Properties

Label 693.4.a.o.1.3
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.22767\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.22767 q^{2} -6.49284 q^{4} +2.21191 q^{5} +7.00000 q^{7} -17.7924 q^{8} +O(q^{10})\) \(q+1.22767 q^{2} -6.49284 q^{4} +2.21191 q^{5} +7.00000 q^{7} -17.7924 q^{8} +2.71549 q^{10} -11.0000 q^{11} +12.8361 q^{13} +8.59366 q^{14} +30.0996 q^{16} +45.5444 q^{17} +11.0493 q^{19} -14.3616 q^{20} -13.5043 q^{22} -177.525 q^{23} -120.107 q^{25} +15.7584 q^{26} -45.4499 q^{28} -58.5230 q^{29} +175.188 q^{31} +179.291 q^{32} +55.9132 q^{34} +15.4834 q^{35} +221.135 q^{37} +13.5648 q^{38} -39.3551 q^{40} +307.706 q^{41} +462.781 q^{43} +71.4212 q^{44} -217.942 q^{46} +293.151 q^{47} +49.0000 q^{49} -147.452 q^{50} -83.3427 q^{52} -400.608 q^{53} -24.3310 q^{55} -124.547 q^{56} -71.8467 q^{58} -16.3417 q^{59} +509.546 q^{61} +215.072 q^{62} -20.6874 q^{64} +28.3923 q^{65} +483.585 q^{67} -295.712 q^{68} +19.0084 q^{70} -202.883 q^{71} +885.910 q^{73} +271.479 q^{74} -71.7412 q^{76} -77.0000 q^{77} +289.526 q^{79} +66.5777 q^{80} +377.760 q^{82} -106.577 q^{83} +100.740 q^{85} +568.140 q^{86} +195.716 q^{88} +1586.10 q^{89} +89.8527 q^{91} +1152.64 q^{92} +359.891 q^{94} +24.4400 q^{95} -990.599 q^{97} +60.1556 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 45 q^{4} + 24 q^{5} + 35 q^{7} - 57 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - q^{2} + 45 q^{4} + 24 q^{5} + 35 q^{7} - 57 q^{8} - 10 q^{10} - 55 q^{11} - 50 q^{13} - 7 q^{14} + 433 q^{16} - 222 q^{17} + 160 q^{19} + 430 q^{20} + 11 q^{22} - 54 q^{23} + 125 q^{25} + 1026 q^{26} + 315 q^{28} - 14 q^{29} - 34 q^{31} + 583 q^{32} - 750 q^{34} + 168 q^{35} + 1044 q^{37} + 156 q^{38} + 1158 q^{40} + 114 q^{41} + 672 q^{43} - 495 q^{44} - 1224 q^{46} + 292 q^{47} + 245 q^{49} - 1143 q^{50} - 914 q^{52} + 710 q^{53} - 264 q^{55} - 399 q^{56} - 810 q^{58} - 270 q^{59} + 138 q^{61} + 480 q^{62} + 3001 q^{64} + 196 q^{65} + 1942 q^{67} - 3130 q^{68} - 70 q^{70} + 278 q^{71} - 338 q^{73} - 462 q^{74} - 1332 q^{76} - 385 q^{77} + 576 q^{79} + 1602 q^{80} + 1386 q^{82} - 1644 q^{83} + 360 q^{85} - 2020 q^{86} + 627 q^{88} + 3656 q^{89} - 350 q^{91} + 748 q^{92} + 976 q^{94} + 1276 q^{95} + 692 q^{97} - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22767 0.434045 0.217023 0.976167i \(-0.430365\pi\)
0.217023 + 0.976167i \(0.430365\pi\)
\(3\) 0 0
\(4\) −6.49284 −0.811605
\(5\) 2.21191 0.197839 0.0989196 0.995095i \(-0.468461\pi\)
0.0989196 + 0.995095i \(0.468461\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −17.7924 −0.786319
\(9\) 0 0
\(10\) 2.71549 0.0858712
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 12.8361 0.273853 0.136927 0.990581i \(-0.456278\pi\)
0.136927 + 0.990581i \(0.456278\pi\)
\(14\) 8.59366 0.164054
\(15\) 0 0
\(16\) 30.0996 0.470307
\(17\) 45.5444 0.649772 0.324886 0.945753i \(-0.394674\pi\)
0.324886 + 0.945753i \(0.394674\pi\)
\(18\) 0 0
\(19\) 11.0493 0.133415 0.0667074 0.997773i \(-0.478751\pi\)
0.0667074 + 0.997773i \(0.478751\pi\)
\(20\) −14.3616 −0.160567
\(21\) 0 0
\(22\) −13.5043 −0.130870
\(23\) −177.525 −1.60942 −0.804708 0.593671i \(-0.797678\pi\)
−0.804708 + 0.593671i \(0.797678\pi\)
\(24\) 0 0
\(25\) −120.107 −0.960860
\(26\) 15.7584 0.118865
\(27\) 0 0
\(28\) −45.4499 −0.306758
\(29\) −58.5230 −0.374740 −0.187370 0.982289i \(-0.559996\pi\)
−0.187370 + 0.982289i \(0.559996\pi\)
\(30\) 0 0
\(31\) 175.188 1.01499 0.507495 0.861654i \(-0.330571\pi\)
0.507495 + 0.861654i \(0.330571\pi\)
\(32\) 179.291 0.990453
\(33\) 0 0
\(34\) 55.9132 0.282031
\(35\) 15.4834 0.0747762
\(36\) 0 0
\(37\) 221.135 0.982549 0.491274 0.871005i \(-0.336531\pi\)
0.491274 + 0.871005i \(0.336531\pi\)
\(38\) 13.5648 0.0579080
\(39\) 0 0
\(40\) −39.3551 −0.155565
\(41\) 307.706 1.17209 0.586043 0.810280i \(-0.300685\pi\)
0.586043 + 0.810280i \(0.300685\pi\)
\(42\) 0 0
\(43\) 462.781 1.64124 0.820621 0.571473i \(-0.193628\pi\)
0.820621 + 0.571473i \(0.193628\pi\)
\(44\) 71.4212 0.244708
\(45\) 0 0
\(46\) −217.942 −0.698560
\(47\) 293.151 0.909796 0.454898 0.890544i \(-0.349676\pi\)
0.454898 + 0.890544i \(0.349676\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −147.452 −0.417057
\(51\) 0 0
\(52\) −83.3427 −0.222261
\(53\) −400.608 −1.03826 −0.519130 0.854696i \(-0.673744\pi\)
−0.519130 + 0.854696i \(0.673744\pi\)
\(54\) 0 0
\(55\) −24.3310 −0.0596508
\(56\) −124.547 −0.297201
\(57\) 0 0
\(58\) −71.8467 −0.162654
\(59\) −16.3417 −0.0360595 −0.0180298 0.999837i \(-0.505739\pi\)
−0.0180298 + 0.999837i \(0.505739\pi\)
\(60\) 0 0
