Properties

Label 693.4.a.o.1.2
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.44399\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.44399 q^{2} +11.7491 q^{4} +22.0150 q^{5} +7.00000 q^{7} -16.6609 q^{8} -97.8345 q^{10} -11.0000 q^{11} -51.5769 q^{13} -31.1080 q^{14} -19.9519 q^{16} +26.5590 q^{17} +99.6432 q^{19} +258.656 q^{20} +48.8839 q^{22} -28.1455 q^{23} +359.660 q^{25} +229.207 q^{26} +82.2435 q^{28} +43.9369 q^{29} -83.8402 q^{31} +221.953 q^{32} -118.028 q^{34} +154.105 q^{35} +306.353 q^{37} -442.814 q^{38} -366.789 q^{40} -200.991 q^{41} -13.7546 q^{43} -129.240 q^{44} +125.079 q^{46} +266.533 q^{47} +49.0000 q^{49} -1598.33 q^{50} -605.980 q^{52} -308.867 q^{53} -242.165 q^{55} -116.626 q^{56} -195.255 q^{58} +622.446 q^{59} -87.3303 q^{61} +372.585 q^{62} -826.742 q^{64} -1135.46 q^{65} +608.395 q^{67} +312.044 q^{68} -684.842 q^{70} +464.926 q^{71} -255.407 q^{73} -1361.43 q^{74} +1170.72 q^{76} -77.0000 q^{77} +261.237 q^{79} -439.240 q^{80} +893.204 q^{82} -953.986 q^{83} +584.696 q^{85} +61.1255 q^{86} +183.269 q^{88} +839.910 q^{89} -361.038 q^{91} -330.684 q^{92} -1184.47 q^{94} +2193.64 q^{95} -349.146 q^{97} -217.756 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 45 q^{4} + 24 q^{5} + 35 q^{7} - 57 q^{8} - 10 q^{10} - 55 q^{11} - 50 q^{13} - 7 q^{14} + 433 q^{16} - 222 q^{17} + 160 q^{19} + 430 q^{20} + 11 q^{22} - 54 q^{23} + 125 q^{25} + 1026 q^{26}+ \cdots - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.44399 −1.57119 −0.785594 0.618742i \(-0.787643\pi\)
−0.785594 + 0.618742i \(0.787643\pi\)
\(3\) 0 0
\(4\) 11.7491 1.46863
\(5\) 22.0150 1.96908 0.984541 0.175155i \(-0.0560428\pi\)
0.984541 + 0.175155i \(0.0560428\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −16.6609 −0.736313
\(9\) 0 0
\(10\) −97.8345 −3.09380
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −51.5769 −1.10037 −0.550186 0.835042i \(-0.685443\pi\)
−0.550186 + 0.835042i \(0.685443\pi\)
\(14\) −31.1080 −0.593854
\(15\) 0 0
\(16\) −19.9519 −0.311748
\(17\) 26.5590 0.378912 0.189456 0.981889i \(-0.439328\pi\)
0.189456 + 0.981889i \(0.439328\pi\)
\(18\) 0 0
\(19\) 99.6432 1.20314 0.601571 0.798819i \(-0.294542\pi\)
0.601571 + 0.798819i \(0.294542\pi\)
\(20\) 258.656 2.89186
\(21\) 0 0
\(22\) 48.8839 0.473731
\(23\) −28.1455 −0.255163 −0.127582 0.991828i \(-0.540721\pi\)
−0.127582 + 0.991828i \(0.540721\pi\)
\(24\) 0 0
\(25\) 359.660 2.87728
\(26\) 229.207 1.72889
\(27\) 0 0
\(28\) 82.2435 0.555092
\(29\) 43.9369 0.281340 0.140670 0.990057i \(-0.455074\pi\)
0.140670 + 0.990057i \(0.455074\pi\)
\(30\) 0 0
\(31\) −83.8402 −0.485747 −0.242873 0.970058i \(-0.578090\pi\)
−0.242873 + 0.970058i \(0.578090\pi\)
\(32\) 221.953 1.22613
\(33\) 0 0
\(34\) −118.028 −0.595342
\(35\) 154.105 0.744243
\(36\) 0 0
\(37\) 306.353 1.36119 0.680596 0.732659i \(-0.261721\pi\)
0.680596 + 0.732659i \(0.261721\pi\)
\(38\) −442.814 −1.89036
\(39\) 0 0
\(40\) −366.789 −1.44986
\(41\) −200.991 −0.765599 −0.382800 0.923831i \(-0.625040\pi\)
−0.382800 + 0.923831i \(0.625040\pi\)
\(42\) 0 0
\(43\) −13.7546 −0.0487805 −0.0243903 0.999703i \(-0.507764\pi\)
−0.0243903 + 0.999703i \(0.507764\pi\)
\(44\) −129.240 −0.442810
\(45\) 0 0
\(46\) 125.079 0.400909
\(47\) 266.533 0.827189 0.413594 0.910461i \(-0.364273\pi\)
0.413594 + 0.910461i \(0.364273\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −1598.33 −4.52075
\(51\) 0 0
\(52\) −605.980 −1.61605
\(53\) −308.867 −0.800493 −0.400247 0.916407i \(-0.631076\pi\)
−0.400247 + 0.916407i \(0.631076\pi\)
\(54\) 0 0
\(55\) −242.165 −0.593700
\(56\) −116.626 −0.278300
\(57\) 0 0
\(58\) −195.255 −0.442039
\(59\) 622.446 1.37348 0.686742 0.726901i \(-0.259040\pi\)
0.686742 + 0.726901i \(0.259040\pi\)
\(60\) 0 0
\(61\) −87.3303 −0.183303 −0.0916516 0.995791i \(-0.529215\pi\)
−0.0916516 + 0.995791i \(0.529215\pi\)
\(62\) 372.585 0.763200
\(63\) 0 0
\(64\) −826.742 −1.61473
\(65\) −1135.46 −2.16672
\(66\) 0 0
\(67\) 608.395 1.10936 0.554681 0.832063i \(-0.312840\pi\)
0.554681 + 0.832063i \(0.312840\pi\)
\(68\) 312.044 0.556483
\(69\) 0 0
\(70\) −684.842 −1.16935
\(71\) 464.926 0.777135 0.388567 0.921420i \(-0.372970\pi\)
0.388567 + 0.921420i \(0.372970\pi\)
\(72\) 0 0
\(73\) −255.407 −0.409495 −0.204747 0.978815i \(-0.565637\pi\)
−0.204747 + 0.978815i \(0.565637\pi\)
\(74\) −1361.43 −2.13869
\(75\) 0 0
\(76\) 1170.72 1.76698
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 261.237 0.372043 0.186022 0.982546i \(-0.440441\pi\)
