\)
\(18\) 0 0
\(19\) 141.685 1.71078 0.855388 0.517988i \(-0.173319\pi\)
0.855388 + 0.517988i \(0.173319\pi\)
\(20\) 24.4105 0.272918
\(21\) 0 0
\(22\) −24.0777 −0.233335
\(23\) 133.369 1.20910 0.604550 0.796567i \(-0.293353\pi\)
0.604550 + 0.796567i \(0.293353\pi\)
\(24\) 0 0
\(25\) −67.1280 −0.537024
\(26\) 0.381386 0.00287677
\(27\) 0 0
\(28\) −22.4616 −0.151602
\(29\) 177.002 1.13340 0.566698 0.823925i \(-0.308221\pi\)
0.566698 + 0.823925i \(0.308221\pi\)
\(30\) 0 0
\(31\) 48.2757 0.279696 0.139848 0.990173i \(-0.455339\pi\)
0.139848 + 0.990173i \(0.455339\pi\)
\(32\) 134.917 0.745316
\(33\) 0 0
\(34\) −282.065 −1.42276
\(35\) −53.2515 −0.257176
\(36\) 0 0
\(37\) 161.625 0.718136 0.359068 0.933311i \(-0.383095\pi\)
0.359068 + 0.933311i \(0.383095\pi\)
\(38\) 310.131 1.32394
\(39\) 0 0
\(40\) 186.645 0.737778
\(41\) 195.689 0.745402 0.372701 0.927952i \(-0.378432\pi\)
0.372701 + 0.927952i \(0.378432\pi\)
\(42\) 0 0
\(43\) −488.447 −1.73227 −0.866133 0.499814i \(-0.833402\pi\)
−0.866133 + 0.499814i \(0.833402\pi\)
\(44\) 35.2968 0.120936
\(45\) 0 0
\(46\) 291.928 0.935705
\(47\) 171.705 0.532889 0.266444 0.963850i \(-0.414151\pi\)
0.266444 + 0.963850i \(0.414151\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −146.935 −0.415596
\(51\) 0 0
\(52\) −0.559095 −0.00149101
\(53\) 431.477 1.11826 0.559131 0.829079i \(-0.311135\pi\)
0.559131 + 0.829079i \(0.311135\pi\)
\(54\) 0 0
\(55\) 83.6810 0.205155
\(56\) −171.743 −0.409824
\(57\) 0 0
\(58\) 387.437 0.877120
\(59\) −194.176 −0.428468 −0.214234 0.976782i \(-0.568725\pi\)
−0.214234 + 0.976782i \(0.568725\pi\)
\(60\) 0 0
\(61\) 585.008 1.22791 0.613955 0.789341i \(-0.289577\pi\)
0.613955 + 0.789341i \(0.289577\pi\)
\(62\) 105.670 0.216453
\(63\) 0 0
\(64\) 519.582 1.01481
\(65\) −1.32549 −0.00252934
\(66\) 0 0
\(67\) 155.905 0.284281 0.142140 0.989847i \(-0.454602\pi\)
0.142140 + 0.989847i \(0.454602\pi\)
\(68\) 413.496 0.737408
\(69\) 0 0
\(70\) −116.561 −0.199025
\(71\) 374.994 0.626811 0.313405 0.949619i \(-0.398530\pi\)
0.313405 + 0.949619i \(0.398530\pi\)
\(72\) 0 0
\(73\) 210.419 0.337365 0.168683 0.985670i \(-0.446049\pi\)
0.168683 + 0.985670i \(0.446049\pi\)
\(74\) 353.778 0.555755
\(75\) 0 0
\(76\) −454.639 −0.686193
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −7.00618 −0.00997793 −0.00498897 0.999988i \(-0.501588\pi\)
−0.00498897 + 0.999988i \(0.501588\pi\)
\(80\) 213.258 0.298038
\(81\) 0 0
\(82\) 428.339 0.576856
\(83\) 93.6417 0.123837 0.0619187 0.998081i \(-0.480278\pi\)
0.0619187 + 0.998081i \(0.480278\pi\)
\(84\) 0 0
\(85\) 980.307 1.25093
\(86\) −1069.15 −1.34058
\(87\) 0 0
\(88\) 269.882 0.326926
\(89\) 307.119 0.365781 0.182891 0.983133i \(-0.441455\pi\)
0.182891 + 0.983133i \(0.441455\pi\)
\(90\) 0 0
\(91\) 1.21967 0.00140501
\(92\) −427.954 −0.484970
\(93\) 0 0
\(94\) 375.842 0.412395
\(95\) −1077.85 −1.16405
\(96\) 0 0
\(97\) 965.991 1.01115 0.505575 0.862783i \(-0.331280\pi\)
0.505575 + 0.862783i \(0.331280\pi\)
\(98\) 107.255 0.110555
\(99\) 0 0
\(100\) 215.401 0.215401
\(101\) 577.986 0.569424 0.284712 0.958613i \(-0.408102\pi\)
0.284712 + 0.958613i \(0.408102\pi\)
\(102\) 0 0
\(103\) 133.232 0.127453 0.0637267 0.997967i \(-0.479701\pi\)
0.0637267 + 0.997967i \(0.479701\pi\)
\(104\) −4.27488 −0.00403064
\(105\) 0 0
\(106\) 944.451 0.865408
\(107\) −8.33627 −0.00753175 −0.00376587 0.999993i \(-0.501199\pi\)
−0.00376587 + 0.999993i \(0.501199\pi\)
\(108\) 0 0
\(109\) −317.052 −0.278606 −0.139303 0.990250i \(-0.544486\pi\)
−0.139303 + 0.990250i \(0.544486\pi\)
\(110\) 183.168 0.158767
\(111\) 0 0
\(112\) −196.232 −0.165555
\(113\) 2170.00 1.80652 0.903260 0.429093i \(-0.141167\pi\)
0.903260 + 0.429093i \(0.141167\pi\)
\(114\) 0 0
\(115\) −1014.58 −0.822700
\(116\) −567.966 −0.454606
\(117\) 0 0
\(118\) −425.028 −0.331585
\(119\) −902.040 −0.694873
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1280.51 0.950263
\(123\) 0 0
\(124\) −154.907 −0.112186
\(125\) 1461.59 1.04583
\(126\) 0 0
\(127\) 1301.24 0.909184 0.454592 0.890700i \(-0.349785\pi\)
0.454592 + 0.890700i \(0.349785\pi\)
\(128\) 57.9688 0.0400294
\(129\) 0 0
\(130\) −2.90134 −0.00195742
\(131\) −2522.22 −1.68220 −0.841098 0.540883i \(-0.818090\pi\)