\(61\) 509.546 1.06952 0.534760 0.845004i \(-0.320402\pi\)
0.534760 + 0.845004i \(0.320402\pi\)
\(62\) 215.072 0.440552
\(63\) 0 0
\(64\) −20.6874 −0.0404051
\(65\) 28.3923 0.0541790
\(66\) 0 0
\(67\) 483.585 0.881781 0.440891 0.897561i \(-0.354663\pi\)
0.440891 + 0.897561i \(0.354663\pi\)
\(68\) −295.712 −0.527358
\(69\) 0 0
\(70\) 19.0084 0.0324563
\(71\) −202.883 −0.339124 −0.169562 0.985519i \(-0.554235\pi\)
−0.169562 + 0.985519i \(0.554235\pi\)
\(72\) 0 0
\(73\) 885.910 1.42038 0.710191 0.704009i \(-0.248608\pi\)
0.710191 + 0.704009i \(0.248608\pi\)
\(74\) 271.479 0.426471
\(75\) 0 0
\(76\) −71.7412 −0.108280
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 289.526 0.412331 0.206166 0.978517i \(-0.433901\pi\)
0.206166 + 0.978517i \(0.433901\pi\)
\(80\) 66.5777 0.0930451
\(81\) 0 0
\(82\) 377.760 0.508739
\(83\) −106.577 −0.140944 −0.0704722 0.997514i \(-0.522451\pi\)
−0.0704722 + 0.997514i \(0.522451\pi\)
\(84\) 0 0
\(85\) 100.740 0.128550
\(86\) 568.140 0.712373
\(87\) 0 0
\(88\) 195.716 0.237084
\(89\) 1586.10 1.88906 0.944528 0.328432i \(-0.106520\pi\)
0.944528 + 0.328432i \(0.106520\pi\)
\(90\) 0 0
\(91\) 89.8527 0.103507
\(92\) 1152.64 1.30621
\(93\) 0 0
\(94\) 359.891 0.394893
\(95\) 24.4400 0.0263947
\(96\) 0 0
\(97\) −990.599 −1.03691 −0.518454 0.855105i \(-0.673492\pi\)
−0.518454 + 0.855105i \(0.673492\pi\)
\(98\) 60.1556 0.0620065
\(99\) 0 0
\(100\) 779.838 0.779838
\(101\) 496.401 0.489047 0.244523 0.969643i \(-0.421369\pi\)
0.244523 + 0.969643i \(0.421369\pi\)
\(102\) 0 0
\(103\) 287.602 0.275128 0.137564 0.990493i \(-0.456073\pi\)
0.137564 + 0.990493i \(0.456073\pi\)
\(104\) −228.385 −0.215336
\(105\) 0 0
\(106\) −491.813 −0.450652
\(107\) 1310.33 1.18388 0.591938 0.805984i \(-0.298363\pi\)
0.591938 + 0.805984i \(0.298363\pi\)
\(108\) 0 0
\(109\) −1226.79 −1.07803 −0.539014 0.842297i \(-0.681203\pi\)
−0.539014 + 0.842297i \(0.681203\pi\)
\(110\) −29.8703 −0.0258911
\(111\) 0 0
\(112\) 210.697 0.177759
\(113\) −1717.53 −1.42984 −0.714921 0.699206i \(-0.753537\pi\)
−0.714921 + 0.699206i \(0.753537\pi\)
\(114\) 0 0
\(115\) −392.670 −0.318406
\(116\) 379.980 0.304140
\(117\) 0 0
\(118\) −20.0622 −0.0156515
\(119\) 318.810 0.245591
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 625.552 0.464220
\(123\) 0 0
\(124\) −1137.47 −0.823771
\(125\) −542.156 −0.387935
\(126\) 0 0
\(127\) 2764.27 1.93141 0.965707 0.259633i \(-0.0836015\pi\)
0.965707 + 0.259633i \(0.0836015\pi\)
\(128\) −1459.73 −1.00799
\(129\) 0 0
\(130\) 34.8563 0.0235161
\(131\) 781.116 0.520965 0.260482 0.965479i \(-0.416118\pi\)
0.260482 + 0.965479i \(0.416118\pi\)
\(132\) 0 0
\(133\) 77.3450 0.0504260
\(134\) 593.681 0.382733
\(135\) 0 0
\(136\) −810.341 −0.510928
\(137\) 1562.95 0.974685 0.487343 0.873211i \(-0.337966\pi\)
0.487343 + 0.873211i \(0.337966\pi\)
\(138\) 0 0
\(139\) 1707.58 1.04198 0.520991 0.853562i \(-0.325563\pi\)
0.520991 + 0.853562i \(0.325563\pi\)
\(140\) −100.531 −0.0606887
\(141\) 0 0
\(142\) −249.073 −0.147195
\(143\) −141.197 −0.0825699
\(144\) 0 0
\(145\) −129.448 −0.0741382
\(146\) 1087.60 0.616511
\(147\) 0 0
\(148\) −1435.79 −0.797441
\(149\) −1825.21 −1.00353 −0.501767 0.865003i \(-0.667317\pi\)
−0.501767 + 0.865003i \(0.667317\pi\)
\(150\) 0 0
\(151\) −1300.18 −0.700708 −0.350354 0.936617i \(-0.613939\pi\)
−0.350354 + 0.936617i \(0.613939\pi\)
\(152\) −196.593 −0.104906
\(153\) 0 0
\(154\) −94.5303 −0.0494641
\(155\) 387.500 0.200805
\(156\) 0 0
\(157\) 2068.27 1.05138 0.525688 0.850677i \(-0.323808\pi\)
0.525688 + 0.850677i \(0.323808\pi\)
\(158\) 355.441 0.178971
\(159\) 0 0
\(160\) 396.576 0.195950
\(161\) −1242.68 −0.608302
\(162\) 0 0
\(163\) 1463.67 0.703336 0.351668 0.936125i \(-0.385615\pi\)
0.351668 + 0.936125i \(0.385615\pi\)
\(164\) −1997.88 −0.951271
\(165\) 0 0
\(166\) −130.841 −0.0611763
\(167\) −3276.22 −1.51809 −0.759045 0.651038i \(-0.774334\pi\)
−0.759045 + 0.651038i \(0.774334\pi\)
\(168\) 0 0
\(169\) −2032.23 −0.925004
\(170\) 123.675 0.0557967
\(171\) 0 0
\(172\) −3004.76 −1.33204
\(173\) 795.944 0.349795 0.174897 0.984587i \(-0.444041\pi\)
0.174897 + 0.984587i \(0.444041\pi\)
\(174\) 0 0
\(175\) −840.752 −0.363171
\(176\) −331.096 −0.141803
\(177\) 0 0
\(178\) 1947.20 0.819936
\(179\) −1636.50 −0.683340 −0.341670 0.939820i \(-0.610992\pi\)
−0.341670 + 0.939820i \(0.610992\pi\)
\(180\) 0 0
\(181\) 3631.26 1.49121 0.745606 0.666387i \(-0.232160\pi\)
0.745606 + 0.666387i \(0.232160\pi\)
\(182\) 110.309 0.0449267
\(183\) 0 0
\(184\) 3158.59 1.26551
\(185\) 489.130 0.194387
\(186\) 0 0
\(187\) −500.988 −0.195914