0.186022 + 0.982546i \(0.440441\pi\)
\(80\) −439.240 −0.613857
\(81\) 0 0
\(82\) 893.204 1.20290
\(83\) −953.986 −1.26161 −0.630804 0.775942i \(-0.717275\pi\)
−0.630804 + 0.775942i \(0.717275\pi\)
\(84\) 0 0
\(85\) 584.696 0.746109
\(86\) 61.1255 0.0766434
\(87\) 0 0
\(88\) 183.269 0.222007
\(89\) 839.910 1.00034 0.500170 0.865927i \(-0.333271\pi\)
0.500170 + 0.865927i \(0.333271\pi\)
\(90\) 0 0
\(91\) −361.038 −0.415902
\(92\) −330.684 −0.374741
\(93\) 0 0
\(94\) −1184.47 −1.29967
\(95\) 2193.64 2.36909
\(96\) 0 0
\(97\) −349.146 −0.365468 −0.182734 0.983162i \(-0.558495\pi\)
−0.182734 + 0.983162i \(0.558495\pi\)
\(98\) −217.756 −0.224456
\(99\) 0 0
\(100\) 4225.68 4.22568
\(101\) −1492.44 −1.47033 −0.735163 0.677890i \(-0.762894\pi\)
−0.735163 + 0.677890i \(0.762894\pi\)
\(102\) 0 0
\(103\) 558.687 0.534457 0.267228 0.963633i \(-0.413892\pi\)
0.267228 + 0.963633i \(0.413892\pi\)
\(104\) 859.314 0.810218
\(105\) 0 0
\(106\) 1372.60 1.25773
\(107\) 694.047 0.627066 0.313533 0.949577i \(-0.398487\pi\)
0.313533 + 0.949577i \(0.398487\pi\)
\(108\) 0 0
\(109\) −341.005 −0.299654 −0.149827 0.988712i \(-0.547872\pi\)
−0.149827 + 0.988712i \(0.547872\pi\)
\(110\) 1076.18 0.932815
\(111\) 0 0
\(112\) −139.663 −0.117830
\(113\) 990.910 0.824929 0.412464 0.910974i \(-0.364668\pi\)
0.412464 + 0.910974i \(0.364668\pi\)
\(114\) 0 0
\(115\) −619.624 −0.502437
\(116\) 516.218 0.413186
\(117\) 0 0
\(118\) −2766.15 −2.15800
\(119\) 185.913 0.143215
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 388.095 0.288004
\(123\) 0 0
\(124\) −985.045 −0.713384
\(125\) 5166.05 3.69652
\(126\) 0 0
\(127\) −666.090 −0.465401 −0.232700 0.972548i \(-0.574756\pi\)
−0.232700 + 0.972548i \(0.574756\pi\)
\(128\) 1898.41 1.31092
\(129\) 0 0
\(130\) 5046.00 3.40433
\(131\) −30.4356 −0.0202990 −0.0101495 0.999948i \(-0.503231\pi\)
−0.0101495 + 0.999948i \(0.503231\pi\)
\(132\) 0 0
\(133\) 697.502 0.454745
\(134\) −2703.70 −1.74302
\(135\) 0 0
\(136\) −442.496 −0.278998
\(137\) 2810.25 1.75252 0.876262 0.481836i \(-0.160030\pi\)
0.876262 + 0.481836i \(0.160030\pi\)
\(138\) 0 0
\(139\) 3110.49 1.89804 0.949021 0.315212i \(-0.102076\pi\)
0.949021 + 0.315212i \(0.102076\pi\)
\(140\) 1810.59 1.09302
\(141\) 0 0
\(142\) −2066.13 −1.22103
\(143\) 567.345 0.331775
\(144\) 0 0
\(145\) 967.270 0.553982
\(146\) 1135.03 0.643394
\(147\) 0 0
\(148\) 3599.36 1.99909
\(149\) −1916.92 −1.05396 −0.526979 0.849878i \(-0.676675\pi\)
−0.526979 + 0.849878i \(0.676675\pi\)
\(150\) 0 0
\(151\) −2289.28 −1.23377 −0.616883 0.787055i \(-0.711605\pi\)
−0.616883 + 0.787055i \(0.711605\pi\)
\(152\) −1660.14 −0.885889
\(153\) 0 0
\(154\) 342.187 0.179054
\(155\) −1845.74 −0.956475
\(156\) 0 0
\(157\) 280.036 0.142352 0.0711762 0.997464i \(-0.477325\pi\)
0.0711762 + 0.997464i \(0.477325\pi\)
\(158\) −1160.93 −0.584550
\(159\) 0 0
\(160\) 4886.29 2.41435
\(161\) −197.019 −0.0964426
\(162\) 0 0
\(163\) −866.571 −0.416411 −0.208206 0.978085i \(-0.566762\pi\)
−0.208206 + 0.978085i \(0.566762\pi\)
\(164\) −2361.46 −1.12439
\(165\) 0 0
\(166\) 4239.51 1.98223
\(167\) 1965.18 0.910600 0.455300 0.890338i \(-0.349532\pi\)
0.455300 + 0.890338i \(0.349532\pi\)
\(168\) 0 0
\(169\) 463.173 0.210820
\(170\) −2598.39 −1.17228
\(171\) 0 0
\(172\) −161.604 −0.0716407
\(173\) −3956.88 −1.73894 −0.869469 0.493988i \(-0.835539\pi\)
−0.869469 + 0.493988i \(0.835539\pi\)
\(174\) 0 0
\(175\) 2517.62 1.08751
\(176\) 219.471 0.0939956
\(177\) 0 0
\(178\) −3732.55 −1.57172
\(179\) 3143.58 1.31264 0.656318 0.754484i \(-0.272113\pi\)
0.656318 + 0.754484i \(0.272113\pi\)
\(180\) 0 0
\(181\) 683.772 0.280798 0.140399 0.990095i \(-0.455162\pi\)
0.140399 + 0.990095i \(0.455162\pi\)
\(182\) 1604.45 0.653460
\(183\) 0 0
\(184\) 468.929 0.187880
\(185\) 6744.36 2.68030
\(186\) 0 0
\(187\) −292.149 −0.114246
\(188\) 3131.52 1.21484
\(189\) 0 0
\(190\) −9748.54 −3.72228
\(191\) −2739.68 −1.03789 −0.518944 0.854809i \(-0.673675\pi\)
−0.518944 + 0.854809i \(0.673675\pi\)
\(192\) 0 0
\(193\) 2651.93 0.989067 0.494534 0.869159i \(-0.335339\pi\)
0.494534 + 0.869159i \(0.335339\pi\)
\(194\) 1551.60 0.574219
\(195\) 0 0
\(196\) 575.705 0.209805
\(197\) 1879.52 0.679749 0.339874 0.940471i \(-0.389615\pi\)
0.339874 + 0.940471i \(0.389615\pi\)
\(198\) 0 0
\(199\) −3119.39 −1.11119 −0.555597 0.831452i \(-0.687510\pi\)
−0.555597 + 0.831452i \(0.687510\pi\)
\(200\) −5992.25 −2.11858
\(201\) 0 0
