Properties

Label 693.4.a.n.1.3
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 28x^{3} - 11x^{2} + 108x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.767088\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.232912 q^{2} -7.94575 q^{4} -7.75746 q^{5} -7.00000 q^{7} +3.71396 q^{8} +1.80680 q^{10} -11.0000 q^{11} +59.4737 q^{13} +1.63038 q^{14} +62.7010 q^{16} +45.4400 q^{17} +111.752 q^{19} +61.6388 q^{20} +2.56203 q^{22} -105.326 q^{23} -64.8219 q^{25} -13.8521 q^{26} +55.6203 q^{28} -10.0244 q^{29} +315.364 q^{31} -44.3154 q^{32} -10.5835 q^{34} +54.3022 q^{35} -182.176 q^{37} -26.0283 q^{38} -28.8108 q^{40} -487.944 q^{41} -358.348 q^{43} +87.4033 q^{44} +24.5317 q^{46} -205.857 q^{47} +49.0000 q^{49} +15.0978 q^{50} -472.563 q^{52} -134.518 q^{53} +85.3320 q^{55} -25.9977 q^{56} +2.33481 q^{58} +891.997 q^{59} +654.613 q^{61} -73.4520 q^{62} -491.286 q^{64} -461.364 q^{65} -102.298 q^{67} -361.055 q^{68} -12.6476 q^{70} -119.126 q^{71} -346.254 q^{73} +42.4310 q^{74} -887.951 q^{76} +77.0000 q^{77} -774.834 q^{79} -486.400 q^{80} +113.648 q^{82} -1040.89 q^{83} -352.499 q^{85} +83.4636 q^{86} -40.8535 q^{88} -502.925 q^{89} -416.316 q^{91} +836.896 q^{92} +47.9465 q^{94} -866.908 q^{95} -939.285 q^{97} -11.4127 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} - 60 q^{8} + 55 q^{10} - 55 q^{11} + 111 q^{13} + 35 q^{14} + 201 q^{16} - 136 q^{17} + 111 q^{19} - 219 q^{20} + 55 q^{22} + 28 q^{23} + 190 q^{25} + q^{26}+ \cdots - 245 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.232912 −0.0823468 −0.0411734 0.999152i \(-0.513110\pi\)
−0.0411734 + 0.999152i \(0.513110\pi\)
\(3\) 0 0
\(4\) −7.94575 −0.993219
\(5\) −7.75746 −0.693848 −0.346924 0.937893i \(-0.612774\pi\)
−0.346924 + 0.937893i \(0.612774\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 3.71396 0.164135
\(9\) 0 0
\(10\) 1.80680 0.0571362
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 59.4737 1.26885 0.634424 0.772985i \(-0.281237\pi\)
0.634424 + 0.772985i \(0.281237\pi\)
\(14\) 1.63038 0.0311242
\(15\) 0 0
\(16\) 62.7010 0.979703
\(17\) 45.4400 0.648284 0.324142 0.946008i \(-0.394924\pi\)
0.324142 + 0.946008i \(0.394924\pi\)
\(18\) 0 0
\(19\) 111.752 1.34935 0.674673 0.738117i \(-0.264285\pi\)
0.674673 + 0.738117i \(0.264285\pi\)
\(20\) 61.6388 0.689143
\(21\) 0 0
\(22\) 2.56203 0.0248285
\(23\) −105.326 −0.954871 −0.477435 0.878667i \(-0.658433\pi\)
−0.477435 + 0.878667i \(0.658433\pi\)
\(24\) 0 0
\(25\) −64.8219 −0.518575
\(26\) −13.8521 −0.104486
\(27\) 0 0
\(28\) 55.6203 0.375401
\(29\) −10.0244 −0.0641892 −0.0320946 0.999485i \(-0.510218\pi\)
−0.0320946 + 0.999485i \(0.510218\pi\)
\(30\) 0 0
\(31\) 315.364 1.82713 0.913565 0.406694i \(-0.133318\pi\)
0.913565 + 0.406694i \(0.133318\pi\)
\(32\) −44.3154 −0.244811
\(33\) 0 0
\(34\) −10.5835 −0.0533841
\(35\) 54.3022 0.262250
\(36\) 0 0
\(37\) −182.176 −0.809448 −0.404724 0.914439i \(-0.632632\pi\)
−0.404724 + 0.914439i \(0.632632\pi\)
\(38\) −26.0283 −0.111114
\(39\) 0 0
\(40\) −28.8108 −0.113885
\(41\) −487.944 −1.85864 −0.929318 0.369280i \(-0.879604\pi\)
−0.929318 + 0.369280i \(0.879604\pi\)
\(42\) 0 0
\(43\) −358.348 −1.27087 −0.635437 0.772152i \(-0.719180\pi\)
−0.635437 + 0.772152i \(0.719180\pi\)
\(44\) 87.4033 0.299467
\(45\) 0 0
\(46\) 24.5317 0.0786305
\(47\) −205.857 −0.638879 −0.319439 0.947607i \(-0.603495\pi\)
−0.319439 + 0.947607i \(0.603495\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 15.0978 0.0427030
\(51\) 0 0
\(52\) −472.563 −1.26024
\(53\) −134.518 −0.348632 −0.174316 0.984690i \(-0.555771\pi\)
−0.174316 + 0.984690i \(0.555771\pi\)
\(54\) 0 0
\(55\) 85.3320 0.209203
\(56\) −25.9977 −0.0620373
\(57\) 0 0
\(58\) 2.33481 0.00528578