\(188\) −1903.38 −0.738394
\(189\) 0 0
\(190\) 30.0042 0.0114565
\(191\) −208.684 −0.0790568 −0.0395284 0.999218i \(-0.512586\pi\)
−0.0395284 + 0.999218i \(0.512586\pi\)
\(192\) 0 0
\(193\) 808.914 0.301694 0.150847 0.988557i \(-0.451800\pi\)
0.150847 + 0.988557i \(0.451800\pi\)
\(194\) −1216.12 −0.450065
\(195\) 0 0
\(196\) −318.149 −0.115944
\(197\) −4224.83 −1.52795 −0.763976 0.645245i \(-0.776755\pi\)
−0.763976 + 0.645245i \(0.776755\pi\)
\(198\) 0 0
\(199\) 344.463 0.122705 0.0613526 0.998116i \(-0.480459\pi\)
0.0613526 + 0.998116i \(0.480459\pi\)
\(200\) 2136.99 0.755542
\(201\) 0 0
\(202\) 609.414 0.212268
\(203\) −409.661 −0.141638
\(204\) 0 0
\(205\) 680.617 0.231885
\(206\) 353.079 0.119418
\(207\) 0 0
\(208\) 386.362 0.128795
\(209\) −121.542 −0.0402261
\(210\) 0 0
\(211\) −5991.08 −1.95470 −0.977352 0.211619i \(-0.932126\pi\)
−0.977352 + 0.211619i \(0.932126\pi\)
\(212\) 2601.08 0.842656
\(213\) 0 0
\(214\) 1608.65 0.513856
\(215\) 1023.63 0.324702
\(216\) 0 0
\(217\) 1226.32 0.383631
\(218\) −1506.09 −0.467913
\(219\) 0 0
\(220\) 157.977 0.0484128
\(221\) 584.612 0.177942
\(222\) 0 0
\(223\) −2148.98 −0.645320 −0.322660 0.946515i \(-0.604577\pi\)
−0.322660 + 0.946515i \(0.604577\pi\)
\(224\) 1255.04 0.374356
\(225\) 0 0
\(226\) −2108.56 −0.620616
\(227\) 2067.49 0.604513 0.302256 0.953227i \(-0.402260\pi\)
0.302256 + 0.953227i \(0.402260\pi\)
\(228\) 0 0
\(229\) −6394.72 −1.84530 −0.922652 0.385633i \(-0.873983\pi\)
−0.922652 + 0.385633i \(0.873983\pi\)
\(230\) −482.067 −0.138203
\(231\) 0 0
\(232\) 1041.26 0.294665
\(233\) 5341.34 1.50181 0.750907 0.660408i \(-0.229617\pi\)
0.750907 + 0.660408i \(0.229617\pi\)
\(234\) 0 0
\(235\) 648.423 0.179993
\(236\) 106.104 0.0292661
\(237\) 0 0
\(238\) 391.393 0.106598
\(239\) 4325.48 1.17068 0.585339 0.810789i \(-0.300962\pi\)
0.585339 + 0.810789i \(0.300962\pi\)
\(240\) 0 0
\(241\) 6620.57 1.76958 0.884790 0.465991i \(-0.154302\pi\)
0.884790 + 0.465991i \(0.154302\pi\)
\(242\) 148.548 0.0394587
\(243\) 0 0
\(244\) −3308.40 −0.868027
\(245\) 108.384 0.0282628
\(246\) 0 0
\(247\) 141.830 0.0365361
\(248\) −3117.01 −0.798106
\(249\) 0 0
\(250\) −665.586 −0.168381
\(251\) −4621.48 −1.16217 −0.581086 0.813842i \(-0.697372\pi\)
−0.581086 + 0.813842i \(0.697372\pi\)
\(252\) 0 0
\(253\) 1952.78 0.485257
\(254\) 3393.61 0.838322
\(255\) 0 0
\(256\) −1626.56 −0.397109
\(257\) −6233.98 −1.51309 −0.756547 0.653939i \(-0.773115\pi\)
−0.756547 + 0.653939i \(0.773115\pi\)
\(258\) 0 0
\(259\) 1547.94 0.371368
\(260\) −184.347 −0.0439719
\(261\) 0 0
\(262\) 958.949 0.226122
\(263\) −1289.39 −0.302308 −0.151154 0.988510i \(-0.548299\pi\)
−0.151154 + 0.988510i \(0.548299\pi\)
\(264\) 0 0
\(265\) −886.109 −0.205408
\(266\) 94.9538 0.0218872
\(267\) 0 0
\(268\) −3139.84 −0.715658
\(269\) −2310.16 −0.523616 −0.261808 0.965120i \(-0.584319\pi\)
−0.261808 + 0.965120i \(0.584319\pi\)
\(270\) 0 0
\(271\) 7584.99 1.70020 0.850102 0.526619i \(-0.176540\pi\)
0.850102 + 0.526619i \(0.176540\pi\)
\(272\) 1370.87 0.305592
\(273\) 0 0
\(274\) 1918.78 0.423058
\(275\) 1321.18 0.289710
\(276\) 0 0
\(277\) −339.509 −0.0736431 −0.0368215 0.999322i \(-0.511723\pi\)
−0.0368215 + 0.999322i \(0.511723\pi\)
\(278\) 2096.34 0.452267
\(279\) 0 0
\(280\) −275.486 −0.0587979
\(281\) 4829.29 1.02524 0.512618 0.858617i \(-0.328676\pi\)
0.512618 + 0.858617i \(0.328676\pi\)
\(282\) 0 0
\(283\) −2858.99 −0.600527 −0.300264 0.953856i \(-0.597075\pi\)
−0.300264 + 0.953856i \(0.597075\pi\)
\(284\) 1317.29 0.275235
\(285\) 0 0
\(286\) −173.343 −0.0358391
\(287\) 2153.94 0.443007
\(288\) 0 0
\(289\) −2838.71 −0.577796
\(290\) −158.918 −0.0321793
\(291\) 0 0
\(292\) −5752.07 −1.15279
\(293\) −8749.66 −1.74458 −0.872288 0.488993i \(-0.837364\pi\)
−0.872288 + 0.488993i \(0.837364\pi\)
\(294\) 0 0
\(295\) −36.1465 −0.00713399
\(296\) −3934.51 −0.772596
\(297\) 0 0
\(298\) −2240.74 −0.435580
\(299\) −2278.73 −0.440744
\(300\) 0 0
\(301\) 3239.46 0.620331
\(302\) −1596.18 −0.304139
\(303\) 0 0
\(304\) 332.579 0.0627458
\(305\) 1127.07 0.211593
\(306\) 0 0
\(307\) −3970.00 −0.738045 −0.369023 0.929420i \(-0.620308\pi\)
−0.369023 + 0.929420i \(0.620308\pi\)
\(308\) 499.948 0.0924909
\(309\) 0 0
\(310\) 475.721 0.0871585
\(311\) −2412.36 −0.439847 −0.219923 0.975517i \(-0.570581\pi\)
−0.219923 + 0.975517i \(0.570581\pi\)
\(312\) 0 0
\(313\) −6809.58 −1.22971 −0.614857 0.788639i \(-0.710786\pi\)
−0.614857 + 0.788639i \(0.710786\pi\)
\(314\) 2539.15 0.456345
\(315\) 0 0
\(316\) −1879.84 −0.334650
\(317\) 10686.8 1.89347 0.946733 0.322021i \(-0.104362\pi\)