\(202\) 6632.37 2.31016
\(203\) 307.558 0.106337
\(204\) 0 0
\(205\) −4424.82 −1.50753
\(206\) −2482.80 −0.839733
\(207\) 0 0
\(208\) 1029.05 0.343039
\(209\) −1096.08 −0.362761
\(210\) 0 0
\(211\) −520.718 −0.169894 −0.0849472 0.996385i \(-0.527072\pi\)
−0.0849472 + 0.996385i \(0.527072\pi\)
\(212\) −3628.90 −1.17563
\(213\) 0 0
\(214\) −3084.34 −0.985238
\(215\) −302.808 −0.0960528
\(216\) 0 0
\(217\) −586.881 −0.183595
\(218\) 1515.42 0.470814
\(219\) 0 0
\(220\) −2845.21 −0.871929
\(221\) −1369.83 −0.416944
\(222\) 0 0
\(223\) 2101.08 0.630935 0.315467 0.948936i \(-0.397839\pi\)
0.315467 + 0.948936i \(0.397839\pi\)
\(224\) 1553.67 0.463433
\(225\) 0 0
\(226\) −4403.60 −1.29612
\(227\) 6051.96 1.76953 0.884764 0.466040i \(-0.154320\pi\)
0.884764 + 0.466040i \(0.154320\pi\)
\(228\) 0 0
\(229\) −2995.73 −0.864470 −0.432235 0.901761i \(-0.642275\pi\)
−0.432235 + 0.901761i \(0.642275\pi\)
\(230\) 2753.61 0.789424
\(231\) 0 0
\(232\) −732.026 −0.207155
\(233\) 65.3656 0.0183787 0.00918936 0.999958i \(-0.497075\pi\)
0.00918936 + 0.999958i \(0.497075\pi\)
\(234\) 0 0
\(235\) 5867.73 1.62880
\(236\) 7313.17 2.01715
\(237\) 0 0
\(238\) −826.196 −0.225018
\(239\) 1102.33 0.298343 0.149171 0.988811i \(-0.452339\pi\)
0.149171 + 0.988811i \(0.452339\pi\)
\(240\) 0 0
\(241\) 5297.43 1.41592 0.707962 0.706250i \(-0.249615\pi\)
0.707962 + 0.706250i \(0.249615\pi\)
\(242\) −537.723 −0.142835
\(243\) 0 0
\(244\) −1026.05 −0.269205
\(245\) 1078.74 0.281297
\(246\) 0 0
\(247\) −5139.28 −1.32391
\(248\) 1396.85 0.357661
\(249\) 0 0
\(250\) −22957.9 −5.80793
\(251\) −177.964 −0.0447530 −0.0223765 0.999750i \(-0.507123\pi\)
−0.0223765 + 0.999750i \(0.507123\pi\)
\(252\) 0 0
\(253\) 309.601 0.0769346
\(254\) 2960.10 0.731232
\(255\) 0 0
\(256\) −1822.59 −0.444969
\(257\) −3496.69 −0.848707 −0.424354 0.905497i \(-0.639499\pi\)
−0.424354 + 0.905497i \(0.639499\pi\)
\(258\) 0 0
\(259\) 2144.47 0.514482
\(260\) −13340.7 −3.18212
\(261\) 0 0
\(262\) 135.256 0.0318936
\(263\) −5747.94 −1.34766 −0.673828 0.738889i \(-0.735351\pi\)
−0.673828 + 0.738889i \(0.735351\pi\)
\(264\) 0 0
\(265\) −6799.71 −1.57624
\(266\) −3099.70 −0.714491
\(267\) 0 0
\(268\) 7148.08 1.62925
\(269\) −235.217 −0.0533140 −0.0266570 0.999645i \(-0.508486\pi\)
−0.0266570 + 0.999645i \(0.508486\pi\)
\(270\) 0 0
\(271\) −1179.58 −0.264406 −0.132203 0.991223i \(-0.542205\pi\)
−0.132203 + 0.991223i \(0.542205\pi\)
\(272\) −529.902 −0.118125
\(273\) 0 0
\(274\) −12488.7 −2.75354
\(275\) −3956.26 −0.867533
\(276\) 0 0
\(277\) −3638.98 −0.789331 −0.394666 0.918825i \(-0.629140\pi\)
−0.394666 + 0.918825i \(0.629140\pi\)
\(278\) −13823.0 −2.98218
\(279\) 0 0
\(280\) −2567.52 −0.547995
\(281\) −3236.81 −0.687160 −0.343580 0.939123i \(-0.611640\pi\)
−0.343580 + 0.939123i \(0.611640\pi\)
\(282\) 0 0
\(283\) 8303.78 1.74420 0.872100 0.489328i \(-0.162758\pi\)
0.872100 + 0.489328i \(0.162758\pi\)
\(284\) 5462.45 1.14133
\(285\) 0 0
\(286\) −2521.28 −0.521281
\(287\) −1406.94 −0.289369
\(288\) 0 0
\(289\) −4207.62 −0.856426
\(290\) −4298.54 −0.870411
\(291\) 0 0
\(292\) −3000.80 −0.601398
\(293\) 1894.16 0.377672 0.188836 0.982009i \(-0.439529\pi\)
0.188836 + 0.982009i \(0.439529\pi\)
\(294\) 0 0
\(295\) 13703.2 2.70450
\(296\) −5104.10 −1.00226
\(297\) 0 0
\(298\) 8518.76 1.65597
\(299\) 1451.66 0.280775
\(300\) 0 0
\(301\) −96.2825 −0.0184373
\(302\) 10173.5 1.93848
\(303\) 0 0
\(304\) −1988.07 −0.375077
\(305\) −1922.58 −0.360939
\(306\) 0 0
\(307\) 6596.30 1.22629 0.613144 0.789971i \(-0.289904\pi\)
0.613144 + 0.789971i \(0.289904\pi\)
\(308\) −904.679 −0.167366
\(309\) 0 0
\(310\) 8202.47 1.50280
\(311\) 5242.26 0.955824 0.477912 0.878408i \(-0.341394\pi\)
0.477912 + 0.878408i \(0.341394\pi\)
\(312\) 0 0
\(313\) 5338.75 0.964103 0.482051 0.876143i \(-0.339892\pi\)
0.482051 + 0.876143i \(0.339892\pi\)
\(314\) −1244.48 −0.223662
\(315\) 0 0
\(316\) 3069.29 0.546395
\(317\) 5807.21 1.02891 0.514456 0.857517i \(-0.327994\pi\)
0.514456 + 0.857517i \(0.327994\pi\)
\(318\) 0 0
\(319\) −483.306 −0.0848273
\(320\) −18200.7 −3.17953
\(321\) 0 0
\(322\) 875.550 0.151530
\(323\) 2646.42 0.455885
\(324\) 0 0
\(325\) −18550.1 −3.16608
\(326\) 3851.03 0.654261
\(327\) 0 0
\(328\) 3348.69 0.563720
\(329\) 1865.73 0.312648
\(330\) 0 0
\(331\) −1366.51 −0.226919 −0.113460 0.993543i \(-0.536193\pi\)
−0.113460 + 0.993543i \(0.536193\pi\)
\(332\) −11208.4 −1.85284
\(333\) 0 0
\(334\) −8733.25 −1.43072