\(59\) 891.997 1.96827 0.984137 0.177410i \(-0.0567719\pi\)
0.984137 + 0.177410i \(0.0567719\pi\)
\(60\) 0 0
\(61\) 654.613 1.37401 0.687005 0.726653i \(-0.258925\pi\)
0.687005 + 0.726653i \(0.258925\pi\)
\(62\) −73.4520 −0.150458
\(63\) 0 0
\(64\) −491.286 −0.959544
\(65\) −461.364 −0.880388
\(66\) 0 0
\(67\) −102.298 −0.186532 −0.0932659 0.995641i \(-0.529731\pi\)
−0.0932659 + 0.995641i \(0.529731\pi\)
\(68\) −361.055 −0.643888
\(69\) 0 0
\(70\) −12.6476 −0.0215954
\(71\) −119.126 −0.199122 −0.0995608 0.995031i \(-0.531744\pi\)
−0.0995608 + 0.995031i \(0.531744\pi\)
\(72\) 0 0
\(73\) −346.254 −0.555151 −0.277575 0.960704i \(-0.589531\pi\)
−0.277575 + 0.960704i \(0.589531\pi\)
\(74\) 42.4310 0.0666554
\(75\) 0 0
\(76\) −887.951 −1.34020
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −774.834 −1.10349 −0.551744 0.834013i \(-0.686038\pi\)
−0.551744 + 0.834013i \(0.686038\pi\)
\(80\) −486.400 −0.679765
\(81\) 0 0
\(82\) 113.648 0.153053
\(83\) −1040.89 −1.37653 −0.688265 0.725459i \(-0.741627\pi\)
−0.688265 + 0.725459i \(0.741627\pi\)
\(84\) 0 0
\(85\) −352.499 −0.449811
\(86\) 83.4636 0.104652
\(87\) 0 0
\(88\) −40.8535 −0.0494886
\(89\) −502.925 −0.598988 −0.299494 0.954098i \(-0.596818\pi\)
−0.299494 + 0.954098i \(0.596818\pi\)
\(90\) 0 0
\(91\) −416.316 −0.479579
\(92\) 836.896 0.948396
\(93\) 0 0
\(94\) 47.9465 0.0526096
\(95\) −866.908 −0.936241
\(96\) 0 0
\(97\) −939.285 −0.983195 −0.491598 0.870822i \(-0.663587\pi\)
−0.491598 + 0.870822i \(0.663587\pi\)
\(98\) −11.4127 −0.0117638
\(99\) 0 0
\(100\) 515.058 0.515058
\(101\) 664.250 0.654409 0.327205 0.944953i \(-0.393893\pi\)
0.327205 + 0.944953i \(0.393893\pi\)
\(102\) 0 0
\(103\) −1500.66 −1.43558 −0.717789 0.696261i \(-0.754846\pi\)
−0.717789 + 0.696261i \(0.754846\pi\)
\(104\) 220.882 0.208263
\(105\) 0 0
\(106\) 31.3309 0.0287087
\(107\) 1090.60 0.985353 0.492676 0.870213i \(-0.336019\pi\)
0.492676 + 0.870213i \(0.336019\pi\)
\(108\) 0 0
\(109\) 525.673 0.461930 0.230965 0.972962i \(-0.425812\pi\)
0.230965 + 0.972962i \(0.425812\pi\)
\(110\) −19.8748 −0.0172272
\(111\) 0 0
\(112\) −438.907 −0.370293
\(113\) 1978.09 1.64675 0.823377 0.567494i \(-0.192087\pi\)
0.823377 + 0.567494i \(0.192087\pi\)
\(114\) 0 0
\(115\) 817.063 0.662535
\(116\) 79.6515 0.0637539
\(117\) 0 0
\(118\) −207.757 −0.162081
\(119\) −318.080 −0.245028
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −152.467 −0.113145
\(123\) 0 0
\(124\) −2505.80 −1.81474
\(125\) 1472.53 1.05366
\(126\) 0 0
\(127\) −2464.93 −1.72226 −0.861131 0.508383i \(-0.830243\pi\)
−0.861131 + 0.508383i \(0.830243\pi\)
\(128\) 468.950 0.323826
\(129\) 0 0
\(130\) 107.457 0.0724971
\(131\) 552.047 0.368188 0.184094 0.982909i \(-0.441065\pi\)
0.184094 + 0.982909i \(0.441065\pi\)
\(132\) 0 0
\(133\) −782.261 −0.510005
\(134\) 23.8263 0.0153603
\(135\) 0 0
\(136\) 168.762 0.106406
\(137\) −794.265 −0.495318 −0.247659 0.968847i \(-0.579661\pi\)
−0.247659 + 0.968847i \(0.579661\pi\)
\(138\) 0 0
\(139\) 430.970 0.262982 0.131491 0.991317i \(-0.458024\pi\)
0.131491 + 0.991317i \(0.458024\pi\)
\(140\) −431.472 −0.260472
\(141\) 0 0
\(142\) 27.7458 0.0163970
\(143\) −654.210 −0.382572
\(144\) 0 0
\(145\) 77.7640 0.0445376
\(146\) 80.6468 0.0457149
\(147\) 0 0
\(148\) 1447.53 0.803959
\(149\) −2645.94 −1.45479 −0.727397 0.686217i \(-0.759270\pi\)
−0.727397 + 0.686217i \(0.759270\pi\)
\(150\) 0 0
\(151\) −538.071 −0.289984 −0.144992 0.989433i \(-0.546316\pi\)
−0.144992 + 0.989433i \(0.546316\pi\)
\(152\) 415.041 0.221475
\(153\) 0 0
\(154\) −17.9342 −0.00938429
\(155\) −2446.42 −1.26775
\(156\) 0 0
\(157\) 2052.43 1.04332 0.521661 0.853153i \(-0.325313\pi\)
0.521661 + 0.853153i \(0.325313\pi\)
\(158\) 180.468 0.0908688
\(159\) 0 0
\(160\) 343.775 0.169861