0.946733 + 0.322021i \(0.104362\pi\)
\(318\) 0 0
\(319\) 643.753 0.112988
\(320\) −45.7587 −0.00799371
\(321\) 0 0
\(322\) −1525.59 −0.264031
\(323\) 503.232 0.0866892
\(324\) 0 0
\(325\) −1541.71 −0.263135
\(326\) 1796.90 0.305280
\(327\) 0 0
\(328\) −5474.81 −0.921634
\(329\) 2052.05 0.343870
\(330\) 0 0
\(331\) 3924.27 0.651654 0.325827 0.945429i \(-0.394357\pi\)
0.325827 + 0.945429i \(0.394357\pi\)
\(332\) 691.989 0.114391
\(333\) 0 0
\(334\) −4022.10 −0.658920
\(335\) 1069.65 0.174451
\(336\) 0 0
\(337\) −4292.08 −0.693783 −0.346891 0.937905i \(-0.612763\pi\)
−0.346891 + 0.937905i \(0.612763\pi\)
\(338\) −2494.90 −0.401494
\(339\) 0 0
\(340\) −654.088 −0.104332
\(341\) −1927.07 −0.306031
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −8233.96 −1.29054
\(345\) 0 0
\(346\) 977.153 0.151827
\(347\) 1481.08 0.229131 0.114565 0.993416i \(-0.463452\pi\)
0.114565 + 0.993416i \(0.463452\pi\)
\(348\) 0 0
\(349\) 8449.08 1.29590 0.647949 0.761683i \(-0.275627\pi\)
0.647949 + 0.761683i \(0.275627\pi\)
\(350\) −1032.16 −0.157633
\(351\) 0 0
\(352\) −1972.20 −0.298633
\(353\) 4430.47 0.668017 0.334008 0.942570i \(-0.391599\pi\)
0.334008 + 0.942570i \(0.391599\pi\)
\(354\) 0 0
\(355\) −448.760 −0.0670921
\(356\) −10298.3 −1.53317
\(357\) 0 0
\(358\) −2009.08 −0.296601
\(359\) −1340.69 −0.197101 −0.0985503 0.995132i \(-0.531421\pi\)
−0.0985503 + 0.995132i \(0.531421\pi\)
\(360\) 0 0
\(361\) −6736.91 −0.982201
\(362\) 4457.97 0.647254
\(363\) 0 0
\(364\) −583.399 −0.0840067
\(365\) 1959.55 0.281007
\(366\) 0 0
\(367\) −10543.8 −1.49967 −0.749837 0.661623i \(-0.769868\pi\)
−0.749837 + 0.661623i \(0.769868\pi\)
\(368\) −5343.44 −0.756919
\(369\) 0 0
\(370\) 600.488 0.0843726
\(371\) −2804.26 −0.392425
\(372\) 0 0
\(373\) 2702.46 0.375142 0.187571 0.982251i \(-0.439938\pi\)
0.187571 + 0.982251i \(0.439938\pi\)
\(374\) −615.046 −0.0850354
\(375\) 0 0
\(376\) −5215.84 −0.715389
\(377\) −751.207 −0.102624
\(378\) 0 0
\(379\) 2784.94 0.377447 0.188724 0.982030i \(-0.439565\pi\)
0.188724 + 0.982030i \(0.439565\pi\)
\(380\) −158.685 −0.0214220
\(381\) 0 0
\(382\) −256.194 −0.0343142
\(383\) 9176.46 1.22427 0.612135 0.790753i \(-0.290311\pi\)
0.612135 + 0.790753i \(0.290311\pi\)
\(384\) 0 0
\(385\) −170.317 −0.0225459
\(386\) 993.077 0.130949
\(387\) 0 0
\(388\) 6431.80 0.841560
\(389\) 3142.13 0.409544 0.204772 0.978810i \(-0.434355\pi\)
0.204772 + 0.978810i \(0.434355\pi\)
\(390\) 0 0
\(391\) −8085.27 −1.04575
\(392\) −871.826 −0.112331
\(393\) 0 0
\(394\) −5186.67 −0.663200
\(395\) 640.405 0.0815753
\(396\) 0 0
\(397\) −11192.0 −1.41489 −0.707444 0.706769i \(-0.750152\pi\)
−0.707444 + 0.706769i \(0.750152\pi\)
\(398\) 422.885 0.0532596
\(399\) 0 0
\(400\) −3615.19 −0.451899
\(401\) 3429.07 0.427031 0.213515 0.976940i \(-0.431509\pi\)
0.213515 + 0.976940i \(0.431509\pi\)
\(402\) 0 0
\(403\) 2248.73 0.277959
\(404\) −3223.05 −0.396912
\(405\) 0 0
\(406\) −502.927 −0.0614774
\(407\) −2432.48 −0.296250
\(408\) 0 0
\(409\) 12313.7 1.48869 0.744347 0.667793i \(-0.232761\pi\)
0.744347 + 0.667793i \(0.232761\pi\)
\(410\) 835.571 0.100649
\(411\) 0 0
\(412\) −1867.35 −0.223295
\(413\) −114.392 −0.0136292
\(414\) 0 0
\(415\) −235.740 −0.0278843
\(416\) 2301.40 0.271239
\(417\) 0 0
\(418\) −149.213 −0.0174599
\(419\) 11674.8 1.36122 0.680609 0.732647i \(-0.261715\pi\)
0.680609 + 0.732647i \(0.261715\pi\)
\(420\) 0 0
\(421\) 6294.54 0.728687 0.364344 0.931265i \(-0.381293\pi\)
0.364344 + 0.931265i \(0.381293\pi\)
\(422\) −7355.04 −0.848430
\(423\) 0 0
\(424\) 7127.76 0.816403
\(425\) −5470.22 −0.624340
\(426\) 0 0
\(427\) 3566.82 0.404240
\(428\) −8507.78 −0.960838
\(429\) 0 0
\(430\) 1256.67 0.140935
\(431\) 5110.96 0.571198 0.285599 0.958349i \(-0.407807\pi\)
0.285599 + 0.958349i \(0.407807\pi\)
\(432\) 0 0
\(433\) −6754.23 −0.749624 −0.374812 0.927101i \(-0.622293\pi\)
−0.374812 + 0.927101i \(0.622293\pi\)
\(434\) 1505.51 0.166513
\(435\) 0 0
\(436\) 7965.33 0.874932
\(437\) −1961.53 −0.214720
\(438\) 0 0
\(439\) −6529.02 −0.709825 −0.354912 0.934900i \(-0.615489\pi\)
−0.354912 + 0.934900i \(0.615489\pi\)
\(440\) 432.906 0.0469045
\(441\) 0 0
\(442\) 717.708 0.0772351
\(443\) 1529.54 0.164042 0.0820211 0.996631i \(-0.473863\pi\)
0.0820211 + 0.996631i \(0.473863\pi\)
\(444\) 0 0
\(445\) 3508.30 0.373729
\(446\) −2638.23 −0.280098
\(447\) 0 0
\(448\) −144.812 −0.0152717
\(449\) −9778.96 −1.02783 −0.513917 0.857840i \(-0.671806\pi\)
−0.513917 + 0.857840i \(0.671806\pi\)
\(450\) 0 0
\(451\) −3384.76 −0.353397
\(452\) 11151.7 1.16047
\(453\) 0 0
