Properties

Label 693.4.a.o
Level $693$
Weight $4$
Character orbit 693.a
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + \beta_1 + 9) q^{4} + ( - \beta_{4} - \beta_{3} + 4) q^{5} + 7 q^{7} + ( - 2 \beta_{4} - 2 \beta_{3} + \cdots - 11) q^{8} + (2 \beta_{4} + 6 \beta_{3} + 3 \beta_{2} + \cdots + 3) q^{10}+ \cdots - 49 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 45 q^{4} + 24 q^{5} + 35 q^{7} - 57 q^{8} - 10 q^{10} - 55 q^{11} - 50 q^{13} - 7 q^{14} + 433 q^{16} - 222 q^{17} + 160 q^{19} + 430 q^{20} + 11 q^{22} - 54 q^{23} + 125 q^{25} + 1026 q^{26}+ \cdots - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 42x^{3} + 18x^{2} + 368x + 352 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 17 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - \nu^{3} - 34\nu^{2} + 34\nu + 152 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} + 5\nu^{3} + 38\nu^{2} - 138\nu - 264 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 17 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} + 2\beta_{3} - \beta_{2} + 25\beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{4} + 10\beta_{3} + 33\beta_{2} + 25\beta _1 + 437 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.41547
4.44399
−1.22767
−2.18888
−5.44291
−5.41547 0 21.3273 −5.67299 0 7.00000 −72.1734 0 30.7219
1.2 −4.44399 0 11.7491 22.0150 0 7.00000 −16.6609 0 −97.8345
1.3 1.22767 0 −6.49284 2.21191 0 7.00000 −17.7924 0 2.71549
1.4 2.18888 0 −3.20880 −7.60736 0 7.00000 −24.5347 0 −16.6516
1.5 5.44291 0 21.6253 13.0534 0 7.00000 74.1613 0 71.0487
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 693.4.a.o 5
3.b odd 2 1 77.4.a.e 5
12.b even 2 1 1232.4.a.y 5
15.d odd 2 1 1925.4.a.r 5
21.c even 2 1 539.4.a.h 5
33.d even 2 1 847.4.a.f 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.4.a.e 5 3.b odd 2 1
539.4.a.h 5 21.c even 2 1
693.4.a.o 5 1.a even 1 1 trivial
847.4.a.f 5 33.d even 2 1
1232.4.a.y 5 12.b even 2 1
1925.4.a.r 5 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(693))\):

\( T_{2}^{5} + T_{2}^{4} - 42T_{2}^{3} - 18T_{2}^{2} + 368T_{2} - 352 \) Copy content Toggle raw display
\( T_{5}^{5} - 24T_{5}^{4} - 87T_{5}^{3} + 2602T_{5}^{2} + 7308T_{5} - 27432 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + T^{4} + \cdots - 352 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 24 T^{4} + \cdots - 27432 \) Copy content Toggle raw display
$7$ \( (T - 7)^{5} \) Copy content Toggle raw display
$11$ \( (T + 11)^{5} \) Copy content Toggle raw display
$13$ \( T^{5} + 50 T^{4} + \cdots - 592704 \) Copy content Toggle raw display
$17$ \( T^{5} + 222 T^{4} + \cdots + 848713296 \) Copy content Toggle raw display
$19$ \( T^{5} - 160 T^{4} + \cdots - 231728000 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 11393959488 \) Copy content Toggle raw display
$29$ \( T^{5} + 14 T^{4} + \cdots + 217521440 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 5076110528 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 338018607168 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 97487626768 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 326743954944 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 414600941568 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 10851403442304 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 360770783496 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 2506564965968 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 4961616838944 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 1058966690112 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 15144540953200 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 841495667968 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 729734179328 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 75449135393496 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 94604344400216 \) Copy content Toggle raw display
show more
show less