−0.841098 + 0.540883i \(0.818090\pi\)
\(132\) 0 0
\(133\) 991.794 0.646612
\(134\) 341.257 0.220001
\(135\) 0 0
\(136\) 3161.62 1.99343
\(137\) −2574.70 −1.60563 −0.802815 0.596228i \(-0.796666\pi\)
−0.802815 + 0.596228i \(0.796666\pi\)
\(138\) 0 0
\(139\) −2741.49 −1.67288 −0.836438 0.548061i \(-0.815366\pi\)
−0.836438 + 0.548061i \(0.815366\pi\)
\(140\) 170.874 0.103153
\(141\) 0 0
\(142\) 820.816 0.485080
\(143\) −1.91662 −0.00112081
\(144\) 0 0
\(145\) −1346.52 −0.771189
\(146\) 460.582 0.261082
\(147\) 0 0
\(148\) −518.624 −0.288045
\(149\) 1021.98 0.561907 0.280954 0.959721i \(-0.409349\pi\)
0.280954 + 0.959721i \(0.409349\pi\)
\(150\) 0 0
\(151\) 1016.40 0.547769 0.273885 0.961763i \(-0.411691\pi\)
0.273885 + 0.961763i \(0.411691\pi\)
\(152\) −3476.20 −1.85498
\(153\) 0 0
\(154\) −168.544 −0.0881925
\(155\) −367.251 −0.190312
\(156\) 0 0
\(157\) −1580.49 −0.803422 −0.401711 0.915767i \(-0.631584\pi\)
−0.401711 + 0.915767i \(0.631584\pi\)
\(158\) −15.3357 −0.00772178
\(159\) 0 0
\(160\) −1026.36 −0.507130
\(161\) 933.581 0.456997
\(162\) 0 0
\(163\) 768.358 0.369218 0.184609 0.982812i \(-0.440898\pi\)
0.184609 + 0.982812i \(0.440898\pi\)
\(164\) −627.927 −0.298981
\(165\) 0 0
\(166\) 204.970 0.0958361
\(167\) −3092.73 −1.43307 −0.716534 0.697552i \(-0.754273\pi\)
−0.716534 + 0.697552i \(0.754273\pi\)
\(168\) 0 0
\(169\) −2196.97 −0.999986
\(170\) 2145.77 0.968079
\(171\) 0 0
\(172\) 1567.33 0.694812
\(173\) 1327.46 0.583380 0.291690 0.956513i \(-0.405782\pi\)
0.291690 + 0.956513i \(0.405782\pi\)
\(174\) 0 0
\(175\) −469.896 −0.202976
\(176\) 308.365 0.132067
\(177\) 0 0
\(178\) 672.247 0.283073
\(179\) −3141.37 −1.31171 −0.655857 0.754885i \(-0.727693\pi\)
−0.655857 + 0.754885i \(0.727693\pi\)
\(180\) 0 0
\(181\) −3683.36 −1.51261 −0.756303 0.654221i \(-0.772997\pi\)
−0.756303 + 0.654221i \(0.772997\pi\)
\(182\) 2.66970 0.00108732
\(183\) 0 0
\(184\) −3272.16 −1.31102
\(185\) −1229.54 −0.488636
\(186\) 0 0
\(187\) 1417.49 0.554317
\(188\) −550.968 −0.213742
\(189\) 0 0
\(190\) −2359.28 −0.900843
\(191\) 2862.38 1.08437 0.542185 0.840259i \(-0.317597\pi\)
0.542185 + 0.840259i \(0.317597\pi\)
\(192\) 0 0
\(193\) 2023.91 0.754839 0.377420 0.926042i \(-0.376811\pi\)
0.377420 + 0.926042i \(0.376811\pi\)
\(194\) 2114.44 0.782515
\(195\) 0 0
\(196\) −157.231 −0.0573001
\(197\) 4767.82 1.72433 0.862165 0.506628i \(-0.169108\pi\)
0.862165 + 0.506628i \(0.169108\pi\)
\(198\) 0 0
\(199\) 3546.72 1.26342 0.631709 0.775205i \(-0.282354\pi\)
0.631709 + 0.775205i \(0.282354\pi\)
\(200\) 1646.97 0.582291
\(201\) 0 0
\(202\) 1265.14 0.440669
\(203\) 1239.02 0.428384
\(204\) 0 0
\(205\) −1488.68 −0.507189
\(206\) 291.628 0.0986343
\(207\) 0 0
\(208\) −4.88444 −0.00162824
\(209\) −1558.53 −0.515818
\(210\) 0 0
\(211\) 1453.49 0.474230 0.237115 0.971482i \(-0.423798\pi\)
0.237115 + 0.971482i \(0.423798\pi\)
\(212\) −1384.52 −0.448536
\(213\) 0 0
\(214\) −18.2471 −0.00582872
\(215\) 3715.79 1.17867
\(216\) 0 0
\(217\) 337.930 0.105715
\(218\) −693.989 −0.215610
\(219\) 0 0
\(220\) −268.516 −0.0822879
\(221\) −22.4528 −0.00683411
\(222\) 0 0
\(223\) 6440.10 1.93391 0.966953 0.254955i \(-0.0820606\pi\)
0.966953 + 0.254955i \(0.0820606\pi\)
\(224\) 944.416 0.281703
\(225\) 0 0
\(226\) 4749.88 1.39804
\(227\) 1313.21 0.383970 0.191985 0.981398i \(-0.438508\pi\)
0.191985 + 0.981398i \(0.438508\pi\)
\(228\) 0 0
\(229\) −3780.00 −1.09078 −0.545392 0.838181i \(-0.683619\pi\)
−0.545392 + 0.838181i \(0.683619\pi\)
\(230\) −2220.80 −0.636676
\(231\) 0 0
\(232\) −4342.70 −1.22893
\(233\) −2322.65 −0.653055 −0.326527 0.945188i \(-0.605879\pi\)
−0.326527 + 0.945188i \(0.605879\pi\)
\(234\) 0 0
\(235\) −1306.22 −0.362590
\(236\) 623.073 0.171859
\(237\) 0 0
\(238\) −1974.46 −0.537753
\(239\) −2204.79 −0.596718 −0.298359 0.954454i \(-0.596439\pi\)
−0.298359 + 0.954454i \(0.596439\pi\)
\(240\) 0 0
\(241\) −4610.39 −1.23229 −0.616144 0.787634i \(-0.711306\pi\)
−0.616144 + 0.787634i \(0.711306\pi\)
\(242\) 264.855 0.0703533
\(243\) 0 0
\(244\) −1877.17 −0.492516
\(245\) −372.761 −0.0972033
\(246\) 0 0
\(247\) 24.6869 0.00635946
\(248\) −1184.43 −0.303272
\(249\) 0 0
\(250\) 3199.24 0.809351