\(454\) 2538.19 0.262386
\(455\) 198.746 0.0204777
\(456\) 0 0
\(457\) 10614.0 1.08643 0.543217 0.839592i \(-0.317206\pi\)
0.543217 + 0.839592i \(0.317206\pi\)
\(458\) −7850.58 −0.800946
\(459\) 0 0
\(460\) 2549.54 0.258420
\(461\) −7536.27 −0.761386 −0.380693 0.924701i \(-0.624315\pi\)
−0.380693 + 0.924701i \(0.624315\pi\)
\(462\) 0 0
\(463\) −3945.44 −0.396026 −0.198013 0.980199i \(-0.563449\pi\)
−0.198013 + 0.980199i \(0.563449\pi\)
\(464\) −1761.52 −0.176242
\(465\) 0 0
\(466\) 6557.37 0.651855
\(467\) −9456.18 −0.937002 −0.468501 0.883463i \(-0.655206\pi\)
−0.468501 + 0.883463i \(0.655206\pi\)
\(468\) 0 0
\(469\) 3385.10 0.333282
\(470\) 796.046 0.0781253
\(471\) 0 0
\(472\) 290.758 0.0283543
\(473\) −5090.59 −0.494853
\(474\) 0 0
\(475\) −1327.10 −0.128193
\(476\) −2069.98 −0.199323
\(477\) 0 0
\(478\) 5310.24 0.508127
\(479\) 2775.63 0.264764 0.132382 0.991199i \(-0.457737\pi\)
0.132382 + 0.991199i \(0.457737\pi\)
\(480\) 0 0
\(481\) 2838.51 0.269074
\(482\) 8127.85 0.768078
\(483\) 0 0
\(484\) −785.633 −0.0737822
\(485\) −2191.12 −0.205141
\(486\) 0 0
\(487\) 20902.4 1.94492 0.972461 0.233066i \(-0.0748759\pi\)
0.972461 + 0.233066i \(0.0748759\pi\)
\(488\) −9066.02 −0.840983
\(489\) 0 0
\(490\) 133.059 0.0122673
\(491\) 7832.44 0.719904 0.359952 0.932971i \(-0.382793\pi\)
0.359952 + 0.932971i \(0.382793\pi\)
\(492\) 0 0
\(493\) −2665.39 −0.243495
\(494\) 174.120 0.0158583
\(495\) 0 0
\(496\) 5273.10 0.477357
\(497\) −1420.18 −0.128177
\(498\) 0 0
\(499\) −11585.6 −1.03936 −0.519681 0.854360i \(-0.673949\pi\)
−0.519681 + 0.854360i \(0.673949\pi\)
\(500\) 3520.13 0.314850
\(501\) 0 0
\(502\) −5673.63 −0.504435
\(503\) 168.525 0.0149387 0.00746934 0.999972i \(-0.497622\pi\)
0.00746934 + 0.999972i \(0.497622\pi\)
\(504\) 0 0
\(505\) 1097.99 0.0967526
\(506\) 2397.36 0.210624
\(507\) 0 0
\(508\) −17948.0 −1.56755
\(509\) 5404.59 0.470637 0.235319 0.971918i \(-0.424387\pi\)
0.235319 + 0.971918i \(0.424387\pi\)
\(510\) 0 0
\(511\) 6201.37 0.536854
\(512\) 9680.94 0.835628
\(513\) 0 0
\(514\) −7653.25 −0.656752
\(515\) 636.149 0.0544312
\(516\) 0 0
\(517\) −3224.66 −0.274314
\(518\) 1900.36 0.161191
\(519\) 0 0
\(520\) −505.166 −0.0426019
\(521\) −5372.28 −0.451754 −0.225877 0.974156i \(-0.572525\pi\)
−0.225877 + 0.974156i \(0.572525\pi\)
\(522\) 0 0
\(523\) 18418.3 1.53991 0.769957 0.638096i \(-0.220278\pi\)
0.769957 + 0.638096i \(0.220278\pi\)
\(524\) −5071.66 −0.422818
\(525\) 0 0
\(526\) −1582.94 −0.131215
\(527\) 7978.83 0.659513
\(528\) 0 0
\(529\) 19348.2 1.59022
\(530\) −1087.85 −0.0891566
\(531\) 0 0
\(532\) −502.188 −0.0409260
\(533\) 3949.74 0.320980
\(534\) 0 0
\(535\) 2898.34 0.234217
\(536\) −8604.12 −0.693361
\(537\) 0 0
\(538\) −2836.10 −0.227273
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 2953.93 0.234749 0.117375 0.993088i \(-0.462552\pi\)
0.117375 + 0.993088i \(0.462552\pi\)
\(542\) 9311.83 0.737965
\(543\) 0 0
\(544\) 8165.70 0.643569
\(545\) −2713.54 −0.213276
\(546\) 0 0
\(547\) 13476.6 1.05341 0.526706 0.850048i \(-0.323427\pi\)
0.526706 + 0.850048i \(0.323427\pi\)
\(548\) −10148.0 −0.791059
\(549\) 0 0
\(550\) 1621.97 0.125747
\(551\) −646.637 −0.0499958
\(552\) 0 0
\(553\) 2026.68 0.155847
\(554\) −416.804 −0.0319644
\(555\) 0 0
\(556\) −11087.1 −0.845677
\(557\) −8327.77 −0.633499 −0.316749 0.948509i \(-0.602591\pi\)
−0.316749 + 0.948509i \(0.602591\pi\)
\(558\) 0 0
\(559\) 5940.30 0.449460
\(560\) 466.044 0.0351677
\(561\) 0 0
\(562\) 5928.75 0.444999
\(563\) −4910.23 −0.367569 −0.183785 0.982967i \(-0.558835\pi\)
−0.183785 + 0.982967i \(0.558835\pi\)
\(564\) 0 0
\(565\) −3799.03 −0.282879
\(566\) −3509.88 −0.260656
\(567\) 0 0
\(568\) 3609.77 0.266660
\(569\) 9451.76 0.696377 0.348188 0.937425i \(-0.386797\pi\)
0.348188 + 0.937425i \(0.386797\pi\)
\(570\) 0 0
\(571\) −9705.19 −0.711295 −0.355648 0.934620i \(-0.615740\pi\)
−0.355648 + 0.934620i \(0.615740\pi\)
\(572\) 916.770 0.0670141
\(573\) 0 0
\(574\) 2644.32 0.192285
\(575\) 21322.1 1.54642
\(576\) 0 0
\(577\) 2933.73 0.211669 0.105834 0.994384i \(-0.466249\pi\)
0.105834 + 0.994384i \(0.466249\pi\)
\(578\) −3484.99 −0.250790
\(579\) 0 0
\(580\) 840.482 0.0601709
\(581\) −746.041 −0.0532720
\(582\) 0 0
\(583\) 4406.69 0.313047
\(584\) −15762.4 −1.11687
\(585\) 0 0
\(586\) −10741.7 −0.757225
\(587\) 23344.2 1.64143 0.820714 0.571339i \(-0.193576\pi\)
0.820714 + 0.571339i \(0.193576\pi\)
\(588\) 0 0
\(589\) 1935.70 0.135415
\(590\) −44.3758 −0.00309648
\(591\) 0 0
\(592\) 6656.07 0.462099
\(593\) −26704.7 −1.84929 −0.924645 0.380830i \(-0.875638\pi\)