\(335\) 13393.8 2.18443
\(336\) 0 0
\(337\) −3363.75 −0.543724 −0.271862 0.962336i \(-0.587639\pi\)
−0.271862 + 0.962336i \(0.587639\pi\)
\(338\) −2058.34 −0.331239
\(339\) 0 0
\(340\) 6869.64 1.09576
\(341\) 922.242 0.146458
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 229.164 0.0359177
\(345\) 0 0
\(346\) 17584.4 2.73220
\(347\) −2984.97 −0.461791 −0.230896 0.972979i \(-0.574166\pi\)
−0.230896 + 0.972979i \(0.574166\pi\)
\(348\) 0 0
\(349\) 1286.08 0.197255 0.0986276 0.995124i \(-0.468555\pi\)
0.0986276 + 0.995124i \(0.468555\pi\)
\(350\) −11188.3 −1.70868
\(351\) 0 0
\(352\) −2441.48 −0.369691
\(353\) −8417.60 −1.26919 −0.634594 0.772846i \(-0.718833\pi\)
−0.634594 + 0.772846i \(0.718833\pi\)
\(354\) 0 0
\(355\) 10235.3 1.53024
\(356\) 9868.16 1.46913
\(357\) 0 0
\(358\) −13970.0 −2.06240
\(359\) −7483.47 −1.10017 −0.550087 0.835108i \(-0.685405\pi\)
−0.550087 + 0.835108i \(0.685405\pi\)
\(360\) 0 0
\(361\) 3069.76 0.447553
\(362\) −3038.68 −0.441186
\(363\) 0 0
\(364\) −4241.86 −0.610808
\(365\) −5622.79 −0.806329
\(366\) 0 0
\(367\) 8588.73 1.22160 0.610801 0.791784i \(-0.290847\pi\)
0.610801 + 0.791784i \(0.290847\pi\)
\(368\) 561.556 0.0795466
\(369\) 0 0
\(370\) −29971.9 −4.21125
\(371\) −2162.07 −0.302558
\(372\) 0 0
\(373\) 11833.0 1.64260 0.821298 0.570500i \(-0.193251\pi\)
0.821298 + 0.570500i \(0.193251\pi\)
\(374\) 1298.31 0.179502
\(375\) 0 0
\(376\) −4440.67 −0.609070
\(377\) −2266.13 −0.309579
\(378\) 0 0
\(379\) 5056.39 0.685301 0.342651 0.939463i \(-0.388675\pi\)
0.342651 + 0.939463i \(0.388675\pi\)
\(380\) 25773.3 3.47932
\(381\) 0 0
\(382\) 12175.1 1.63072
\(383\) −6457.09 −0.861467 −0.430733 0.902479i \(-0.641745\pi\)
−0.430733 + 0.902479i \(0.641745\pi\)
\(384\) 0 0
\(385\) −1695.16 −0.224398
\(386\) −11785.1 −1.55401
\(387\) 0 0
\(388\) −4102.14 −0.536739
\(389\) −12444.5 −1.62201 −0.811004 0.585040i \(-0.801079\pi\)
−0.811004 + 0.585040i \(0.801079\pi\)
\(390\) 0 0
\(391\) −747.518 −0.0966844
\(392\) −816.382 −0.105188
\(393\) 0 0
\(394\) −8352.59 −1.06801
\(395\) 5751.12 0.732584
\(396\) 0 0
\(397\) −619.207 −0.0782799 −0.0391400 0.999234i \(-0.512462\pi\)
−0.0391400 + 0.999234i \(0.512462\pi\)
\(398\) 13862.5 1.74589
\(399\) 0 0
\(400\) −7175.90 −0.896987
\(401\) −9731.89 −1.21194 −0.605969 0.795488i \(-0.707215\pi\)
−0.605969 + 0.795488i \(0.707215\pi\)
\(402\) 0 0
\(403\) 4324.22 0.534502
\(404\) −17534.7 −2.15937
\(405\) 0 0
\(406\) −1366.79 −0.167075
\(407\) −3369.88 −0.410415
\(408\) 0 0
\(409\) 4621.43 0.558717 0.279358 0.960187i \(-0.409878\pi\)
0.279358 + 0.960187i \(0.409878\pi\)
\(410\) 19663.9 2.36861
\(411\) 0 0
\(412\) 6564.05 0.784922
\(413\) 4357.12 0.519128
\(414\) 0 0
\(415\) −21002.0 −2.48421
\(416\) −11447.6 −1.34920
\(417\) 0 0
\(418\) 4870.95 0.569966
\(419\) −186.428 −0.0217365 −0.0108682 0.999941i \(-0.503460\pi\)
−0.0108682 + 0.999941i \(0.503460\pi\)
\(420\) 0 0
\(421\) 2670.29 0.309126 0.154563 0.987983i \(-0.450603\pi\)
0.154563 + 0.987983i \(0.450603\pi\)
\(422\) 2314.07 0.266936
\(423\) 0 0
\(424\) 5145.99 0.589413
\(425\) 9552.22 1.09024
\(426\) 0 0
\(427\) −611.312 −0.0692821
\(428\) 8154.40 0.920930
\(429\) 0 0
\(430\) 1345.68 0.150917
\(431\) 12514.9 1.39866 0.699328 0.714801i \(-0.253483\pi\)
0.699328 + 0.714801i \(0.253483\pi\)
\(432\) 0 0
\(433\) −16651.2 −1.84805 −0.924025 0.382332i \(-0.875121\pi\)
−0.924025 + 0.382332i \(0.875121\pi\)
\(434\) 2608.10 0.288462
\(435\) 0 0
\(436\) −4006.49 −0.440083
\(437\) −2804.51 −0.306998
\(438\) 0 0
\(439\) 6033.38 0.655940 0.327970 0.944688i \(-0.393636\pi\)
0.327970 + 0.944688i \(0.393636\pi\)
\(440\) 4034.68 0.437149
\(441\) 0 0
\(442\) 6087.51 0.655098
\(443\) −6320.03 −0.677819 −0.338910 0.940819i \(-0.610058\pi\)
−0.338910 + 0.940819i \(0.610058\pi\)
\(444\) 0 0
\(445\) 18490.6 1.96975
\(446\) −9337.17 −0.991318
\(447\) 0 0
\(448\) −5787.19 −0.610311
\(449\) 17893.6 1.88074 0.940368 0.340159i \(-0.110481\pi\)
0.940368 + 0.340159i \(0.110481\pi\)
\(450\) 0 0
\(451\) 2210.90 0.230837
\(452\) 11642.3 1.21152
\(453\) 0 0
\(454\) −26894.9 −2.78026
\(455\) −7948.25 −0.818945
\(456\) 0 0
\(457\) 6208.00 0.635444 0.317722 0.948184i \(-0.397082\pi\)
0.317722 + 0.948184i \(0.397082\pi\)
\(458\) 13313.0 1.35825
\(459\) 0 0
\(460\) −7280.01 −0.737896
\(461\) −7981.28 −0.806346 −0.403173 0.915124i \(-0.632093\pi\)
−0.403173 + 0.915124i \(0.632093\pi\)
\(462\) 0 0
\(463\) −7495.19 −0.752334 −0.376167 0.926552i \(-0.622758\pi\)