\(251\) −4981.12 −1.25261 −0.626306 0.779577i \(-0.715434\pi\)
−0.626306 + 0.779577i \(0.715434\pi\)
\(252\) 0 0
\(253\) −1467.06 −0.364557
\(254\) 2848.26 0.703605
\(255\) 0 0
\(256\) −4029.77 −0.983829
\(257\) −2726.08 −0.661665 −0.330833 0.943689i \(-0.607330\pi\)
−0.330833 + 0.943689i \(0.607330\pi\)
\(258\) 0 0
\(259\) 1131.38 0.271430
\(260\) 4.25324 0.00101452
\(261\) 0 0
\(262\) −5520.84 −1.30183
\(263\) 4228.84 0.991489 0.495744 0.868468i \(-0.334895\pi\)
0.495744 + 0.868468i \(0.334895\pi\)
\(264\) 0 0
\(265\) −3282.40 −0.760892
\(266\) 2170.92 0.500404
\(267\) 0 0
\(268\) −500.268 −0.114025
\(269\) 2396.04 0.543081 0.271541 0.962427i \(-0.412467\pi\)
0.271541 + 0.962427i \(0.412467\pi\)
\(270\) 0 0
\(271\) −2461.68 −0.551795 −0.275897 0.961187i \(-0.588975\pi\)
−0.275897 + 0.961187i \(0.588975\pi\)
\(272\) 3612.43 0.805279
\(273\) 0 0
\(274\) −5635.71 −1.24258
\(275\) 738.408 0.161919
\(276\) 0 0
\(277\) 5890.54 1.27772 0.638860 0.769323i \(-0.279406\pi\)
0.638860 + 0.769323i \(0.279406\pi\)
\(278\) −6000.79 −1.29462
\(279\) 0 0
\(280\) 1306.51 0.278854
\(281\) 1964.26 0.417004 0.208502 0.978022i \(-0.433141\pi\)
0.208502 + 0.978022i \(0.433141\pi\)
\(282\) 0 0
\(283\) 8513.60 1.78827 0.894136 0.447796i \(-0.147791\pi\)
0.894136 + 0.447796i \(0.147791\pi\)
\(284\) −1203.28 −0.251414
\(285\) 0 0
\(286\) −4.19524 −0.000867378 0
\(287\) 1369.82 0.281735
\(288\) 0 0
\(289\) 11692.6 2.37994
\(290\) −2947.37 −0.596813
\(291\) 0 0
\(292\) −675.193 −0.135317
\(293\) −5219.58 −1.04072 −0.520360 0.853947i \(-0.674202\pi\)
−0.520360 + 0.853947i \(0.674202\pi\)
\(294\) 0 0
\(295\) 1477.17 0.291539
\(296\) −3965.43 −0.778669
\(297\) 0 0
\(298\) 2237.00 0.434852
\(299\) 23.2379 0.00449459
\(300\) 0 0
\(301\) −3419.13 −0.654735
\(302\) 2224.77 0.423911
\(303\) 0 0
\(304\) −3971.87 −0.749350
\(305\) −4450.37 −0.835499
\(306\) 0 0
\(307\) 2887.29 0.536764 0.268382 0.963313i \(-0.413511\pi\)
0.268382 + 0.963313i \(0.413511\pi\)
\(308\) 247.078 0.0457096
\(309\) 0 0
\(310\) −803.868 −0.147279
\(311\) 5876.90 1.07154 0.535769 0.844364i \(-0.320022\pi\)
0.535769 + 0.844364i \(0.320022\pi\)
\(312\) 0 0
\(313\) −7683.14 −1.38747 −0.693733 0.720233i \(-0.744035\pi\)
−0.693733 + 0.720233i \(0.744035\pi\)
\(314\) −3459.51 −0.621757
\(315\) 0 0
\(316\) 22.4814 0.00400215
\(317\) 9642.33 1.70841 0.854207 0.519933i \(-0.174043\pi\)
0.854207 + 0.519933i \(0.174043\pi\)
\(318\) 0 0
\(319\) −1947.03 −0.341732
\(320\) −3952.65 −0.690499
\(321\) 0 0
\(322\) 2043.50 0.353663
\(323\) −18257.9 −3.14519
\(324\) 0 0
\(325\) −11.6962 −0.00199628
\(326\) 1681.84 0.285732
\(327\) 0 0
\(328\) −4801.17 −0.808233
\(329\) 1201.94 0.201413
\(330\) 0 0
\(331\) −2069.87 −0.343717 −0.171859 0.985122i \(-0.554977\pi\)
−0.171859 + 0.985122i \(0.554977\pi\)
\(332\) −300.478 −0.0496713
\(333\) 0 0
\(334\) −6769.61 −1.10903
\(335\) −1186.03 −0.193431
\(336\) 0 0
\(337\) 7547.59 1.22001 0.610005 0.792397i \(-0.291167\pi\)
0.610005 + 0.792397i \(0.291167\pi\)
\(338\) −4808.90 −0.773875
\(339\) 0 0
\(340\) −3145.61 −0.501749
\(341\) −531.033 −0.0843315
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 11983.9 1.87828
\(345\) 0 0
\(346\) 2905.65 0.451469
\(347\) 6353.22 0.982877 0.491439 0.870912i \(-0.336471\pi\)
0.491439 + 0.870912i \(0.336471\pi\)
\(348\) 0 0
\(349\) −1352.47 −0.207439 −0.103719 0.994607i \(-0.533074\pi\)
−0.103719 + 0.994607i \(0.533074\pi\)
\(350\) −1028.55 −0.157080
\(351\) 0 0
\(352\) −1484.08 −0.224721
\(353\) −4203.80 −0.633840 −0.316920 0.948452i \(-0.602649\pi\)
−0.316920 + 0.948452i \(0.602649\pi\)
\(354\) 0 0
\(355\) −2852.71 −0.426497
\(356\) −985.484 −0.146715
\(357\) 0 0
\(358\) −6876.08 −1.01512
\(359\) 11100.7 1.63195 0.815976 0.578086i \(-0.196200\pi\)
0.815976 + 0.578086i \(0.196200\pi\)
\(360\) 0 0
\(361\) 13215.6 1.92675
\(362\) −8062.43 −1.17059
\(363\) 0 0
\(364\) −3.91367 −0.000563549 0
\(365\) −1600.73 −0.229551
\(366\) 0 0
\(367\) −4963.35 −0.705953 −0.352977 0.935632i \(-0.614830\pi\)
−0.352977 + 0.935632i \(0.614830\pi\)
\(368\) −3738.74 −0.529607
\(369\) 0 0
\(370\) −2691.32 −0.378149
\(371\) 3020.34 0.422663
\(372\) 0 0
\(373\) −8882.54 −1.23303 −0.616515 0.787343i \(-0.711456\pi\)
−0.616515 + 0.787343i \(0.711456\pi\)