\(161\) 737.283 0.360907
\(162\) 0 0
\(163\) 2191.90 1.05327 0.526634 0.850092i \(-0.323454\pi\)
0.526634 + 0.850092i \(0.323454\pi\)
\(164\) 3877.08 1.84603
\(165\) 0 0
\(166\) 242.435 0.113353
\(167\) −40.0010 −0.0185351 −0.00926757 0.999957i \(-0.502950\pi\)
−0.00926757 + 0.999957i \(0.502950\pi\)
\(168\) 0 0
\(169\) 1340.12 0.609975
\(170\) 82.1012 0.0370405
\(171\) 0 0
\(172\) 2847.35 1.26226
\(173\) −4251.43 −1.86838 −0.934192 0.356770i \(-0.883878\pi\)
−0.934192 + 0.356770i \(0.883878\pi\)
\(174\) 0 0
\(175\) 453.753 0.196003
\(176\) −689.711 −0.295392
\(177\) 0 0
\(178\) 117.137 0.0493247
\(179\) −4768.34 −1.99108 −0.995538 0.0943649i \(-0.969918\pi\)
−0.995538 + 0.0943649i \(0.969918\pi\)
\(180\) 0 0
\(181\) −2955.03 −1.21351 −0.606756 0.794888i \(-0.707530\pi\)
−0.606756 + 0.794888i \(0.707530\pi\)
\(182\) 96.9648 0.0394918
\(183\) 0 0
\(184\) −391.177 −0.156728
\(185\) 1413.22 0.561634
\(186\) 0 0
\(187\) −499.840 −0.195465
\(188\) 1635.69 0.634547
\(189\) 0 0
\(190\) 201.913 0.0770965
\(191\) −715.502 −0.271057 −0.135529 0.990773i \(-0.543273\pi\)
−0.135529 + 0.990773i \(0.543273\pi\)
\(192\) 0 0
\(193\) 1799.38 0.671098 0.335549 0.942023i \(-0.391078\pi\)
0.335549 + 0.942023i \(0.391078\pi\)
\(194\) 218.771 0.0809630
\(195\) 0 0
\(196\) −389.342 −0.141888
\(197\) −2978.55 −1.07722 −0.538612 0.842554i \(-0.681051\pi\)
−0.538612 + 0.842554i \(0.681051\pi\)
\(198\) 0 0
\(199\) −2303.16 −0.820434 −0.410217 0.911988i \(-0.634547\pi\)
−0.410217 + 0.911988i \(0.634547\pi\)
\(200\) −240.745 −0.0851164
\(201\) 0 0
\(202\) −154.712 −0.0538885
\(203\) 70.1709 0.0242612
\(204\) 0 0
\(205\) 3785.21 1.28961
\(206\) 349.522 0.118215
\(207\) 0 0
\(208\) 3729.06 1.24309
\(209\) −1229.27 −0.406843
\(210\) 0 0
\(211\) −4258.59 −1.38945 −0.694724 0.719277i \(-0.744473\pi\)
−0.694724 + 0.719277i \(0.744473\pi\)
\(212\) 1068.85 0.346268
\(213\) 0 0
\(214\) −254.015 −0.0811406
\(215\) 2779.87 0.881794
\(216\) 0 0
\(217\) −2207.55 −0.690590
\(218\) −122.435 −0.0380384
\(219\) 0 0
\(220\) −678.027 −0.207784
\(221\) 2702.49 0.822574
\(222\) 0 0
\(223\) −2739.54 −0.822660 −0.411330 0.911486i \(-0.634936\pi\)
−0.411330 + 0.911486i \(0.634936\pi\)
\(224\) 310.208 0.0925297
\(225\) 0 0
\(226\) −460.721 −0.135605
\(227\) −3373.57 −0.986395 −0.493198 0.869917i \(-0.664172\pi\)
−0.493198 + 0.869917i \(0.664172\pi\)
\(228\) 0 0
\(229\) 349.100 0.100739 0.0503693 0.998731i \(-0.483960\pi\)
0.0503693 + 0.998731i \(0.483960\pi\)
\(230\) −190.304 −0.0545576
\(231\) 0 0
\(232\) −37.2302 −0.0105357
\(233\) −2210.59 −0.621548 −0.310774 0.950484i \(-0.600588\pi\)
−0.310774 + 0.950484i \(0.600588\pi\)
\(234\) 0 0
\(235\) 1596.93 0.443285
\(236\) −7087.59 −1.95493
\(237\) 0 0
\(238\) 74.0847 0.0201773
\(239\) 4073.04 1.10236 0.551178 0.834388i \(-0.314179\pi\)
0.551178 + 0.834388i \(0.314179\pi\)
\(240\) 0 0
\(241\) 1967.60 0.525910 0.262955 0.964808i \(-0.415303\pi\)
0.262955 + 0.964808i \(0.415303\pi\)
\(242\) −28.1823 −0.00748607
\(243\) 0 0
\(244\) −5201.39 −1.36469
\(245\) −380.115 −0.0991211
\(246\) 0 0
\(247\) 6646.28 1.71212
\(248\) 1171.25 0.299896
\(249\) 0 0
\(250\) −342.971 −0.0867655
\(251\) 7019.95 1.76532 0.882660 0.470011i \(-0.155750\pi\)
0.882660 + 0.470011i \(0.155750\pi\)
\(252\) 0 0
\(253\) 1158.59 0.287904
\(254\) 574.112 0.141823
\(255\) 0 0
\(256\) 3821.07 0.932878
\(257\) 2810.13 0.682066 0.341033 0.940051i \(-0.389223\pi\)
0.341033 + 0.940051i \(0.389223\pi\)
\(258\) 0 0
\(259\) 1275.23 0.305943
\(260\) 3665.89 0.874418
\(261\) 0 0
\(262\) −128.578 −0.0303191
\(263\) −5388.34 −1.26334 −0.631672 0.775236i \(-0.717631\pi\)
−0.631672 + 0.775236i \(0.717631\pi\)
\(264\) 0 0
\(265\) 1043.52 0.241898
\(266\) 182.198 0.0419973
\(267\) 0 0