−0.376167 + 0.926552i \(0.622758\pi\)
\(464\) −876.623 −0.0877073
\(465\) 0 0
\(466\) −290.484 −0.0288765
\(467\) −1519.39 −0.150555 −0.0752773 0.997163i \(-0.523984\pi\)
−0.0752773 + 0.997163i \(0.523984\pi\)
\(468\) 0 0
\(469\) 4258.77 0.419300
\(470\) −26076.2 −2.55916
\(471\) 0 0
\(472\) −10370.5 −1.01131
\(473\) 151.301 0.0147079
\(474\) 0 0
\(475\) 35837.7 3.46178
\(476\) 2184.31 0.210331
\(477\) 0 0
\(478\) −4898.75 −0.468753
\(479\) 16394.2 1.56382 0.781909 0.623393i \(-0.214246\pi\)
0.781909 + 0.623393i \(0.214246\pi\)
\(480\) 0 0
\(481\) −15800.7 −1.49782
\(482\) −23541.8 −2.22468
\(483\) 0 0
\(484\) 1421.64 0.133512
\(485\) −7686.45 −0.719636
\(486\) 0 0
\(487\) 2275.01 0.211685 0.105843 0.994383i \(-0.466246\pi\)
0.105843 + 0.994383i \(0.466246\pi\)
\(488\) 1455.00 0.134968
\(489\) 0 0
\(490\) −4793.89 −0.441971
\(491\) 14629.2 1.34462 0.672308 0.740272i \(-0.265303\pi\)
0.672308 + 0.740272i \(0.265303\pi\)
\(492\) 0 0
\(493\) 1166.92 0.106603
\(494\) 22838.9 2.08011
\(495\) 0 0
\(496\) 1672.77 0.151431
\(497\) 3254.48 0.293729
\(498\) 0 0
\(499\) 3534.01 0.317042 0.158521 0.987356i \(-0.449327\pi\)
0.158521 + 0.987356i \(0.449327\pi\)
\(500\) 60696.3 5.42884
\(501\) 0 0
\(502\) 790.872 0.0703155
\(503\) 9233.35 0.818479 0.409239 0.912427i \(-0.365794\pi\)
0.409239 + 0.912427i \(0.365794\pi\)
\(504\) 0 0
\(505\) −32856.0 −2.89519
\(506\) −1375.86 −0.120879
\(507\) 0 0
\(508\) −7825.93 −0.683503
\(509\) −11565.3 −1.00712 −0.503560 0.863960i \(-0.667977\pi\)
−0.503560 + 0.863960i \(0.667977\pi\)
\(510\) 0 0
\(511\) −1787.85 −0.154775
\(512\) −7087.70 −0.611787
\(513\) 0 0
\(514\) 15539.3 1.33348
\(515\) 12299.5 1.05239
\(516\) 0 0
\(517\) −2931.87 −0.249407
\(518\) −9530.01 −0.808349
\(519\) 0 0
\(520\) 18917.8 1.59539
\(521\) 2440.24 0.205200 0.102600 0.994723i \(-0.467284\pi\)
0.102600 + 0.994723i \(0.467284\pi\)
\(522\) 0 0
\(523\) −911.213 −0.0761847 −0.0380923 0.999274i \(-0.512128\pi\)
−0.0380923 + 0.999274i \(0.512128\pi\)
\(524\) −357.590 −0.0298119
\(525\) 0 0
\(526\) 25543.8 2.11742
\(527\) −2226.71 −0.184055
\(528\) 0 0
\(529\) −11374.8 −0.934892
\(530\) 30217.9 2.47657
\(531\) 0 0
\(532\) 8195.01 0.667854
\(533\) 10366.5 0.842445
\(534\) 0 0
\(535\) 15279.4 1.23474
\(536\) −10136.4 −0.816838
\(537\) 0 0
\(538\) 1045.30 0.0837663
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 12277.5 0.975692 0.487846 0.872930i \(-0.337783\pi\)
0.487846 + 0.872930i \(0.337783\pi\)
\(542\) 5242.02 0.415432
\(543\) 0 0
\(544\) 5894.84 0.464594
\(545\) −7507.22 −0.590044
\(546\) 0 0
\(547\) −12539.2 −0.980141 −0.490071 0.871683i \(-0.663029\pi\)
−0.490071 + 0.871683i \(0.663029\pi\)
\(548\) 33017.8 2.57382
\(549\) 0 0
\(550\) 17581.6 1.36306
\(551\) 4378.01 0.338493
\(552\) 0 0
\(553\) 1828.66 0.140619
\(554\) 16171.6 1.24019
\(555\) 0 0
\(556\) 36545.3 2.78753
\(557\) 14212.8 1.08118 0.540588 0.841287i \(-0.318202\pi\)
0.540588 + 0.841287i \(0.318202\pi\)
\(558\) 0 0
\(559\) 709.421 0.0536768
\(560\) −3074.68 −0.232016
\(561\) 0 0
\(562\) 14384.4 1.07966
\(563\) −4446.83 −0.332880 −0.166440 0.986052i \(-0.553227\pi\)
−0.166440 + 0.986052i \(0.553227\pi\)
\(564\) 0 0
\(565\) 21814.9 1.62435
\(566\) −36901.9 −2.74047
\(567\) 0 0
\(568\) −7746.07 −0.572214
\(569\) −11258.8 −0.829511 −0.414756 0.909933i \(-0.636133\pi\)
−0.414756 + 0.909933i \(0.636133\pi\)
\(570\) 0 0
\(571\) −16450.6 −1.20567 −0.602835 0.797866i \(-0.705962\pi\)
−0.602835 + 0.797866i \(0.705962\pi\)
\(572\) 6665.78 0.487256
\(573\) 0 0
\(574\) 6252.43 0.454654
\(575\) −10122.8 −0.734176
\(576\) 0 0
\(577\) 10175.6 0.734173 0.367086 0.930187i \(-0.380355\pi\)
0.367086 + 0.930187i \(0.380355\pi\)
\(578\) 18698.6 1.34561
\(579\) 0 0
\(580\) 11364.5 0.813597
\(581\) −6677.90 −0.476843
\(582\) 0 0
\(583\) 3397.54 0.241358
\(584\) 4255.30 0.301516
\(585\) 0 0
\(586\) −8417.62 −0.593394
\(587\) 5123.98 0.360289 0.180144 0.983640i \(-0.442344\pi\)
0.180144 + 0.983640i \(0.442344\pi\)
\(588\) 0 0
\(589\) −8354.11 −0.584423
\(590\) −60896.7 −4.24929
\(591\) 0 0
\(592\) −6112.31 −0.424349
\(593\) 23816.7 1.64930 0.824650 0.565643i \(-0.191372\pi\)
0.824650 + 0.565643i \(0.191372\pi\)
\(594\) 0 0
\(595\) 4092.88 0.282003
\(596\) −22522.0 −1.54788
\(597\) 0 0
\(598\) −6451.16 −0.441150
\(599\) −11801.0 −0.804965 −0.402482 0.915428i \(-0.631853\pi\)
−0.402482 + 0.915428i \(0.631853\pi\)
\(600\) 0 0
\(601\) −10944.5 −0.742820 −0.371410 0.928469i \(-0.621125\pi\)