\(374\) 3102.72 0.428978
\(375\) 0 0
\(376\) −4212.74 −0.577807
\(377\) 30.8405 0.00421317
\(378\) 0 0
\(379\) −1218.83 −0.165190 −0.0825952 0.996583i \(-0.526321\pi\)
−0.0825952 + 0.996583i \(0.526321\pi\)
\(380\) 3458.60 0.466901
\(381\) 0 0
\(382\) 6265.41 0.839179
\(383\) −112.614 −0.0150243 −0.00751214 0.999972i \(-0.502391\pi\)
−0.00751214 + 0.999972i \(0.502391\pi\)
\(384\) 0 0
\(385\) 585.767 0.0775414
\(386\) 4430.09 0.584159
\(387\) 0 0
\(388\) −3099.68 −0.405573
\(389\) −12656.2 −1.64961 −0.824804 0.565419i \(-0.808714\pi\)
−0.824804 + 0.565419i \(0.808714\pi\)
\(390\) 0 0
\(391\) −17186.3 −2.22288
\(392\) −1202.20 −0.154899
\(393\) 0 0
\(394\) 10436.2 1.33443
\(395\) 53.2985 0.00678922
\(396\) 0 0
\(397\) 3707.14 0.468655 0.234327 0.972158i \(-0.424711\pi\)
0.234327 + 0.972158i \(0.424711\pi\)
\(398\) 7763.35 0.977742
\(399\) 0 0
\(400\) 1881.81 0.235226
\(401\) −5671.06 −0.706232 −0.353116 0.935579i \(-0.614878\pi\)
−0.353116 + 0.935579i \(0.614878\pi\)
\(402\) 0 0
\(403\) 8.41146 0.00103971
\(404\) −1854.64 −0.228396
\(405\) 0 0
\(406\) 2712.06 0.331520
\(407\) −1777.88 −0.216526
\(408\) 0 0
\(409\) 260.465 0.0314894 0.0157447 0.999876i \(-0.494988\pi\)
0.0157447 + 0.999876i \(0.494988\pi\)
\(410\) −3258.53 −0.392506
\(411\) 0 0
\(412\) −427.514 −0.0511216
\(413\) −1359.23 −0.161946
\(414\) 0 0
\(415\) −712.366 −0.0842619
\(416\) 23.5076 0.00277056
\(417\) 0 0
\(418\) −3411.44 −0.399184
\(419\) −4153.96 −0.484330 −0.242165 0.970235i \(-0.577858\pi\)
−0.242165 + 0.970235i \(0.577858\pi\)
\(420\) 0 0
\(421\) 4240.11 0.490856 0.245428 0.969415i \(-0.421072\pi\)
0.245428 + 0.969415i \(0.421072\pi\)
\(422\) 3181.52 0.367000
\(423\) 0 0
\(424\) −10586.2 −1.21252
\(425\) 8650.31 0.987298
\(426\) 0 0
\(427\) 4095.05 0.464107
\(428\) 26.7494 0.00302099
\(429\) 0 0
\(430\) 8133.42 0.912159
\(431\) −1012.17 −0.113119 −0.0565595 0.998399i \(-0.518013\pi\)
−0.0565595 + 0.998399i \(0.518013\pi\)
\(432\) 0 0
\(433\) 1604.50 0.178077 0.0890386 0.996028i \(-0.471621\pi\)
0.0890386 + 0.996028i \(0.471621\pi\)
\(434\) 739.688 0.0818114
\(435\) 0 0
\(436\) 1017.36 0.111749
\(437\) 18896.3 2.06850
\(438\) 0 0
\(439\) 10671.6 1.16020 0.580099 0.814546i \(-0.303014\pi\)
0.580099 + 0.814546i \(0.303014\pi\)
\(440\) −2053.09 −0.222448
\(441\) 0 0
\(442\) −49.1465 −0.00528882
\(443\) −2193.74 −0.235277 −0.117638 0.993056i \(-0.537532\pi\)
−0.117638 + 0.993056i \(0.537532\pi\)
\(444\) 0 0
\(445\) −2336.37 −0.248886
\(446\) 14096.6 1.49662
\(447\) 0 0
\(448\) 3637.07 0.383561
\(449\) 7070.36 0.743143 0.371571 0.928404i \(-0.378819\pi\)
0.371571 + 0.928404i \(0.378819\pi\)
\(450\) 0 0
\(451\) −2152.58 −0.224747
\(452\) −6963.12 −0.724596
\(453\) 0 0
\(454\) 2874.47 0.297149
\(455\) −9.27844 −0.000956000 0
\(456\) 0 0
\(457\) 16245.8 1.66290 0.831451 0.555599i \(-0.187511\pi\)
0.831451 + 0.555599i \(0.187511\pi\)
\(458\) −8273.98 −0.844143
\(459\) 0 0
\(460\) 3255.60 0.329985
\(461\) 5235.18 0.528908 0.264454 0.964398i \(-0.414808\pi\)
0.264454 + 0.964398i \(0.414808\pi\)
\(462\) 0 0
\(463\) −11093.9 −1.11355 −0.556777 0.830662i \(-0.687962\pi\)
−0.556777 + 0.830662i \(0.687962\pi\)
\(464\) −4961.93 −0.496448
\(465\) 0 0
\(466\) −5084.00 −0.505390
\(467\) 7813.14 0.774195 0.387097 0.922039i \(-0.373478\pi\)
0.387097 + 0.922039i \(0.373478\pi\)
\(468\) 0 0
\(469\) 1091.33 0.107448
\(470\) −2859.17 −0.280603
\(471\) 0 0
\(472\) 4764.06 0.464584
\(473\) 5372.91 0.522298
\(474\) 0 0
\(475\) −9511.02 −0.918728
\(476\) 2894.47 0.278714
\(477\) 0 0
\(478\) −4826.01 −0.461792
\(479\) −5298.54 −0.505420 −0.252710 0.967542i \(-0.581322\pi\)
−0.252710 + 0.967542i \(0.581322\pi\)
\(480\) 0 0
\(481\) 28.1612 0.00266953
\(482\) −10091.6 −0.953650
\(483\) 0 0
\(484\) −388.265 −0.0364637
\(485\) −7348.65 −0.688010
\(486\) 0 0
\(487\) 5580.89 0.519290 0.259645 0.965704i \(-0.416394\pi\)
0.259645 + 0.965704i \(0.416394\pi\)
\(488\) −14353.0 −1.33141
\(489\) 0 0
\(490\) −815.929 −0.0752243
\(491\) −16718.8 −1.53668 −0.768341 0.640041i \(-0.778917\pi\)
−0.768341 + 0.640041i \(0.778917\pi\)
\(492\) 0 0
\(493\) −22809.0 −2.08371
\(494\) 54.0366 0.00492150
\(495\) 0 0
\(496\) −1353.32 −0.122512
\(497\) 2624.96 0.236912