\(268\) 812.831 0.185267
\(269\) 839.014 0.190169 0.0950847 0.995469i \(-0.469688\pi\)
0.0950847 + 0.995469i \(0.469688\pi\)
\(270\) 0 0
\(271\) 3831.43 0.858830 0.429415 0.903107i \(-0.358720\pi\)
0.429415 + 0.903107i \(0.358720\pi\)
\(272\) 2849.14 0.635126
\(273\) 0 0
\(274\) 184.994 0.0407879
\(275\) 713.040 0.156356
\(276\) 0 0
\(277\) −800.595 −0.173657 −0.0868287 0.996223i \(-0.527673\pi\)
−0.0868287 + 0.996223i \(0.527673\pi\)
\(278\) −100.378 −0.0216557
\(279\) 0 0
\(280\) 201.676 0.0430444
\(281\) −3988.10 −0.846655 −0.423327 0.905977i \(-0.639138\pi\)
−0.423327 + 0.905977i \(0.639138\pi\)
\(282\) 0 0
\(283\) 218.036 0.0457982 0.0228991 0.999738i \(-0.492710\pi\)
0.0228991 + 0.999738i \(0.492710\pi\)
\(284\) 946.544 0.197771
\(285\) 0 0
\(286\) 152.373 0.0315036
\(287\) 3415.61 0.702498
\(288\) 0 0
\(289\) −2848.20 −0.579728
\(290\) −18.1122 −0.00366752
\(291\) 0 0
\(292\) 2751.25 0.551386
\(293\) −2886.47 −0.575527 −0.287763 0.957702i \(-0.592912\pi\)
−0.287763 + 0.957702i \(0.592912\pi\)
\(294\) 0 0
\(295\) −6919.63 −1.36568
\(296\) −676.594 −0.132859
\(297\) 0 0
\(298\) 616.272 0.119798
\(299\) −6264.13 −1.21159
\(300\) 0 0
\(301\) 2508.44 0.480345
\(302\) 125.323 0.0238792
\(303\) 0 0
\(304\) 7006.94 1.32196
\(305\) −5078.13 −0.953354
\(306\) 0 0
\(307\) 1453.05 0.270130 0.135065 0.990837i \(-0.456876\pi\)
0.135065 + 0.990837i \(0.456876\pi\)
\(308\) −611.823 −0.113188
\(309\) 0 0
\(310\) 569.800 0.104395
\(311\) 10772.3 1.96412 0.982062 0.188556i \(-0.0603806\pi\)
0.982062 + 0.188556i \(0.0603806\pi\)
\(312\) 0 0
\(313\) −2382.11 −0.430175 −0.215087 0.976595i \(-0.569004\pi\)
−0.215087 + 0.976595i \(0.569004\pi\)
\(314\) −478.035 −0.0859142
\(315\) 0 0
\(316\) 6156.64 1.09601
\(317\) 7870.28 1.39444 0.697222 0.716855i \(-0.254419\pi\)
0.697222 + 0.716855i \(0.254419\pi\)
\(318\) 0 0
\(319\) 110.269 0.0193538
\(320\) 3811.13 0.665777
\(321\) 0 0
\(322\) −171.722 −0.0297195
\(323\) 5078.00 0.874760
\(324\) 0 0
\(325\) −3855.19 −0.657993
\(326\) −510.519 −0.0867333
\(327\) 0 0
\(328\) −1812.20 −0.305068
\(329\) 1441.00 0.241474
\(330\) 0 0
\(331\) −6237.15 −1.03572 −0.517862 0.855464i \(-0.673272\pi\)
−0.517862 + 0.855464i \(0.673272\pi\)
\(332\) 8270.62 1.36720
\(333\) 0 0
\(334\) 9.31670 0.00152631
\(335\) 793.569 0.129425
\(336\) 0 0
\(337\) −5496.22 −0.888422 −0.444211 0.895922i \(-0.646516\pi\)
−0.444211 + 0.895922i \(0.646516\pi\)
\(338\) −312.129 −0.0502295
\(339\) 0 0
\(340\) 2800.87 0.446760
\(341\) −3469.00 −0.550900
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −1330.89 −0.208595
\(345\) 0 0
\(346\) 990.210 0.153855
\(347\) 10566.3 1.63466 0.817332 0.576167i \(-0.195452\pi\)
0.817332 + 0.576167i \(0.195452\pi\)
\(348\) 0 0
\(349\) −2553.15 −0.391596 −0.195798 0.980644i \(-0.562730\pi\)
−0.195798 + 0.980644i \(0.562730\pi\)
\(350\) −105.684 −0.0161402
\(351\) 0 0
\(352\) 487.470 0.0738132
\(353\) −1724.64 −0.260037 −0.130019 0.991512i \(-0.541504\pi\)
−0.130019 + 0.991512i \(0.541504\pi\)
\(354\) 0 0
\(355\) 924.113 0.138160
\(356\) 3996.11 0.594926
\(357\) 0 0
\(358\) 1110.60 0.163959
\(359\) −2686.78 −0.394994 −0.197497 0.980303i \(-0.563281\pi\)
−0.197497 + 0.980303i \(0.563281\pi\)
\(360\) 0 0
\(361\) 5629.43 0.820736
\(362\) 688.262 0.0999289
\(363\) 0 0
\(364\) 3307.94 0.476327
\(365\) 2686.05 0.385190
\(366\) 0 0
\(367\) −2379.21 −0.338403 −0.169201 0.985582i \(-0.554119\pi\)
−0.169201 + 0.985582i \(0.554119\pi\)
\(368\) −6604.05 −0.935490
\(369\) 0 0
\(370\) −329.157 −0.0462487
\(371\) 941.627 0.131770
\(372\) 0 0
\(373\) 9982.30 1.38569 0.692847 0.721085i \(-0.256356\pi\)
0.692847 + 0.721085i \(0.256356\pi\)
\(374\) 116.419 0.0160959
\(375\) 0 0
\(376\) −764.543 −0.104863
\(377\) −596.189 −0.0814464