−0.371410 + 0.928469i \(0.621125\pi\)
\(602\) 427.879 0.0289685
\(603\) 0 0
\(604\) −26896.9 −1.81195
\(605\) 2663.82 0.179007
\(606\) 0 0
\(607\) −1280.36 −0.0856150 −0.0428075 0.999083i \(-0.513630\pi\)
−0.0428075 + 0.999083i \(0.513630\pi\)
\(608\) 22116.1 1.47521
\(609\) 0 0
\(610\) 8543.91 0.567103
\(611\) −13747.0 −0.910216
\(612\) 0 0
\(613\) −11029.9 −0.726744 −0.363372 0.931644i \(-0.618375\pi\)
−0.363372 + 0.931644i \(0.618375\pi\)
\(614\) −29313.9 −1.92673
\(615\) 0 0
\(616\) 1282.89 0.0839106
\(617\) 20861.3 1.36117 0.680586 0.732668i \(-0.261725\pi\)
0.680586 + 0.732668i \(0.261725\pi\)
\(618\) 0 0
\(619\) −16877.9 −1.09593 −0.547966 0.836501i \(-0.684598\pi\)
−0.547966 + 0.836501i \(0.684598\pi\)
\(620\) −21685.8 −1.40471
\(621\) 0 0
\(622\) −23296.6 −1.50178
\(623\) 5879.37 0.378093
\(624\) 0 0
\(625\) 68773.0 4.40147
\(626\) −23725.4 −1.51479
\(627\) 0 0
\(628\) 3290.17 0.209064
\(629\) 8136.43 0.515772
\(630\) 0 0
\(631\) −1332.58 −0.0840719 −0.0420359 0.999116i \(-0.513384\pi\)
−0.0420359 + 0.999116i \(0.513384\pi\)
\(632\) −4352.42 −0.273940
\(633\) 0 0
\(634\) −25807.2 −1.61662
\(635\) −14664.0 −0.916412
\(636\) 0 0
\(637\) −2527.27 −0.157196
\(638\) 2147.81 0.133280
\(639\) 0 0
\(640\) 41793.5 2.58130
\(641\) −20472.2 −1.26147 −0.630736 0.775998i \(-0.717247\pi\)
−0.630736 + 0.775998i \(0.717247\pi\)
\(642\) 0 0
\(643\) 27140.3 1.66455 0.832276 0.554361i \(-0.187037\pi\)
0.832276 + 0.554361i \(0.187037\pi\)
\(644\) −2314.79 −0.141639
\(645\) 0 0
\(646\) −11760.7 −0.716282
\(647\) −13662.1 −0.830159 −0.415079 0.909785i \(-0.636246\pi\)
−0.415079 + 0.909785i \(0.636246\pi\)
\(648\) 0 0
\(649\) −6846.91 −0.414121
\(650\) 82436.7 4.97451
\(651\) 0 0
\(652\) −10181.4 −0.611556
\(653\) −1607.56 −0.0963379 −0.0481689 0.998839i \(-0.515339\pi\)
−0.0481689 + 0.998839i \(0.515339\pi\)
\(654\) 0 0
\(655\) −670.040 −0.0399705
\(656\) 4010.15 0.238674
\(657\) 0 0
\(658\) −8291.30 −0.491229
\(659\) −27361.6 −1.61738 −0.808692 0.588233i \(-0.799824\pi\)
−0.808692 + 0.588233i \(0.799824\pi\)
\(660\) 0 0
\(661\) −5117.29 −0.301119 −0.150559 0.988601i \(-0.548107\pi\)
−0.150559 + 0.988601i \(0.548107\pi\)
\(662\) 6072.76 0.356533
\(663\) 0 0
\(664\) 15894.2 0.928939
\(665\) 15355.5 0.895431
\(666\) 0 0
\(667\) −1236.63 −0.0717877
\(668\) 23089.0 1.33734
\(669\) 0 0
\(670\) −59522.1 −3.43215
\(671\) 960.633 0.0552680
\(672\) 0 0
\(673\) 11605.6 0.664729 0.332365 0.943151i \(-0.392154\pi\)
0.332365 + 0.943151i \(0.392154\pi\)
\(674\) 14948.5 0.854292
\(675\) 0 0
\(676\) 5441.85 0.309618
\(677\) −32514.6 −1.84584 −0.922922 0.384986i \(-0.874206\pi\)
−0.922922 + 0.384986i \(0.874206\pi\)
\(678\) 0 0
\(679\) −2444.02 −0.138134
\(680\) −9741.54 −0.549369
\(681\) 0 0
\(682\) −4098.44 −0.230113
\(683\) −7201.06 −0.403427 −0.201714 0.979445i \(-0.564651\pi\)
−0.201714 + 0.979445i \(0.564651\pi\)
\(684\) 0 0
\(685\) 61867.6 3.45086
\(686\) −1524.29 −0.0848362
\(687\) 0 0
\(688\) 274.431 0.0152072
\(689\) 15930.4 0.880841
\(690\) 0 0
\(691\) −32357.7 −1.78140 −0.890698 0.454596i \(-0.849784\pi\)
−0.890698 + 0.454596i \(0.849784\pi\)
\(692\) −46489.7 −2.55386
\(693\) 0 0
\(694\) 13265.2 0.725562
\(695\) 68477.3 3.73740
\(696\) 0 0
\(697\) −5338.13 −0.290095
\(698\) −5715.31 −0.309925
\(699\) 0 0
\(700\) 29579.7 1.59716
\(701\) −11077.3 −0.596838 −0.298419 0.954435i \(-0.596459\pi\)
−0.298419 + 0.954435i \(0.596459\pi\)
\(702\) 0 0
\(703\) 30526.0 1.63771
\(704\) 9094.16 0.486859
\(705\) 0 0
\(706\) 37407.7 1.99413
\(707\) −10447.1 −0.555731
\(708\) 0 0
\(709\) −28594.0 −1.51463 −0.757314 0.653051i \(-0.773489\pi\)
−0.757314 + 0.653051i \(0.773489\pi\)
\(710\) −45485.8 −2.40430
\(711\) 0 0
\(712\) −13993.6 −0.736563
\(713\) 2359.73 0.123945
\(714\) 0 0
\(715\) 12490.1 0.653292
\(716\) 36934.1 1.92778
\(717\) 0 0
\(718\) 33256.5 1.72858
\(719\) −18240.5 −0.946114 −0.473057 0.881032i \(-0.656850\pi\)
−0.473057 + 0.881032i \(0.656850\pi\)
\(720\) 0 0
\(721\) 3910.81 0.202006
\(722\) −13642.0 −0.703190
\(723\) 0 0
\(724\) 8033.68 0.412389
\(725\) 15802.4 0.809496
\(726\) 0 0
\(727\) −9792.53 −0.499566 −0.249783 0.968302i \(-0.580359\pi\)
−0.249783 + 0.968302i \(0.580359\pi\)
\(728\) 6015.20 0.306234
\(729\) 0 0
\(730\) 24987.6 1.26690
\(731\) −365.309 −0.0184835
\(732\) 0 0
\(733\) −22723.8 −1.14505 −0.572525 0.819887i \(-0.694036\pi\)
−0.572525 + 0.819887i \(0.694036\pi\)
\(734\) −38168.3 −1.91937
\(735\) 0 0
\(736\) −6246.98 −0.312863