\(498\) 0 0
\(499\) 19594.4 1.75784 0.878922 0.476965i \(-0.158263\pi\)
0.878922 + 0.476965i \(0.158263\pi\)
\(500\) −4689.95 −0.419482
\(501\) 0 0
\(502\) −10903.1 −0.969379
\(503\) −9008.04 −0.798506 −0.399253 0.916841i \(-0.630731\pi\)
−0.399253 + 0.916841i \(0.630731\pi\)
\(504\) 0 0
\(505\) −4396.95 −0.387449
\(506\) −3211.21 −0.282126
\(507\) 0 0
\(508\) −4175.42 −0.364674
\(509\) 3379.88 0.294324 0.147162 0.989112i \(-0.452986\pi\)
0.147162 + 0.989112i \(0.452986\pi\)
\(510\) 0 0
\(511\) 1472.93 0.127512
\(512\) −9284.42 −0.801401
\(513\) 0 0
\(514\) −5967.05 −0.512053
\(515\) −1013.54 −0.0867222
\(516\) 0 0
\(517\) −1888.76 −0.160672
\(518\) 2476.45 0.210056
\(519\) 0 0
\(520\) 32.5206 0.00274254
\(521\) 736.886 0.0619646 0.0309823 0.999520i \(-0.490136\pi\)
0.0309823 + 0.999520i \(0.490136\pi\)
\(522\) 0 0
\(523\) 9541.00 0.797703 0.398852 0.917015i \(-0.369409\pi\)
0.398852 + 0.917015i \(0.369409\pi\)
\(524\) 8093.32 0.674729
\(525\) 0 0
\(526\) 9256.43 0.767299
\(527\) −6220.95 −0.514210
\(528\) 0 0
\(529\) 5620.20 0.461922
\(530\) −7184.78 −0.588843
\(531\) 0 0
\(532\) −3182.47 −0.259356
\(533\) 34.0964 0.00277088
\(534\) 0 0
\(535\) 63.4170 0.00512478
\(536\) −3825.08 −0.308243
\(537\) 0 0
\(538\) 5244.64 0.420283
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 16721.0 1.32882 0.664411 0.747368i \(-0.268683\pi\)
0.664411 + 0.747368i \(0.268683\pi\)
\(542\) −5388.32 −0.427026
\(543\) 0 0
\(544\) −17385.7 −1.37023
\(545\) 2411.93 0.189570
\(546\) 0 0
\(547\) 8958.59 0.700259 0.350129 0.936701i \(-0.386138\pi\)
0.350129 + 0.936701i \(0.386138\pi\)
\(548\) 8261.70 0.644019
\(549\) 0 0
\(550\) 1616.29 0.125307
\(551\) 25078.5 1.93899
\(552\) 0 0
\(553\) −49.0432 −0.00377130
\(554\) 12893.7 0.988809
\(555\) 0 0
\(556\) 8796.89 0.670992
\(557\) 14329.6 1.09006 0.545031 0.838416i \(-0.316518\pi\)
0.545031 + 0.838416i \(0.316518\pi\)
\(558\) 0 0
\(559\) −85.1059 −0.00643935
\(560\) 1492.81 0.112648
\(561\) 0 0
\(562\) 4299.54 0.322713
\(563\) −15791.2 −1.18209 −0.591047 0.806637i \(-0.701285\pi\)
−0.591047 + 0.806637i \(0.701285\pi\)
\(564\) 0 0
\(565\) −16508.0 −1.22920
\(566\) 18635.2 1.38392
\(567\) 0 0
\(568\) −9200.37 −0.679646
\(569\) 13996.4 1.03121 0.515605 0.856826i \(-0.327567\pi\)
0.515605 + 0.856826i \(0.327567\pi\)
\(570\) 0 0
\(571\) −6642.54 −0.486833 −0.243417 0.969922i \(-0.578268\pi\)
−0.243417 + 0.969922i \(0.578268\pi\)
\(572\) 6.15005 0.000449557 0
\(573\) 0 0
\(574\) 2998.38 0.218031
\(575\) −8952.78 −0.649316
\(576\) 0 0
\(577\) −85.5448 −0.00617206 −0.00308603 0.999995i \(-0.500982\pi\)
−0.00308603 + 0.999995i \(0.500982\pi\)
\(578\) 25593.8 1.84180
\(579\) 0 0
\(580\) 4320.72 0.309324
\(581\) 655.492 0.0468062
\(582\) 0 0
\(583\) −4746.25 −0.337169
\(584\) −5162.57 −0.365802
\(585\) 0 0
\(586\) −11425.0 −0.805399
\(587\) −11205.0 −0.787869 −0.393934 0.919139i \(-0.628886\pi\)
−0.393934 + 0.919139i \(0.628886\pi\)
\(588\) 0 0
\(589\) 6839.93 0.478497
\(590\) 3233.35 0.225618
\(591\) 0 0
\(592\) −4530.87 −0.314556
\(593\) −11664.6 −0.807773 −0.403886 0.914809i \(-0.632341\pi\)
−0.403886 + 0.914809i \(0.632341\pi\)
\(594\) 0 0
\(595\) 6862.15 0.472808
\(596\) −3279.34 −0.225381
\(597\) 0 0
\(598\) 50.8649 0.00347830
\(599\) 20545.1 1.40142 0.700711 0.713445i \(-0.252866\pi\)
0.700711 + 0.713445i \(0.252866\pi\)
\(600\) 0 0
\(601\) 3885.01 0.263682 0.131841 0.991271i \(-0.457911\pi\)
0.131841 + 0.991271i \(0.457911\pi\)
\(602\) −7484.06 −0.506690
\(603\) 0 0
\(604\) −3261.42 −0.219710
\(605\) −920.491 −0.0618567
\(606\) 0 0
\(607\) 8439.80 0.564351 0.282175 0.959363i \(-0.408944\pi\)
0.282175 + 0.959363i \(0.408944\pi\)
\(608\) 19115.6 1.27507
\(609\) 0 0
\(610\) −9741.32 −0.646581
\(611\) 29.9175 0.00198091
\(612\) 0 0
\(613\) 17997.8 1.18584 0.592922 0.805260i \(-0.297974\pi\)
0.592922 + 0.805260i \(0.297974\pi\)
\(614\) 6319.94 0.415394
\(615\) 0 0
\(616\) 1889.17 0.123567
\(617\) 26336.6 1.71843 0.859214 0.511616i \(-0.170953\pi\)
0.859214 + 0.511616i \(0.170953\pi\)
\(618\) 0 0
\(619\) 27875.5 1.81003 0.905016 0.425376i \(-0.139858\pi\)
0.905016 + 0.425376i \(0.139858\pi\)
\(620\) 1178.44 0.0763341
\(621\) 0 0
\(622\) 12863.8 0.829249
\(623\) 2149.83 0.138252