\(378\) 0 0
\(379\) −1197.67 −0.162323 −0.0811613 0.996701i \(-0.525863\pi\)
−0.0811613 + 0.996701i \(0.525863\pi\)
\(380\) 6888.24 0.929893
\(381\) 0 0
\(382\) 166.649 0.0223207
\(383\) 3954.76 0.527621 0.263811 0.964575i \(-0.415021\pi\)
0.263811 + 0.964575i \(0.415021\pi\)
\(384\) 0 0
\(385\) −597.324 −0.0790713
\(386\) −419.096 −0.0552627
\(387\) 0 0
\(388\) 7463.33 0.976528
\(389\) 14191.8 1.84976 0.924878 0.380263i \(-0.124167\pi\)
0.924878 + 0.380263i \(0.124167\pi\)
\(390\) 0 0
\(391\) −4786.03 −0.619027
\(392\) 181.984 0.0234479
\(393\) 0 0
\(394\) 693.740 0.0887059
\(395\) 6010.74 0.765654
\(396\) 0 0
\(397\) −8724.90 −1.10300 −0.551499 0.834176i \(-0.685944\pi\)
−0.551499 + 0.834176i \(0.685944\pi\)
\(398\) 536.432 0.0675601
\(399\) 0 0
\(400\) −4064.40 −0.508049
\(401\) −9736.18 −1.21247 −0.606236 0.795285i \(-0.707321\pi\)
−0.606236 + 0.795285i \(0.707321\pi\)
\(402\) 0 0
\(403\) 18755.8 2.31835
\(404\) −5277.97 −0.649972
\(405\) 0 0
\(406\) −16.3436 −0.00199784
\(407\) 2003.94 0.244058
\(408\) 0 0
\(409\) −10284.9 −1.24342 −0.621708 0.783249i \(-0.713561\pi\)
−0.621708 + 0.783249i \(0.713561\pi\)
\(410\) −881.620 −0.106195
\(411\) 0 0
\(412\) 11923.9 1.42584
\(413\) −6243.98 −0.743938
\(414\) 0 0
\(415\) 8074.62 0.955103
\(416\) −2635.60 −0.310627
\(417\) 0 0
\(418\) 286.311 0.0335022
\(419\) −12837.5 −1.49679 −0.748393 0.663255i \(-0.769174\pi\)
−0.748393 + 0.663255i \(0.769174\pi\)
\(420\) 0 0
\(421\) 3108.45 0.359849 0.179925 0.983680i \(-0.442415\pi\)
0.179925 + 0.983680i \(0.442415\pi\)
\(422\) 991.876 0.114417
\(423\) 0 0
\(424\) −499.594 −0.0572227
\(425\) −2945.51 −0.336184
\(426\) 0 0
\(427\) −4582.29 −0.519327
\(428\) −8665.67 −0.978671
\(429\) 0 0
\(430\) −647.465 −0.0726129
\(431\) 414.489 0.0463231 0.0231615 0.999732i \(-0.492627\pi\)
0.0231615 + 0.999732i \(0.492627\pi\)
\(432\) 0 0
\(433\) 7591.87 0.842591 0.421296 0.906923i \(-0.361575\pi\)
0.421296 + 0.906923i \(0.361575\pi\)
\(434\) 514.164 0.0568679
\(435\) 0 0
\(436\) −4176.87 −0.458797
\(437\) −11770.4 −1.28845
\(438\) 0 0
\(439\) −1585.71 −0.172396 −0.0861982 0.996278i \(-0.527472\pi\)
−0.0861982 + 0.996278i \(0.527472\pi\)
\(440\) 316.919 0.0343376
\(441\) 0 0
\(442\) −629.441 −0.0677363
\(443\) −3305.39 −0.354501 −0.177250 0.984166i \(-0.556720\pi\)
−0.177250 + 0.984166i \(0.556720\pi\)
\(444\) 0 0
\(445\) 3901.42 0.415606
\(446\) 638.072 0.0677434
\(447\) 0 0
\(448\) 3439.00 0.362673
\(449\) 2470.77 0.259694 0.129847 0.991534i \(-0.458551\pi\)
0.129847 + 0.991534i \(0.458551\pi\)
\(450\) 0 0
\(451\) 5367.39 0.560400
\(452\) −15717.4 −1.63559
\(453\) 0 0
\(454\) 785.745 0.0812265
\(455\) 3229.55 0.332755
\(456\) 0 0
\(457\) 2916.85 0.298566 0.149283 0.988795i \(-0.452303\pi\)
0.149283 + 0.988795i \(0.452303\pi\)
\(458\) −81.3095 −0.00829551
\(459\) 0 0
\(460\) −6492.18 −0.658042
\(461\) 6185.85 0.624954 0.312477 0.949925i \(-0.398841\pi\)
0.312477 + 0.949925i \(0.398841\pi\)
\(462\) 0 0
\(463\) −19037.0 −1.91086 −0.955428 0.295224i \(-0.904606\pi\)
−0.955428 + 0.295224i \(0.904606\pi\)
\(464\) −628.541 −0.0628864
\(465\) 0 0
\(466\) 514.873 0.0511825
\(467\) 3241.03 0.321150 0.160575 0.987024i \(-0.448665\pi\)
0.160575 + 0.987024i \(0.448665\pi\)
\(468\) 0 0
\(469\) 716.083 0.0705024
\(470\) −371.943 −0.0365031
\(471\) 0 0
\(472\) 3312.84 0.323063
\(473\) 3941.83 0.383183
\(474\) 0 0
\(475\) −7243.95 −0.699737
\(476\) 2527.39 0.243367
\(477\) 0 0
\(478\) −948.659 −0.0907754
\(479\) −17662.0 −1.68475 −0.842377 0.538889i \(-0.818844\pi\)
−0.842377 + 0.538889i \(0.818844\pi\)
\(480\) 0 0
\(481\) −10834.7 −1.02707
\(482\) −458.278 −0.0433070
\(483\) 0 0
\(484\) −961.436 −0.0902926
\(485\) 7286.46 0.682188
\(486\) 0 0