\(737\) −6692.35 −0.334485
\(738\) 0 0
\(739\) −24063.6 −1.19783 −0.598913 0.800814i \(-0.704401\pi\)
−0.598913 + 0.800814i \(0.704401\pi\)
\(740\) 79240.0 3.93638
\(741\) 0 0
\(742\) 9608.22 0.475376
\(743\) 29211.6 1.44235 0.721177 0.692751i \(-0.243601\pi\)
0.721177 + 0.692751i \(0.243601\pi\)
\(744\) 0 0
\(745\) −42200.9 −2.07533
\(746\) −52585.6 −2.58083
\(747\) 0 0
\(748\) −3432.48 −0.167786
\(749\) 4858.33 0.237008
\(750\) 0 0
\(751\) 1880.93 0.0913931 0.0456965 0.998955i \(-0.485449\pi\)
0.0456965 + 0.998955i \(0.485449\pi\)
\(752\) −5317.84 −0.257874
\(753\) 0 0
\(754\) 10070.6 0.486408
\(755\) −50398.4 −2.42939
\(756\) 0 0
\(757\) −36218.7 −1.73896 −0.869480 0.493968i \(-0.835546\pi\)
−0.869480 + 0.493968i \(0.835546\pi\)
\(758\) −22470.5 −1.07674
\(759\) 0 0
\(760\) −36548.0 −1.74439
\(761\) −36966.4 −1.76088 −0.880441 0.474156i \(-0.842753\pi\)
−0.880441 + 0.474156i \(0.842753\pi\)
\(762\) 0 0
\(763\) −2387.03 −0.113259
\(764\) −32188.7 −1.52428
\(765\) 0 0
\(766\) 28695.2 1.35353
\(767\) −32103.8 −1.51135
\(768\) 0 0
\(769\) −38975.5 −1.82769 −0.913845 0.406062i \(-0.866902\pi\)
−0.913845 + 0.406062i \(0.866902\pi\)
\(770\) 7533.26 0.352571
\(771\) 0 0
\(772\) 31157.7 1.45258
\(773\) −27341.9 −1.27221 −0.636105 0.771603i \(-0.719455\pi\)
−0.636105 + 0.771603i \(0.719455\pi\)
\(774\) 0 0
\(775\) −30154.0 −1.39763
\(776\) 5817.07 0.269099
\(777\) 0 0
\(778\) 55303.3 2.54848
\(779\) −20027.4 −0.921125
\(780\) 0 0
\(781\) −5114.19 −0.234315
\(782\) 3321.96 0.151909
\(783\) 0 0
\(784\) −977.642 −0.0445354
\(785\) 6165.00 0.280303
\(786\) 0 0
\(787\) −18268.5 −0.827446 −0.413723 0.910403i \(-0.635772\pi\)
−0.413723 + 0.910403i \(0.635772\pi\)
\(788\) 22082.7 0.998302
\(789\) 0 0
\(790\) −25558.0 −1.15103
\(791\) 6936.37 0.311794
\(792\) 0 0
\(793\) 4504.22 0.201702
\(794\) 2751.75 0.122993
\(795\) 0 0
\(796\) −36649.9 −1.63194
\(797\) −12717.6 −0.565219 −0.282610 0.959235i \(-0.591200\pi\)
−0.282610 + 0.959235i \(0.591200\pi\)
\(798\) 0 0
\(799\) 7078.86 0.313432
\(800\) 79827.6 3.52792
\(801\) 0 0
\(802\) 43248.4 1.90418
\(803\) 2809.48 0.123467
\(804\) 0 0
\(805\) −4337.37 −0.189903
\(806\) −19216.8 −0.839804
\(807\) 0 0
\(808\) 24865.3 1.08262
\(809\) −12502.0 −0.543322 −0.271661 0.962393i \(-0.587573\pi\)
−0.271661 + 0.962393i \(0.587573\pi\)
\(810\) 0 0
\(811\) −23431.3 −1.01453 −0.507264 0.861791i \(-0.669343\pi\)
−0.507264 + 0.861791i \(0.669343\pi\)
\(812\) 3613.52 0.156170
\(813\) 0 0
\(814\) 14975.7 0.644839
\(815\) −19077.6 −0.819948
\(816\) 0 0
\(817\) −1370.56 −0.0586899
\(818\) −20537.6 −0.877850
\(819\) 0 0
\(820\) −51987.6 −2.21401
\(821\) −33116.5 −1.40776 −0.703881 0.710317i \(-0.748551\pi\)
−0.703881 + 0.710317i \(0.748551\pi\)
\(822\) 0 0
\(823\) −6383.39 −0.270366 −0.135183 0.990821i \(-0.543162\pi\)
−0.135183 + 0.990821i \(0.543162\pi\)
\(824\) −9308.20 −0.393527
\(825\) 0 0
\(826\) −19363.0 −0.815649
\(827\) 27701.3 1.16477 0.582386 0.812912i \(-0.302119\pi\)
0.582386 + 0.812912i \(0.302119\pi\)
\(828\) 0 0
\(829\) −13160.2 −0.551353 −0.275676 0.961251i \(-0.588902\pi\)
−0.275676 + 0.961251i \(0.588902\pi\)
\(830\) 93332.7 3.90316
\(831\) 0 0
\(832\) 42640.7 1.77680
\(833\) 1301.39 0.0541303
\(834\) 0 0
\(835\) 43263.4 1.79305
\(836\) −12877.9 −0.532763
\(837\) 0 0
\(838\) 828.483 0.0341521
\(839\) 24842.9 1.02226 0.511128 0.859505i \(-0.329228\pi\)
0.511128 + 0.859505i \(0.329228\pi\)
\(840\) 0 0
\(841\) −22458.6 −0.920848
\(842\) −11866.8 −0.485696
\(843\) 0 0
\(844\) −6117.95 −0.249513
\(845\) 10196.7 0.415123
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 6162.48 0.249552
\(849\) 0 0
\(850\) −42450.0 −1.71297
\(851\) −8622.47 −0.347326
\(852\) 0 0
\(853\) −10131.6 −0.406681 −0.203340 0.979108i \(-0.565180\pi\)
−0.203340 + 0.979108i \(0.565180\pi\)
\(854\) 2716.67 0.108855
\(855\) 0 0
\(856\) −11563.4 −0.461716
\(857\) −10115.6 −0.403199 −0.201599 0.979468i \(-0.564614\pi\)
−0.201599 + 0.979468i \(0.564614\pi\)
\(858\) 0 0
\(859\) −27491.4 −1.09196 −0.545980 0.837798i \(-0.683843\pi\)
−0.545980 + 0.837798i \(0.683843\pi\)
\(860\) −3557.72 −0.141066
\(861\) 0 0
\(862\) −55616.1 −2.19755
\(863\) 117.276 0.00462588 0.00231294 0.999997i \(-0.499264\pi\)
0.00231294 + 0.999997i \(0.499264\pi\)
\(864\) 0 0
\(865\) −87110.8 −3.42411
\(866\) 73997.8 2.90364
\(867\) 0 0
\(868\) −6895.31 −0.269634
\(869\) −2873.60 −0.112175
\(870\) 0 0
\(871\) −31379.1 −1.22071
\(872\) 5681.43 0.220639
\(873\) 0 0