\(624\) 0 0
\(625\) −2727.83 −0.174581
\(626\) −16817.5 −1.07374
\(627\) 0 0
\(628\) 5071.50 0.322253
\(629\) −20827.5 −1.32027
\(630\) 0 0
\(631\) 8242.15 0.519992 0.259996 0.965610i \(-0.416279\pi\)
0.259996 + 0.965610i \(0.416279\pi\)
\(632\) 171.895 0.0108190
\(633\) 0 0
\(634\) 21105.9 1.32212
\(635\) −9899.00 −0.618630
\(636\) 0 0
\(637\) 8.53766 0.000531043 0
\(638\) −4261.80 −0.264462
\(639\) 0 0
\(640\) −440.990 −0.0272370
\(641\) 7001.97 0.431453 0.215726 0.976454i \(-0.430788\pi\)
0.215726 + 0.976454i \(0.430788\pi\)
\(642\) 0 0
\(643\) 2473.25 0.151688 0.0758442 0.997120i \(-0.475835\pi\)
0.0758442 + 0.997120i \(0.475835\pi\)
\(644\) −2995.68 −0.183302
\(645\) 0 0
\(646\) −39964.4 −2.43402
\(647\) −9153.21 −0.556182 −0.278091 0.960555i \(-0.589702\pi\)
−0.278091 + 0.960555i \(0.589702\pi\)
\(648\) 0 0
\(649\) 2135.94 0.129188
\(650\) −25.6017 −0.00154489
\(651\) 0 0
\(652\) −2465.51 −0.148093
\(653\) −725.254 −0.0434630 −0.0217315 0.999764i \(-0.506918\pi\)
−0.0217315 + 0.999764i \(0.506918\pi\)
\(654\) 0 0
\(655\) 19187.5 1.14461
\(656\) −5485.78 −0.326499
\(657\) 0 0
\(658\) 2630.89 0.155871
\(659\) −14332.9 −0.847242 −0.423621 0.905840i \(-0.639241\pi\)
−0.423621 + 0.905840i \(0.639241\pi\)
\(660\) 0 0
\(661\) 26773.3 1.57543 0.787715 0.616040i \(-0.211264\pi\)
0.787715 + 0.616040i \(0.211264\pi\)
\(662\) −4530.70 −0.265998
\(663\) 0 0
\(664\) −2297.47 −0.134276
\(665\) −7544.94 −0.439970
\(666\) 0 0
\(667\) 23606.6 1.37039
\(668\) 9923.95 0.574804
\(669\) 0 0
\(670\) −2596.07 −0.149694
\(671\) −6435.08 −0.370229
\(672\) 0 0
\(673\) −25423.9 −1.45619 −0.728096 0.685475i \(-0.759595\pi\)
−0.728096 + 0.685475i \(0.759595\pi\)
\(674\) 16520.8 0.944149
\(675\) 0 0
\(676\) 7049.64 0.401095
\(677\) −9287.48 −0.527248 −0.263624 0.964625i \(-0.584918\pi\)
−0.263624 + 0.964625i \(0.584918\pi\)
\(678\) 0 0
\(679\) 6761.94 0.382179
\(680\) −24051.6 −1.35638
\(681\) 0 0
\(682\) −1162.37 −0.0652629
\(683\) 31888.8 1.78652 0.893258 0.449544i \(-0.148414\pi\)
0.893258 + 0.449544i \(0.148414\pi\)
\(684\) 0 0
\(685\) 19586.7 1.09251
\(686\) 750.786 0.0417859
\(687\) 0 0
\(688\) 13692.7 0.758763
\(689\) 75.1796 0.00415692
\(690\) 0 0
\(691\) −18650.3 −1.02676 −0.513379 0.858162i \(-0.671606\pi\)
−0.513379 + 0.858162i \(0.671606\pi\)
\(692\) −4259.55 −0.233994
\(693\) 0 0
\(694\) 13906.4 0.760635
\(695\) 20855.5 1.13826
\(696\) 0 0
\(697\) −25217.0 −1.37039
\(698\) −2960.40 −0.160534
\(699\) 0 0
\(700\) 1507.80 0.0814138
\(701\) −8566.01 −0.461532 −0.230766 0.973009i \(-0.574123\pi\)
−0.230766 + 0.973009i \(0.574123\pi\)
\(702\) 0 0
\(703\) 22899.8 1.22857
\(704\) −5715.40 −0.305976
\(705\) 0 0
\(706\) −9201.61 −0.490520
\(707\) 4045.90 0.215222
\(708\) 0 0
\(709\) 680.116 0.0360258 0.0180129 0.999838i \(-0.494266\pi\)
0.0180129 + 0.999838i \(0.494266\pi\)
\(710\) −6244.25 −0.330060
\(711\) 0 0
\(712\) −7535.08 −0.396614
\(713\) 6438.47 0.338180
\(714\) 0 0
\(715\) 14.5804 0.000762624 0
\(716\) 10080.0 0.526129
\(717\) 0 0
\(718\) 24298.0 1.26294
\(719\) −12557.6 −0.651346 −0.325673 0.945482i \(-0.605591\pi\)
−0.325673 + 0.945482i \(0.605591\pi\)
\(720\) 0 0
\(721\) 932.621 0.0481728
\(722\) 28927.3 1.49109
\(723\) 0 0
\(724\) 11819.2 0.606707
\(725\) −11881.8 −0.608661
\(726\) 0 0
\(727\) 22253.6 1.13527 0.567635 0.823281i \(-0.307859\pi\)
0.567635 + 0.823281i \(0.307859\pi\)
\(728\) −29.9242 −0.00152344
\(729\) 0 0
\(730\) −3503.81 −0.177646
\(731\) 62942.6 3.18470
\(732\) 0 0
\(733\) 6852.72 0.345308 0.172654 0.984982i \(-0.444766\pi\)
0.172654 + 0.984982i \(0.444766\pi\)
\(734\) −10864.2 −0.546327
\(735\) 0 0
\(736\) 17993.6 0.901161
\(737\) −1714.95 −0.0857139
\(738\) 0 0
\(739\) −9133.20 −0.454628 −0.227314 0.973821i \(-0.572994\pi\)
−0.227314 + 0.973821i \(0.572994\pi\)
\(740\) 3945.36 0.195992
\(741\) 0 0
\(742\) 6611.16 0.327093
\(743\) 33458.7 1.65206 0.826031 0.563624i \(-0.190593\pi\)
0.826031 + 0.563624i \(0.190593\pi\)
\(744\) 0 0
\(745\) −7774.60 −0.382335
\(746\) −19442.8 −0.954225
\(747\) 0 0
\(748\) −4548.45 −0.222337
\(749\) −58.3539 −0.00284673
\(750\) 0 0
\(751\) −37530.0 −1.82355 −0.911776 0.410688i \(-0.865289\pi\)
−0.911776 + 0.410688i \(0.865289\pi\)
\(752\) −4813.44 −0.233415