\(487\) −11143.6 −1.03689 −0.518445 0.855111i \(-0.673489\pi\)
−0.518445 + 0.855111i \(0.673489\pi\)
\(488\) 2431.20 0.225523
\(489\) 0 0
\(490\) 88.5334 0.00816231
\(491\) −7223.60 −0.663944 −0.331972 0.943289i \(-0.607714\pi\)
−0.331972 + 0.943289i \(0.607714\pi\)
\(492\) 0 0
\(493\) −455.510 −0.0416128
\(494\) −1548.00 −0.140987
\(495\) 0 0
\(496\) 19773.6 1.79004
\(497\) 833.880 0.0752609
\(498\) 0 0
\(499\) −13771.3 −1.23545 −0.617725 0.786394i \(-0.711946\pi\)
−0.617725 + 0.786394i \(0.711946\pi\)
\(500\) −11700.4 −1.04652
\(501\) 0 0
\(502\) −1635.03 −0.145368
\(503\) 16826.6 1.49157 0.745787 0.666185i \(-0.232074\pi\)
0.745787 + 0.666185i \(0.232074\pi\)
\(504\) 0 0
\(505\) −5152.89 −0.454061
\(506\) −269.849 −0.0237080
\(507\) 0 0
\(508\) 19585.7 1.71058
\(509\) −17447.3 −1.51932 −0.759662 0.650318i \(-0.774636\pi\)
−0.759662 + 0.650318i \(0.774636\pi\)
\(510\) 0 0
\(511\) 2423.78 0.209827
\(512\) −4641.57 −0.400645
\(513\) 0 0
\(514\) −654.513 −0.0561660
\(515\) 11641.3 0.996073
\(516\) 0 0
\(517\) 2264.43 0.192629
\(518\) −297.017 −0.0251934
\(519\) 0 0
\(520\) −1713.49 −0.144503
\(521\) 1688.35 0.141973 0.0709866 0.997477i \(-0.477385\pi\)
0.0709866 + 0.997477i \(0.477385\pi\)
\(522\) 0 0
\(523\) −21089.3 −1.76323 −0.881616 0.471967i \(-0.843544\pi\)
−0.881616 + 0.471967i \(0.843544\pi\)
\(524\) −4386.43 −0.365691
\(525\) 0 0
\(526\) 1255.01 0.104032
\(527\) 14330.1 1.18450
\(528\) 0 0
\(529\) −1073.40 −0.0882223
\(530\) −243.048 −0.0199195
\(531\) 0 0
\(532\) 6215.66 0.506547
\(533\) −29019.8 −2.35833
\(534\) 0 0
\(535\) −8460.32 −0.683685
\(536\) −379.928 −0.0306164
\(537\) 0 0
\(538\) −195.416 −0.0156598
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 15205.5 1.20838 0.604191 0.796840i \(-0.293496\pi\)
0.604191 + 0.796840i \(0.293496\pi\)
\(542\) −892.386 −0.0707219
\(543\) 0 0
\(544\) −2013.70 −0.158707
\(545\) −4077.88 −0.320509
\(546\) 0 0
\(547\) −6915.32 −0.540544 −0.270272 0.962784i \(-0.587114\pi\)
−0.270272 + 0.962784i \(0.587114\pi\)
\(548\) 6311.03 0.491960
\(549\) 0 0
\(550\) −166.076 −0.0128754
\(551\) −1120.24 −0.0866135
\(552\) 0 0
\(553\) 5423.84 0.417080
\(554\) 186.468 0.0143001
\(555\) 0 0
\(556\) −3424.38 −0.261198
\(557\) 2243.06 0.170631 0.0853156 0.996354i \(-0.472810\pi\)
0.0853156 + 0.996354i \(0.472810\pi\)
\(558\) 0 0
\(559\) −21312.3 −1.61255
\(560\) 3404.80 0.256927
\(561\) 0 0
\(562\) 928.875 0.0697193
\(563\) 1533.10 0.114765 0.0573824 0.998352i \(-0.481725\pi\)
0.0573824 + 0.998352i \(0.481725\pi\)
\(564\) 0 0
\(565\) −15345.0 −1.14260
\(566\) −50.7832 −0.00377134
\(567\) 0 0
\(568\) −442.428 −0.0326828
\(569\) −8226.60 −0.606110 −0.303055 0.952973i \(-0.598007\pi\)
−0.303055 + 0.952973i \(0.598007\pi\)
\(570\) 0 0
\(571\) 565.628 0.0414550 0.0207275 0.999785i \(-0.493402\pi\)
0.0207275 + 0.999785i \(0.493402\pi\)
\(572\) 5198.19 0.379978
\(573\) 0 0
\(574\) −795.536 −0.0578485
\(575\) 6827.44 0.495172
\(576\) 0 0
\(577\) −7258.21 −0.523680 −0.261840 0.965111i \(-0.584329\pi\)
−0.261840 + 0.965111i \(0.584329\pi\)
\(578\) 663.380 0.0477387
\(579\) 0 0
\(580\) −617.893 −0.0442356
\(581\) 7286.20 0.520279
\(582\) 0 0
\(583\) 1479.70 0.105116
\(584\) −1285.97 −0.0911198
\(585\) 0 0
\(586\) 672.293 0.0473928
\(587\) −17458.6 −1.22758 −0.613792 0.789468i \(-0.710357\pi\)
−0.613792 + 0.789468i \(0.710357\pi\)
\(588\) 0 0
\(589\) 35242.4 2.46543
\(590\) 1611.66 0.112460
\(591\) 0 0
\(592\) −11422.6 −0.793019
\(593\) 13482.3 0.933648 0.466824 0.884350i \(-0.345398\pi\)
0.466824 + 0.884350i \(0.345398\pi\)
\(594\) 0 0
\(595\) 2467.49 0.170012
\(596\) 21024.0 1.44493
\(597\) 0 0
\(598\) 1458.99 0.0997702
\(599\) 5040.45 0.343819 0.171909 0.985113i \(-0.445006\pi\)
0.171909 + 0.985113i \(0.445006\pi\)
\(600\) 0 0