−0.924645 + 0.380830i \(0.875638\pi\)
\(594\) 0 0
\(595\) 705.180 0.0485875
\(596\) 11850.8 0.814473
\(597\) 0 0
\(598\) −2797.52 −0.191303
\(599\) 1767.91 0.120593 0.0602963 0.998181i \(-0.480795\pi\)
0.0602963 + 0.998181i \(0.480795\pi\)
\(600\) 0 0
\(601\) −3390.95 −0.230149 −0.115075 0.993357i \(-0.536711\pi\)
−0.115075 + 0.993357i \(0.536711\pi\)
\(602\) 3976.98 0.269252
\(603\) 0 0
\(604\) 8441.83 0.568697
\(605\) 267.641 0.0179854
\(606\) 0 0
\(607\) −12925.9 −0.864323 −0.432162 0.901796i \(-0.642249\pi\)
−0.432162 + 0.901796i \(0.642249\pi\)
\(608\) 1981.04 0.132141
\(609\) 0 0
\(610\) 1383.66 0.0918409
\(611\) 3762.91 0.249151
\(612\) 0 0
\(613\) 12339.8 0.813049 0.406525 0.913640i \(-0.366741\pi\)
0.406525 + 0.913640i \(0.366741\pi\)
\(614\) −4873.83 −0.320345
\(615\) 0 0
\(616\) 1370.01 0.0896093
\(617\) 6235.47 0.406857 0.203428 0.979090i \(-0.434792\pi\)
0.203428 + 0.979090i \(0.434792\pi\)
\(618\) 0 0
\(619\) 9830.39 0.638314 0.319157 0.947702i \(-0.396600\pi\)
0.319157 + 0.947702i \(0.396600\pi\)
\(620\) −2515.98 −0.162974
\(621\) 0 0
\(622\) −2961.57 −0.190913
\(623\) 11102.7 0.713996
\(624\) 0 0
\(625\) 13814.2 0.884111
\(626\) −8359.89 −0.533752
\(627\) 0 0
\(628\) −13428.9 −0.853302
\(629\) 10071.4 0.638433
\(630\) 0 0
\(631\) −13040.9 −0.822742 −0.411371 0.911468i \(-0.634950\pi\)
−0.411371 + 0.911468i \(0.634950\pi\)
\(632\) −5151.34 −0.324224
\(633\) 0 0
\(634\) 13119.8 0.821850
\(635\) 6114.33 0.382110
\(636\) 0 0
\(637\) 628.969 0.0391219
\(638\) 790.313 0.0490420
\(639\) 0 0
\(640\) −3228.78 −0.199420
\(641\) 8274.75 0.509880 0.254940 0.966957i \(-0.417944\pi\)
0.254940 + 0.966957i \(0.417944\pi\)
\(642\) 0 0
\(643\) −2407.55 −0.147659 −0.0738294 0.997271i \(-0.523522\pi\)
−0.0738294 + 0.997271i \(0.523522\pi\)
\(644\) 8068.50 0.493701
\(645\) 0 0
\(646\) 617.801 0.0376270
\(647\) 24597.2 1.49462 0.747309 0.664477i \(-0.231346\pi\)
0.747309 + 0.664477i \(0.231346\pi\)
\(648\) 0 0
\(649\) 179.759 0.0108724
\(650\) −1892.71 −0.114212
\(651\) 0 0
\(652\) −9503.39 −0.570831
\(653\) −6681.60 −0.400415 −0.200208 0.979753i \(-0.564162\pi\)
−0.200208 + 0.979753i \(0.564162\pi\)
\(654\) 0 0
\(655\) 1727.76 0.103067
\(656\) 9261.83 0.551240
\(657\) 0 0
\(658\) 2519.24 0.149255
\(659\) 8185.27 0.483844 0.241922 0.970296i \(-0.422222\pi\)
0.241922 + 0.970296i \(0.422222\pi\)
\(660\) 0 0
\(661\) −5645.12 −0.332178 −0.166089 0.986111i \(-0.553114\pi\)
−0.166089 + 0.986111i \(0.553114\pi\)
\(662\) 4817.70 0.282848
\(663\) 0 0
\(664\) 1896.26 0.110827
\(665\) 171.080 0.00997625
\(666\) 0 0
\(667\) 10389.3 0.603112
\(668\) 21271.9 1.23209
\(669\) 0 0
\(670\) 1313.17 0.0757196
\(671\) −5605.00 −0.322472
\(672\) 0 0
\(673\) −5422.21 −0.310566 −0.155283 0.987870i \(-0.549629\pi\)
−0.155283 + 0.987870i \(0.549629\pi\)
\(674\) −5269.24 −0.301133
\(675\) 0 0
\(676\) 13195.0 0.750738
\(677\) 21717.0 1.23287 0.616435 0.787406i \(-0.288576\pi\)
0.616435 + 0.787406i \(0.288576\pi\)
\(678\) 0 0
\(679\) −6934.19 −0.391915
\(680\) −1792.40 −0.101082
\(681\) 0 0
\(682\) −2365.80 −0.132831
\(683\) −5011.91 −0.280784 −0.140392 0.990096i \(-0.544836\pi\)
−0.140392 + 0.990096i \(0.544836\pi\)
\(684\) 0 0
\(685\) 3457.11 0.192831
\(686\) 421.089 0.0234362
\(687\) 0 0
\(688\) 13929.5 0.771887
\(689\) −5142.25 −0.284331
\(690\) 0 0
\(691\) 8199.88 0.451430 0.225715 0.974193i \(-0.427528\pi\)
0.225715 + 0.974193i \(0.427528\pi\)
\(692\) −5167.93 −0.283895
\(693\) 0 0
\(694\) 1818.27 0.0994532
\(695\) 3777.02 0.206145
\(696\) 0 0
\(697\) 14014.3 0.761589
\(698\) 10372.6 0.562479
\(699\) 0 0
\(700\) 5458.87 0.294751
\(701\) −33113.7 −1.78415 −0.892073 0.451891i \(-0.850749\pi\)
−0.892073 + 0.451891i \(0.850749\pi\)
\(702\) 0 0
\(703\) 2443.38 0.131086
\(704\) 227.561 0.0121826
\(705\) 0 0
\(706\) 5439.13 0.289950
\(707\) 3474.80 0.184842
\(708\) 0 0
\(709\) −8338.06 −0.441668 −0.220834 0.975311i \(-0.570878\pi\)
−0.220834 + 0.975311i \(0.570878\pi\)
\(710\) −550.927 −0.0291210
\(711\) 0 0
\(712\) −28220.4 −1.48540
\(713\) −31100.3 −1.63354
\(714\) 0 0
\(715\) −312.315 −0.0163356
\(716\) 10625.5 0.554602
\(717\) 0 0
\(718\) −1645.92 −0.0855506
\(719\) −13316.7 −0.690724 −0.345362 0.938470i \(-0.612244\pi\)
−0.345362 + 0.938470i \(0.612244\pi\)
\(720\) 0 0
\(721\) 2013.21 0.103989
\(722\) −8270.68 −0.426320
\(723\) 0 0
\(724\) −23577.2 −1.21027
\(725\) 7029.05 0.360072
\(726\) 0 0
\(727\) −14439.2 −0.736616 −0.368308 0.929704i \(-0.620063\pi\)
−0.368308 + 0.929704i \(0.620063\pi\)
\(728\) −1598.69 −0.0813894
\(729\) 0 0
\(730\) 2405.68 0.121970
\(731\) 21077.0 1.06643