\(753\) 0 0
\(754\) 67.5062 0.00326052
\(755\) −7732.10 −0.372715
\(756\) 0 0
\(757\) 32174.8 1.54480 0.772399 0.635138i \(-0.219057\pi\)
0.772399 + 0.635138i \(0.219057\pi\)
\(758\) −2667.88 −0.127839
\(759\) 0 0
\(760\) 26444.7 1.26217
\(761\) −4457.43 −0.212328 −0.106164 0.994349i \(-0.533857\pi\)
−0.106164 + 0.994349i \(0.533857\pi\)
\(762\) 0 0
\(763\) −2219.37 −0.105303
\(764\) −9184.82 −0.434941
\(765\) 0 0
\(766\) −246.498 −0.0116271
\(767\) −33.8329 −0.00159274
\(768\) 0 0
\(769\) −38329.0 −1.79737 −0.898687 0.438591i \(-0.855478\pi\)
−0.898687 + 0.438591i \(0.855478\pi\)
\(770\) 1282.17 0.0600082
\(771\) 0 0
\(772\) −6494.32 −0.302766
\(773\) 9529.23 0.443393 0.221696 0.975116i \(-0.428841\pi\)
0.221696 + 0.975116i \(0.428841\pi\)
\(774\) 0 0
\(775\) −3240.65 −0.150203
\(776\) −23700.3 −1.09638
\(777\) 0 0
\(778\) −27703.0 −1.27661
\(779\) 27726.1 1.27521
\(780\) 0 0
\(781\) −4124.93 −0.188991
\(782\) −37618.7 −1.72026
\(783\) 0 0
\(784\) −1373.62 −0.0625740
\(785\) 12023.4 0.546667
\(786\) 0 0
\(787\) 29705.1 1.34545 0.672726 0.739892i \(-0.265123\pi\)
0.672726 + 0.739892i \(0.265123\pi\)
\(788\) −15299.0 −0.691629
\(789\) 0 0
\(790\) 116.664 0.00525408
\(791\) 15190.0 0.682801
\(792\) 0 0
\(793\) 101.931 0.00456451
\(794\) 8114.48 0.362685
\(795\) 0 0
\(796\) −11380.7 −0.506758
\(797\) −8596.99 −0.382084 −0.191042 0.981582i \(-0.561187\pi\)
−0.191042 + 0.981582i \(0.561187\pi\)
\(798\) 0 0
\(799\) −22126.4 −0.979695
\(800\) −9056.69 −0.400253
\(801\) 0 0
\(802\) −12413.3 −0.546543
\(803\) −2314.61 −0.101719
\(804\) 0 0
\(805\) −7102.09 −0.310951
\(806\) 18.4117 0.000804620 0
\(807\) 0 0
\(808\) −14180.7 −0.617422
\(809\) −16630.2 −0.722727 −0.361364 0.932425i \(-0.617689\pi\)
−0.361364 + 0.932425i \(0.617689\pi\)
\(810\) 0 0
\(811\) 18584.2 0.804660 0.402330 0.915495i \(-0.368201\pi\)
0.402330 + 0.915495i \(0.368201\pi\)
\(812\) −3975.76 −0.171825
\(813\) 0 0
\(814\) −3891.56 −0.167567
\(815\) −5845.18 −0.251224
\(816\) 0 0
\(817\) −69205.5 −2.96352
\(818\) 570.127 0.0243692
\(819\) 0 0
\(820\) 4776.87 0.203434
\(821\) 4088.88 0.173816 0.0869079 0.996216i \(-0.472301\pi\)
0.0869079 + 0.996216i \(0.472301\pi\)
\(822\) 0 0
\(823\) −12830.0 −0.543410 −0.271705 0.962381i \(-0.587587\pi\)
−0.271705 + 0.962381i \(0.587587\pi\)
\(824\) −3268.80 −0.138197
\(825\) 0 0
\(826\) −2975.20 −0.125327
\(827\) 13768.7 0.578942 0.289471 0.957187i \(-0.406521\pi\)
0.289471 + 0.957187i \(0.406521\pi\)
\(828\) 0 0
\(829\) −10907.8 −0.456987 −0.228494 0.973545i \(-0.573380\pi\)
−0.228494 + 0.973545i \(0.573380\pi\)
\(830\) −1559.28 −0.0652091
\(831\) 0 0
\(832\) 90.5308 0.00377234
\(833\) −6314.28 −0.262637
\(834\) 0 0
\(835\) 23527.5 0.975093
\(836\) 5001.03 0.206895
\(837\) 0 0
\(838\) −9092.53 −0.374817
\(839\) 27174.8 1.11821 0.559105 0.829097i \(-0.311145\pi\)
0.559105 + 0.829097i \(0.311145\pi\)
\(840\) 0 0
\(841\) 6940.81 0.284588
\(842\) 9281.09 0.379866
\(843\) 0 0
\(844\) −4663.97 −0.190214
\(845\) 16713.1 0.680414
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −12095.7 −0.489819
\(849\) 0 0
\(850\) 18934.5 0.764056
\(851\) 21555.7 0.868298
\(852\) 0 0
\(853\) −33975.1 −1.36376 −0.681878 0.731466i \(-0.738837\pi\)
−0.681878 + 0.731466i \(0.738837\pi\)
\(854\) 8963.58 0.359166
\(855\) 0 0
\(856\) 204.528 0.00816662
\(857\) −20423.7 −0.814073 −0.407037 0.913412i \(-0.633438\pi\)
−0.407037 + 0.913412i \(0.633438\pi\)
\(858\) 0 0
\(859\) −36704.2 −1.45789 −0.728947 0.684570i \(-0.759990\pi\)
−0.728947 + 0.684570i \(0.759990\pi\)
\(860\) −11923.2 −0.472766
\(861\) 0 0
\(862\) −2215.51 −0.0875413
\(863\) −26222.8 −1.03434 −0.517170 0.855883i \(-0.673015\pi\)
−0.517170 + 0.855883i \(0.673015\pi\)
\(864\) 0 0
\(865\) −10098.5 −0.396945
\(866\) 3512.06 0.137811
\(867\) 0 0
\(868\) −1084.35 −0.0424024
\(869\) 77.0680 0.00300846
\(870\) 0 0
\(871\) 27.1645 0.00105676
\(872\) 7778.79 0.302091
\(873\) 0 0
\(874\) 41361.8 1.60078
\(875\) 10231.1 0.395285
\(876\) 0 0
\(877\) 44950.8 1.73076 0.865382 0.501113i \(-0.167076\pi\)
0.865382 + 0.501113i \(0.167076\pi\)
\(878\) 23358.8 0.897861
\(879\) 0 0
\(880\) −2345.84 −0.0898617
\(881\) −3896.87 −0.149023 −0.0745113 0.997220i \(-0.523740\pi\)