\(601\) 13587.9 0.922234 0.461117 0.887339i \(-0.347449\pi\)
0.461117 + 0.887339i \(0.347449\pi\)
\(602\) −584.245 −0.0395549
\(603\) 0 0
\(604\) 4275.38 0.288018
\(605\) −938.652 −0.0630771
\(606\) 0 0
\(607\) −24238.0 −1.62074 −0.810371 0.585917i \(-0.800735\pi\)
−0.810371 + 0.585917i \(0.800735\pi\)
\(608\) −4952.32 −0.330334
\(609\) 0 0
\(610\) 1182.76 0.0785056
\(611\) −12243.1 −0.810640
\(612\) 0 0
\(613\) −7239.20 −0.476979 −0.238490 0.971145i \(-0.576652\pi\)
−0.238490 + 0.971145i \(0.576652\pi\)
\(614\) −338.433 −0.0222444
\(615\) 0 0
\(616\) 285.975 0.0187049
\(617\) −25095.8 −1.63747 −0.818736 0.574170i \(-0.805325\pi\)
−0.818736 + 0.574170i \(0.805325\pi\)
\(618\) 0 0
\(619\) 9983.31 0.648244 0.324122 0.946015i \(-0.394931\pi\)
0.324122 + 0.946015i \(0.394931\pi\)
\(620\) 19438.7 1.25915
\(621\) 0 0
\(622\) −2509.00 −0.161739
\(623\) 3520.47 0.226396
\(624\) 0 0
\(625\) −3320.39 −0.212505
\(626\) 554.821 0.0354235
\(627\) 0 0
\(628\) −16308.1 −1.03625
\(629\) −8278.09 −0.524752
\(630\) 0 0
\(631\) 10735.0 0.677264 0.338632 0.940919i \(-0.390036\pi\)
0.338632 + 0.940919i \(0.390036\pi\)
\(632\) −2877.70 −0.181121
\(633\) 0 0
\(634\) −1833.08 −0.114828
\(635\) 19121.6 1.19499
\(636\) 0 0
\(637\) 2914.21 0.181264
\(638\) −25.6829 −0.00159372
\(639\) 0 0
\(640\) −3637.86 −0.224686
\(641\) −12831.2 −0.790643 −0.395322 0.918543i \(-0.629367\pi\)
−0.395322 + 0.918543i \(0.629367\pi\)
\(642\) 0 0
\(643\) −16536.8 −1.01423 −0.507113 0.861880i \(-0.669287\pi\)
−0.507113 + 0.861880i \(0.669287\pi\)
\(644\) −5858.27 −0.358460
\(645\) 0 0
\(646\) −1182.73 −0.0720337
\(647\) 6600.54 0.401073 0.200536 0.979686i \(-0.435732\pi\)
0.200536 + 0.979686i \(0.435732\pi\)
\(648\) 0 0
\(649\) −9811.97 −0.593457
\(650\) 897.920 0.0541836
\(651\) 0 0
\(652\) −17416.3 −1.04613
\(653\) 22720.9 1.36162 0.680810 0.732460i \(-0.261628\pi\)
0.680810 + 0.732460i \(0.261628\pi\)
\(654\) 0 0
\(655\) −4282.48 −0.255466
\(656\) −30594.6 −1.82091
\(657\) 0 0
\(658\) −335.626 −0.0198846
\(659\) −916.372 −0.0541681 −0.0270841 0.999633i \(-0.508622\pi\)
−0.0270841 + 0.999633i \(0.508622\pi\)
\(660\) 0 0
\(661\) −10592.7 −0.623312 −0.311656 0.950195i \(-0.600884\pi\)
−0.311656 + 0.950195i \(0.600884\pi\)
\(662\) 1452.71 0.0852886
\(663\) 0 0
\(664\) −3865.80 −0.225937
\(665\) 6068.36 0.353866
\(666\) 0 0
\(667\) 1055.83 0.0612924
\(668\) 317.838 0.0184095
\(669\) 0 0
\(670\) −184.832 −0.0106577
\(671\) −7200.74 −0.414279
\(672\) 0 0
\(673\) 10778.2 0.617336 0.308668 0.951170i \(-0.400117\pi\)
0.308668 + 0.951170i \(0.400117\pi\)
\(674\) 1280.14 0.0731587
\(675\) 0 0
\(676\) −10648.2 −0.605839
\(677\) −24654.1 −1.39960 −0.699802 0.714336i \(-0.746729\pi\)
−0.699802 + 0.714336i \(0.746729\pi\)
\(678\) 0 0
\(679\) 6575.00 0.371613
\(680\) −1309.17 −0.0738298
\(681\) 0 0
\(682\) 807.972 0.0453649
\(683\) 21152.8 1.18505 0.592524 0.805553i \(-0.298132\pi\)
0.592524 + 0.805553i \(0.298132\pi\)
\(684\) 0 0
\(685\) 6161.48 0.343676
\(686\) 79.8888 0.00444631
\(687\) 0 0
\(688\) −22468.8 −1.24508
\(689\) −8000.29 −0.442361
\(690\) 0 0
\(691\) 3359.89 0.184973 0.0924865 0.995714i \(-0.470519\pi\)
0.0924865 + 0.995714i \(0.470519\pi\)
\(692\) 33780.8 1.85572
\(693\) 0 0
\(694\) −2461.02 −0.134609
\(695\) −3343.23 −0.182469
\(696\) 0 0
\(697\) −22172.2 −1.20492
\(698\) 594.659 0.0322467
\(699\) 0 0
\(700\) −3605.41 −0.194674
\(701\) 20003.4 1.07777 0.538887 0.842378i \(-0.318845\pi\)
0.538887 + 0.842378i \(0.318845\pi\)
\(702\) 0 0
\(703\) −20358.5 −1.09223
\(704\) 5404.15 0.289313
\(705\) 0 0
\(706\) 401.688 0.0214132
\(707\) −4649.75 −0.247344
\(708\) 0 0
\(709\) 6330.56 0.335331 0.167665 0.985844i \(-0.446377\pi\)
0.167665 + 0.985844i \(0.446377\pi\)