\(732\) 0 0
\(733\) −26816.8 −1.35130 −0.675650 0.737223i \(-0.736137\pi\)
−0.675650 + 0.737223i \(0.736137\pi\)
\(734\) −12944.2 −0.650926
\(735\) 0 0
\(736\) −31828.7 −1.59405
\(737\) −5319.44 −0.265867
\(738\) 0 0
\(739\) 15313.3 0.762257 0.381129 0.924522i \(-0.375536\pi\)
0.381129 + 0.924522i \(0.375536\pi\)
\(740\) −3175.84 −0.157765
\(741\) 0 0
\(742\) −3442.69 −0.170330
\(743\) −4586.65 −0.226471 −0.113235 0.993568i \(-0.536121\pi\)
−0.113235 + 0.993568i \(0.536121\pi\)
\(744\) 0 0
\(745\) −4037.19 −0.198539
\(746\) 3317.72 0.162829
\(747\) 0 0
\(748\) 3252.83 0.159004
\(749\) 9172.33 0.447463
\(750\) 0 0
\(751\) 20980.9 1.01945 0.509724 0.860338i \(-0.329748\pi\)
0.509724 + 0.860338i \(0.329748\pi\)
\(752\) 8823.72 0.427883
\(753\) 0 0
\(754\) −922.231 −0.0445434
\(755\) −2875.87 −0.138627
\(756\) 0 0
\(757\) 2320.42 0.111410 0.0557049 0.998447i \(-0.482259\pi\)
0.0557049 + 0.998447i \(0.482259\pi\)
\(758\) 3418.97 0.163829
\(759\) 0 0
\(760\) −434.846 −0.0207546
\(761\) −15977.5 −0.761084 −0.380542 0.924764i \(-0.624263\pi\)
−0.380542 + 0.924764i \(0.624263\pi\)
\(762\) 0 0
\(763\) −8587.52 −0.407456
\(764\) 1354.95 0.0641629
\(765\) 0 0
\(766\) 11265.6 0.531389
\(767\) −209.764 −0.00987503
\(768\) 0 0
\(769\) −5354.46 −0.251088 −0.125544 0.992088i \(-0.540068\pi\)
−0.125544 + 0.992088i \(0.540068\pi\)
\(770\) −209.092 −0.00978593
\(771\) 0 0
\(772\) −5252.15 −0.244856
\(773\) 36773.3 1.71105 0.855527 0.517758i \(-0.173233\pi\)
0.855527 + 0.517758i \(0.173233\pi\)
\(774\) 0 0
\(775\) −21041.4 −0.975264
\(776\) 17625.1 0.815340
\(777\) 0 0
\(778\) 3857.49 0.177761
\(779\) 3399.93 0.156374
\(780\) 0 0
\(781\) 2231.72 0.102250
\(782\) −9926.01 −0.453905
\(783\) 0 0
\(784\) 1474.88 0.0671867
\(785\) 4574.83 0.208003
\(786\) 0 0
\(787\) 38254.9 1.73271 0.866353 0.499432i \(-0.166458\pi\)
0.866353 + 0.499432i \(0.166458\pi\)
\(788\) 27431.1 1.24009
\(789\) 0 0
\(790\) 786.203 0.0354074
\(791\) −12022.7 −0.540429
\(792\) 0 0
\(793\) 6540.58 0.292892
\(794\) −13740.0 −0.614126
\(795\) 0 0
\(796\) −2236.54 −0.0995881
\(797\) 26969.6 1.19864 0.599318 0.800511i \(-0.295438\pi\)
0.599318 + 0.800511i \(0.295438\pi\)
\(798\) 0 0
\(799\) 13351.4 0.591160
\(800\) −21534.2 −0.951686
\(801\) 0 0
\(802\) 4209.75 0.185351
\(803\) −9745.01 −0.428262
\(804\) 0 0
\(805\) −2748.69 −0.120346
\(806\) 2760.69 0.120647
\(807\) 0 0
\(808\) −8832.14 −0.384546
\(809\) −7996.42 −0.347514 −0.173757 0.984789i \(-0.555591\pi\)
−0.173757 + 0.984789i \(0.555591\pi\)
\(810\) 0 0
\(811\) 2150.99 0.0931337 0.0465669 0.998915i \(-0.485172\pi\)
0.0465669 + 0.998915i \(0.485172\pi\)
\(812\) 2659.86 0.114954
\(813\) 0 0
\(814\) −2986.27 −0.128586
\(815\) 3237.51 0.139147
\(816\) 0 0
\(817\) 5113.39 0.218966
\(818\) 15117.2 0.646160
\(819\) 0 0
\(820\) −4419.14 −0.188199
\(821\) 27882.7 1.18528 0.592638 0.805469i \(-0.298086\pi\)
0.592638 + 0.805469i \(0.298086\pi\)
\(822\) 0 0
\(823\) 18462.7 0.781978 0.390989 0.920395i \(-0.372133\pi\)
0.390989 + 0.920395i \(0.372133\pi\)
\(824\) −5117.11 −0.216339
\(825\) 0 0
\(826\) −140.435 −0.00591570
\(827\) −28769.2 −1.20968 −0.604838 0.796348i \(-0.706762\pi\)
−0.604838 + 0.796348i \(0.706762\pi\)
\(828\) 0 0
\(829\) 31112.2 1.30346 0.651732 0.758449i \(-0.274043\pi\)
0.651732 + 0.758449i \(0.274043\pi\)
\(830\) −289.409 −0.0121031
\(831\) 0 0
\(832\) −265.546 −0.0110651
\(833\) 2231.67 0.0928246
\(834\) 0 0
\(835\) −7246.69 −0.300338
\(836\) 789.153 0.0326476
\(837\) 0 0
\(838\) 14332.7 0.590830
\(839\) −13494.6 −0.555287 −0.277643 0.960684i \(-0.589553\pi\)
−0.277643 + 0.960684i \(0.589553\pi\)
\(840\) 0 0
\(841\) −20964.1 −0.859570
\(842\) 7727.60 0.316283
\(843\) 0 0
\(844\) 38899.1 1.58645
\(845\) −4495.12 −0.183002
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −12058.2 −0.488300
\(849\) 0 0
\(850\) −6715.60 −0.270992
\(851\) −39257.0 −1.58133
\(852\) 0 0
\(853\) 850.969 0.0341578 0.0170789 0.999854i \(-0.494563\pi\)
0.0170789 + 0.999854i \(0.494563\pi\)
\(854\) 4378.86 0.175459
\(855\) 0 0
\(856\) −23313.9 −0.930903
\(857\) −47221.3 −1.88220 −0.941102 0.338122i \(-0.890208\pi\)
−0.941102 + 0.338122i \(0.890208\pi\)
\(858\) 0 0
\(859\) 32876.5 1.30586 0.652929 0.757419i \(-0.273540\pi\)
0.652929 + 0.757419i \(0.273540\pi\)
\(860\) −6646.26 −0.263530
\(861\) 0 0
\(862\) 6274.55 0.247926
\(863\) 33117.4 1.30629 0.653145 0.757232i \(-0.273449\pi\)
0.653145 + 0.757232i \(0.273449\pi\)
\(864\) 0 0
\(865\) 1760.56 0.0692031
\(866\) −8291.93 −0.325371
\(867\) 0 0
\(868\) −7962.28 −0.311356
\(869\) −3184.78 −0.124323
\(870\) 0 0