−0.0745113 + 0.997220i \(0.523740\pi\)
\(882\) 0 0
\(883\) 6257.41 0.238481 0.119240 0.992865i \(-0.461954\pi\)
0.119240 + 0.992865i \(0.461954\pi\)
\(884\) 72.0466 0.00274117
\(885\) 0 0
\(886\) −4801.83 −0.182077
\(887\) −40626.2 −1.53787 −0.768937 0.639324i \(-0.779214\pi\)
−0.768937 + 0.639324i \(0.779214\pi\)
\(888\) 0 0
\(889\) 9108.68 0.343639
\(890\) −5114.02 −0.192610
\(891\) 0 0
\(892\) −20665.0 −0.775691
\(893\) 24328.0 0.911653
\(894\) 0 0
\(895\) 23897.5 0.892521
\(896\) 405.782 0.0151297
\(897\) 0 0
\(898\) 15476.2 0.575108
\(899\) 8544.91 0.317006
\(900\) 0 0
\(901\) −55601.4 −2.05588
\(902\) −4711.73 −0.173929
\(903\) 0 0
\(904\) −53240.5 −1.95880
\(905\) 28020.6 1.02921
\(906\) 0 0
\(907\) 42366.9 1.55101 0.775506 0.631340i \(-0.217495\pi\)
0.775506 + 0.631340i \(0.217495\pi\)
\(908\) −4213.85 −0.154010
\(909\) 0 0
\(910\) −20.3094 −0.000739835 0
\(911\) −26231.4 −0.953992 −0.476996 0.878906i \(-0.658274\pi\)
−0.476996 + 0.878906i \(0.658274\pi\)
\(912\) 0 0
\(913\) −1030.06 −0.0373384
\(914\) 35560.1 1.28690
\(915\) 0 0
\(916\) 12129.3 0.437514
\(917\) −17655.6 −0.635810
\(918\) 0 0
\(919\) 2542.24 0.0912522 0.0456261 0.998959i \(-0.485472\pi\)
0.0456261 + 0.998959i \(0.485472\pi\)
\(920\) 24892.5 0.892047
\(921\) 0 0
\(922\) 11459.2 0.409314
\(923\) 65.3381 0.00233004
\(924\) 0 0
\(925\) −10849.6 −0.385656
\(926\) −24283.2 −0.861764
\(927\) 0 0
\(928\) 23880.5 0.844739
\(929\) 20097.8 0.709782 0.354891 0.934908i \(-0.384518\pi\)
0.354891 + 0.934908i \(0.384518\pi\)
\(930\) 0 0
\(931\) 6942.56 0.244396
\(932\) 7452.92 0.261941
\(933\) 0 0
\(934\) 17102.0 0.599138
\(935\) −10783.4 −0.377170
\(936\) 0 0
\(937\) −202.788 −0.00707023 −0.00353511 0.999994i \(-0.501125\pi\)
−0.00353511 + 0.999994i \(0.501125\pi\)
\(938\) 2388.80 0.0831525
\(939\) 0 0
\(940\) 4191.41 0.145435
\(941\) −12419.1 −0.430235 −0.215118 0.976588i \(-0.569013\pi\)
−0.215118 + 0.976588i \(0.569013\pi\)
\(942\) 0 0
\(943\) 26098.8 0.901265
\(944\) 5443.37 0.187677
\(945\) 0 0
\(946\) 11760.7 0.404199
\(947\) −369.282 −0.0126717 −0.00633583 0.999980i \(-0.502017\pi\)
−0.00633583 + 0.999980i \(0.502017\pi\)
\(948\) 0 0
\(949\) 36.6629 0.00125409
\(950\) −20818.5 −0.710990
\(951\) 0 0
\(952\) 22131.3 0.753445
\(953\) −25994.1 −0.883558 −0.441779 0.897124i \(-0.645652\pi\)
−0.441779 + 0.897124i \(0.645652\pi\)
\(954\) 0 0
\(955\) −21775.2 −0.737830
\(956\) 7074.72 0.239344
\(957\) 0 0
\(958\) −11597.9 −0.391138
\(959\) −18022.9 −0.606871
\(960\) 0 0
\(961\) −27460.5 −0.921770
\(962\) 61.6416 0.00206591
\(963\) 0 0
\(964\) 14793.8 0.494271
\(965\) −15396.6 −0.513610
\(966\) 0 0
\(967\) −53830.0 −1.79013 −0.895065 0.445937i \(-0.852871\pi\)
−0.895065 + 0.445937i \(0.852871\pi\)
\(968\) −2968.70 −0.0985720
\(969\) 0 0
\(970\) −16085.3 −0.532441
\(971\) 1349.54 0.0446022 0.0223011 0.999751i \(-0.492901\pi\)
0.0223011 + 0.999751i \(0.492901\pi\)
\(972\) 0 0
\(973\) −19190.4 −0.632288
\(974\) 12215.9 0.401872
\(975\) 0 0
\(976\) −16399.6 −0.537847
\(977\) −6611.71 −0.216507 −0.108253 0.994123i \(-0.534526\pi\)
−0.108253 + 0.994123i \(0.534526\pi\)
\(978\) 0 0
\(979\) −3378.31 −0.110287
\(980\) 1196.12 0.0389883
\(981\) 0 0
\(982\) −36595.5 −1.18922
\(983\) −40595.9 −1.31720 −0.658601 0.752493i \(-0.728851\pi\)
−0.658601 + 0.752493i \(0.728851\pi\)
\(984\) 0 0
\(985\) −36270.5 −1.17327
\(986\) −49926.2 −1.61255
\(987\) 0 0
\(988\) −79.2153 −0.00255078
\(989\) −65143.5 −2.09448
\(990\) 0 0
\(991\) −48877.7 −1.56675 −0.783376 0.621548i \(-0.786504\pi\)
−0.783376 + 0.621548i \(0.786504\pi\)
\(992\) 6513.19 0.208462
\(993\) 0 0
\(994\) 5745.71 0.183343
\(995\) −26981.2 −0.859660
\(996\) 0 0
\(997\) 13127.4 0.417000 0.208500 0.978022i \(-0.433142\pi\)
0.208500 + 0.978022i \(0.433142\pi\)
\(998\) 42889.7 1.36037
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.o.1.4 5
3.2 odd 2 77.4.a.e.1.2 5
12.11 even 2 1232.4.a.y.1.2 5
15.14 odd 2 1925.4.a.r.1.4 5
21.20 even 2 539.4.a.h.1.2 5
33.32 even 2 847.4.a.f.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.e.1.2 5 3.2 odd 2
539.4.a.h.1.2 5 21.20 even 2
693.4.a.o.1.4 5 1.1 even 1 trivial
847.4.a.f.1.4 5 33.32 even 2
1232.4.a.y.1.2 5 12.11 even 2
1925.4.a.r.1.4 5 15.14 odd 2