\(874\) 12463.2 0.482351
\(875\) 36162.3 1.39715
\(876\) 0 0
\(877\) 11597.4 0.446543 0.223271 0.974756i \(-0.428326\pi\)
0.223271 + 0.974756i \(0.428326\pi\)
\(878\) −26812.3 −1.03061
\(879\) 0 0
\(880\) 4831.65 0.185085
\(881\) −7524.18 −0.287737 −0.143868 0.989597i \(-0.545954\pi\)
−0.143868 + 0.989597i \(0.545954\pi\)
\(882\) 0 0
\(883\) 13467.4 0.513266 0.256633 0.966509i \(-0.417387\pi\)
0.256633 + 0.966509i \(0.417387\pi\)
\(884\) −16094.2 −0.612339
\(885\) 0 0
\(886\) 28086.2 1.06498
\(887\) 12955.7 0.490427 0.245214 0.969469i \(-0.421142\pi\)
0.245214 + 0.969469i \(0.421142\pi\)
\(888\) 0 0
\(889\) −4662.63 −0.175905
\(890\) −82172.1 −3.09485
\(891\) 0 0
\(892\) 24685.7 0.926612
\(893\) 26558.2 0.995226
\(894\) 0 0
\(895\) 69205.8 2.58469
\(896\) 13288.9 0.495480
\(897\) 0 0
\(898\) −79518.9 −2.95499
\(899\) −3683.68 −0.136660
\(900\) 0 0
\(901\) −8203.20 −0.303317
\(902\) −9825.25 −0.362688
\(903\) 0 0
\(904\) −16509.4 −0.607405
\(905\) 15053.2 0.552913
\(906\) 0 0
\(907\) 47843.5 1.75151 0.875753 0.482759i \(-0.160365\pi\)
0.875753 + 0.482759i \(0.160365\pi\)
\(908\) 71104.9 2.59879
\(909\) 0 0
\(910\) 35322.0 1.28672
\(911\) −16969.8 −0.617162 −0.308581 0.951198i \(-0.599854\pi\)
−0.308581 + 0.951198i \(0.599854\pi\)
\(912\) 0 0
\(913\) 10493.8 0.380389
\(914\) −27588.3 −0.998402
\(915\) 0 0
\(916\) −35197.1 −1.26959
\(917\) −213.049 −0.00767231
\(918\) 0 0
\(919\) 12095.2 0.434149 0.217075 0.976155i \(-0.430348\pi\)
0.217075 + 0.976155i \(0.430348\pi\)
\(920\) 10323.5 0.369951
\(921\) 0 0
\(922\) 35468.8 1.26692
\(923\) −23979.4 −0.855138
\(924\) 0 0
\(925\) 110183. 3.91653
\(926\) 33308.6 1.18206
\(927\) 0 0
\(928\) 9751.91 0.344959
\(929\) 44544.3 1.57314 0.786571 0.617499i \(-0.211854\pi\)
0.786571 + 0.617499i \(0.211854\pi\)
\(930\) 0 0
\(931\) 4882.52 0.171878
\(932\) 767.985 0.0269916
\(933\) 0 0
\(934\) 6752.16 0.236550
\(935\) −6431.66 −0.224960
\(936\) 0 0
\(937\) −49265.8 −1.71766 −0.858828 0.512264i \(-0.828807\pi\)
−0.858828 + 0.512264i \(0.828807\pi\)
\(938\) −18925.9 −0.658799
\(939\) 0 0
\(940\) 68940.4 2.39211
\(941\) 18403.1 0.637538 0.318769 0.947832i \(-0.396731\pi\)
0.318769 + 0.947832i \(0.396731\pi\)
\(942\) 0 0
\(943\) 5657.01 0.195353
\(944\) −12419.0 −0.428181
\(945\) 0 0
\(946\) −672.381 −0.0231089
\(947\) −17689.3 −0.606996 −0.303498 0.952832i \(-0.598155\pi\)
−0.303498 + 0.952832i \(0.598155\pi\)
\(948\) 0 0
\(949\) 13173.1 0.450597
\(950\) −159262. −5.43911
\(951\) 0 0
\(952\) −3097.47 −0.105451
\(953\) 5298.19 0.180090 0.0900448 0.995938i \(-0.471299\pi\)
0.0900448 + 0.995938i \(0.471299\pi\)
\(954\) 0 0
\(955\) −60314.1 −2.04368
\(956\) 12951.4 0.438156
\(957\) 0 0
\(958\) −72855.6 −2.45705
\(959\) 19671.7 0.662392
\(960\) 0 0
\(961\) −22761.8 −0.764050
\(962\) 70218.3 2.35336
\(963\) 0 0
\(964\) 62239.9 2.07947
\(965\) 58382.2 1.94755
\(966\) 0 0
\(967\) 33990.6 1.13037 0.565184 0.824965i \(-0.308805\pi\)
0.565184 + 0.824965i \(0.308805\pi\)
\(968\) −2015.96 −0.0669375
\(969\) 0 0
\(970\) 34158.5 1.13068
\(971\) −41991.0 −1.38780 −0.693900 0.720071i \(-0.744109\pi\)
−0.693900 + 0.720071i \(0.744109\pi\)
\(972\) 0 0
\(973\) 21773.4 0.717393
\(974\) −10110.1 −0.332597
\(975\) 0 0
\(976\) 1742.40 0.0571444
\(977\) 31233.4 1.02277 0.511384 0.859352i \(-0.329133\pi\)
0.511384 + 0.859352i \(0.329133\pi\)
\(978\) 0 0
\(979\) −9239.00 −0.301614
\(980\) 12674.1 0.413123
\(981\) 0 0
\(982\) −65012.0 −2.11264
\(983\) 45702.5 1.48289 0.741447 0.671012i \(-0.234140\pi\)
0.741447 + 0.671012i \(0.234140\pi\)
\(984\) 0 0
\(985\) 41377.7 1.33848
\(986\) −5185.78 −0.167494
\(987\) 0 0
\(988\) −60381.8 −1.94433
\(989\) 387.132 0.0124470
\(990\) 0 0
\(991\) −4310.72 −0.138178 −0.0690890 0.997611i \(-0.522009\pi\)
−0.0690890 + 0.997611i \(0.522009\pi\)
\(992\) −18608.6 −0.595587
\(993\) 0 0
\(994\) −14462.9 −0.461504
\(995\) −68673.3 −2.18803
\(996\) 0 0
\(997\) −6103.28 −0.193875 −0.0969373 0.995290i \(-0.530905\pi\)
−0.0969373 + 0.995290i \(0.530905\pi\)
\(998\) −15705.1 −0.498133
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.o.1.2 5
3.2 odd 2 77.4.a.e.1.4 5
12.11 even 2 1232.4.a.y.1.1 5
15.14 odd 2 1925.4.a.r.1.2 5
21.20 even 2 539.4.a.h.1.4 5
33.32 even 2 847.4.a.f.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.e.1.4 5 3.2 odd 2
539.4.a.h.1.4 5 21.20 even 2
693.4.a.o.1.2 5 1.1 even 1 trivial
847.4.a.f.1.2 5 33.32 even 2
1232.4.a.y.1.1 5 12.11 even 2
1925.4.a.r.1.2 5 15.14 odd 2