\(871\) 6207.35 0.241479
\(872\) 21827.5 0.847673
\(873\) 0 0
\(874\) −2408.10 −0.0931981
\(875\) −3795.09 −0.146626
\(876\) 0 0
\(877\) −16817.3 −0.647526 −0.323763 0.946138i \(-0.604948\pi\)
−0.323763 + 0.946138i \(0.604948\pi\)
\(878\) −8015.45 −0.308096
\(879\) 0 0
\(880\) −732.354 −0.0280542
\(881\) 23372.2 0.893792 0.446896 0.894586i \(-0.352529\pi\)
0.446896 + 0.894586i \(0.352529\pi\)
\(882\) 0 0
\(883\) −46228.1 −1.76183 −0.880916 0.473272i \(-0.843073\pi\)
−0.880916 + 0.473272i \(0.843073\pi\)
\(884\) −3795.79 −0.144419
\(885\) 0 0
\(886\) 1877.76 0.0712017
\(887\) −36945.6 −1.39855 −0.699275 0.714853i \(-0.746494\pi\)
−0.699275 + 0.714853i \(0.746494\pi\)
\(888\) 0 0
\(889\) 19349.9 0.730006
\(890\) 4307.02 0.162215
\(891\) 0 0
\(892\) 13953.0 0.523744
\(893\) 3239.10 0.121380
\(894\) 0 0
\(895\) −3619.79 −0.135191
\(896\) −10218.1 −0.380985
\(897\) 0 0
\(898\) −12005.3 −0.446127
\(899\) −10252.5 −0.380357
\(900\) 0 0
\(901\) −18245.4 −0.674632
\(902\) −4155.36 −0.153391
\(903\) 0 0
\(904\) 30559.0 1.12431
\(905\) 8032.02 0.295020
\(906\) 0 0
\(907\) 16331.0 0.597864 0.298932 0.954274i \(-0.403370\pi\)
0.298932 + 0.954274i \(0.403370\pi\)
\(908\) −13423.9 −0.490625
\(909\) 0 0
\(910\) 243.994 0.00888826
\(911\) 20518.3 0.746213 0.373107 0.927788i \(-0.378293\pi\)
0.373107 + 0.927788i \(0.378293\pi\)
\(912\) 0 0
\(913\) 1172.35 0.0424963
\(914\) 13030.4 0.471562
\(915\) 0 0
\(916\) 41519.9 1.49766
\(917\) 5467.81 0.196906
\(918\) 0 0
\(919\) 47280.4 1.69710 0.848550 0.529115i \(-0.177476\pi\)
0.848550 + 0.529115i \(0.177476\pi\)
\(920\) 6986.52 0.250368
\(921\) 0 0
\(922\) −9252.02 −0.330476
\(923\) −2604.23 −0.0928704
\(924\) 0 0
\(925\) −26559.9 −0.944091
\(926\) −4843.68 −0.171893
\(927\) 0 0
\(928\) −10492.7 −0.371162
\(929\) 35214.0 1.24363 0.621816 0.783163i \(-0.286395\pi\)
0.621816 + 0.783163i \(0.286395\pi\)
\(930\) 0 0
\(931\) 541.415 0.0190592
\(932\) −34680.4 −1.21888
\(933\) 0 0
\(934\) −11609.0 −0.406701
\(935\) −1108.14 −0.0387594
\(936\) 0 0
\(937\) −53330.3 −1.85937 −0.929683 0.368360i \(-0.879919\pi\)
−0.929683 + 0.368360i \(0.879919\pi\)
\(938\) 4155.77 0.144659
\(939\) 0 0
\(940\) −4210.10 −0.146083
\(941\) 20304.7 0.703416 0.351708 0.936110i \(-0.385601\pi\)
0.351708 + 0.936110i \(0.385601\pi\)
\(942\) 0 0
\(943\) −54625.5 −1.88638
\(944\) −491.880 −0.0169590
\(945\) 0 0
\(946\) −6249.54 −0.214789
\(947\) 20902.4 0.717252 0.358626 0.933481i \(-0.383245\pi\)
0.358626 + 0.933481i \(0.383245\pi\)
\(948\) 0 0
\(949\) 11371.6 0.388977
\(950\) −1629.24 −0.0556415
\(951\) 0 0
\(952\) −5672.39 −0.193113
\(953\) −44662.5 −1.51811 −0.759055 0.651027i \(-0.774339\pi\)
−0.759055 + 0.651027i \(0.774339\pi\)
\(954\) 0 0
\(955\) −461.590 −0.0156405
\(956\) −28084.6 −0.950127
\(957\) 0 0
\(958\) 3407.55 0.114920
\(959\) 10940.7 0.368396
\(960\) 0 0
\(961\) 899.884 0.0302066
\(962\) 3484.74 0.116790
\(963\) 0 0
\(964\) −42986.3 −1.43620
\(965\) 1789.25 0.0596869
\(966\) 0 0
\(967\) −40483.6 −1.34629 −0.673146 0.739509i \(-0.735058\pi\)
−0.673146 + 0.739509i \(0.735058\pi\)
\(968\) −2152.88 −0.0714835
\(969\) 0 0
\(970\) −2689.96 −0.0890406
\(971\) −55314.7 −1.82815 −0.914075 0.405544i \(-0.867082\pi\)
−0.914075 + 0.405544i \(0.867082\pi\)
\(972\) 0 0
\(973\) 11953.1 0.393832
\(974\) 25661.1 0.844184
\(975\) 0 0
\(976\) 15337.1 0.503002
\(977\) −37534.5 −1.22910 −0.614552 0.788876i \(-0.710663\pi\)
−0.614552 + 0.788876i \(0.710663\pi\)
\(978\) 0 0
\(979\) −17447.1 −0.569572
\(980\) −703.717 −0.0229382
\(981\) 0 0
\(982\) 9615.61 0.312471
\(983\) −985.287 −0.0319692 −0.0159846 0.999872i \(-0.505088\pi\)
−0.0159846 + 0.999872i \(0.505088\pi\)
\(984\) 0 0
\(985\) −9344.93 −0.302289
\(986\) −3272.21 −0.105688
\(987\) 0 0
\(988\) −920.878 −0.0296529
\(989\) −82155.2 −2.64144
\(990\) 0 0
\(991\) −9167.83 −0.293870 −0.146935 0.989146i \(-0.546941\pi\)
−0.146935 + 0.989146i \(0.546941\pi\)
\(992\) 31409.7 1.00530
\(993\) 0 0
\(994\) −1743.51 −0.0556346
\(995\) 761.921 0.0242759
\(996\) 0 0
\(997\) −21433.7 −0.680854 −0.340427 0.940271i \(-0.610572\pi\)
−0.340427 + 0.940271i \(0.610572\pi\)
\(998\) −14223.2 −0.451131
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.o.1.3 5
3.2 odd 2 77.4.a.e.1.3 5
12.11 even 2 1232.4.a.y.1.5 5
15.14 odd 2 1925.4.a.r.1.3 5
21.20 even 2 539.4.a.h.1.3 5
33.32 even 2 847.4.a.f.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.e.1.3 5 3.2 odd 2
539.4.a.h.1.3 5 21.20 even 2
693.4.a.o.1.3 5 1.1 even 1 trivial
847.4.a.f.1.3 5 33.32 even 2
1232.4.a.y.1.5 5 12.11 even 2
1925.4.a.r.1.3 5 15.14 odd 2