\(710\) −215.237 −0.0113770
\(711\) 0 0
\(712\) −1867.84 −0.0983149
\(713\) −33216.1 −1.74467
\(714\) 0 0
\(715\) 5075.01 0.265447
\(716\) 37888.0 1.97757
\(717\) 0 0
\(718\) 625.784 0.0325265
\(719\) 111.791 0.00579845 0.00289923 0.999996i \(-0.499077\pi\)
0.00289923 + 0.999996i \(0.499077\pi\)
\(720\) 0 0
\(721\) 10504.6 0.542597
\(722\) −1311.16 −0.0675849
\(723\) 0 0
\(724\) 23480.0 1.20528
\(725\) 649.801 0.0332869
\(726\) 0 0
\(727\) −17266.8 −0.880867 −0.440433 0.897785i \(-0.645175\pi\)
−0.440433 + 0.897785i \(0.645175\pi\)
\(728\) −1546.18 −0.0787159
\(729\) 0 0
\(730\) −625.614 −0.0317192
\(731\) −16283.4 −0.823888
\(732\) 0 0
\(733\) −858.639 −0.0432668 −0.0216334 0.999766i \(-0.506887\pi\)
−0.0216334 + 0.999766i \(0.506887\pi\)
\(734\) 554.146 0.0278664
\(735\) 0 0
\(736\) 4667.58 0.233762
\(737\) 1125.27 0.0562415
\(738\) 0 0
\(739\) 16141.2 0.803471 0.401736 0.915756i \(-0.368407\pi\)
0.401736 + 0.915756i \(0.368407\pi\)
\(740\) −11229.1 −0.557825
\(741\) 0 0
\(742\) −219.316 −0.0108509
\(743\) −1249.50 −0.0616953 −0.0308476 0.999524i \(-0.509821\pi\)
−0.0308476 + 0.999524i \(0.509821\pi\)
\(744\) 0 0
\(745\) 20525.8 1.00941
\(746\) −2325.00 −0.114107
\(747\) 0 0
\(748\) 3971.61 0.194140
\(749\) −7634.23 −0.372428
\(750\) 0 0
\(751\) 82.9863 0.00403224 0.00201612 0.999998i \(-0.499358\pi\)
0.00201612 + 0.999998i \(0.499358\pi\)
\(752\) −12907.4 −0.625912
\(753\) 0 0
\(754\) 138.859 0.00670685
\(755\) 4174.06 0.201205
\(756\) 0 0
\(757\) −3439.65 −0.165147 −0.0825735 0.996585i \(-0.526314\pi\)
−0.0825735 + 0.996585i \(0.526314\pi\)
\(758\) 278.952 0.0133667
\(759\) 0 0
\(760\) −3219.66 −0.153670
\(761\) −5651.24 −0.269195 −0.134597 0.990900i \(-0.542974\pi\)
−0.134597 + 0.990900i \(0.542974\pi\)
\(762\) 0 0
\(763\) −3679.71 −0.174593
\(764\) 5685.20 0.269219
\(765\) 0 0
\(766\) −921.111 −0.0434479
\(767\) 53050.3 2.49744
\(768\) 0 0
\(769\) 14381.1 0.674378 0.337189 0.941437i \(-0.390524\pi\)
0.337189 + 0.941437i \(0.390524\pi\)
\(770\) 139.124 0.00651127
\(771\) 0 0
\(772\) −14297.4 −0.666547
\(773\) 31316.0 1.45713 0.728563 0.684979i \(-0.240189\pi\)
0.728563 + 0.684979i \(0.240189\pi\)
\(774\) 0 0
\(775\) −20442.5 −0.947503
\(776\) −3488.46 −0.161377
\(777\) 0 0
\(778\) −3305.45 −0.152321
\(779\) −54528.6 −2.50794
\(780\) 0 0
\(781\) 1310.38 0.0600374
\(782\) 1114.72 0.0509749
\(783\) 0 0
\(784\) 3072.35 0.139958
\(785\) −15921.6 −0.723907
\(786\) 0 0
\(787\) 29847.6 1.35191 0.675954 0.736944i \(-0.263732\pi\)
0.675954 + 0.736944i \(0.263732\pi\)
\(788\) 23666.8 1.06992
\(789\) 0 0
\(790\) −1399.97 −0.0630491
\(791\) −13846.6 −0.622415
\(792\) 0 0
\(793\) 38932.2 1.74341
\(794\) 2032.13 0.0908283
\(795\) 0 0
\(796\) 18300.3 0.814871
\(797\) −7581.40 −0.336947 −0.168474 0.985706i \(-0.553884\pi\)
−0.168474 + 0.985706i \(0.553884\pi\)
\(798\) 0 0
\(799\) −9354.15 −0.414175
\(800\) 2872.61 0.126953
\(801\) 0 0
\(802\) 2267.67 0.0998432
\(803\) 3808.80 0.167384
\(804\) 0 0
\(805\) −5719.44 −0.250415
\(806\) −4368.46 −0.190909
\(807\) 0 0
\(808\) 2467.00 0.107412
\(809\) 25260.6 1.09779 0.548896 0.835891i \(-0.315048\pi\)
0.548896 + 0.835891i \(0.315048\pi\)
\(810\) 0 0
\(811\) −25594.8 −1.10821 −0.554103 0.832448i \(-0.686939\pi\)
−0.554103 + 0.832448i \(0.686939\pi\)
\(812\) −557.561 −0.0240967
\(813\) 0 0
\(814\) −466.741 −0.0200974
\(815\) −17003.6 −0.730808
\(816\) 0 0
\(817\) −40046.0 −1.71485
\(818\) 2395.48 0.102391
\(819\) 0 0
\(820\) −30076.3 −1.28087
\(821\) 19077.2 0.810959 0.405480 0.914104i \(-0.367105\pi\)
0.405480 + 0.914104i \(0.367105\pi\)
\(822\) 0 0
\(823\) 13889.2 0.588270 0.294135 0.955764i \(-0.404969\pi\)
0.294135 + 0.955764i \(0.404969\pi\)
\(824\) −5573.39 −0.235629
\(825\) 0 0
\(826\) 1454.30 0.0612609
\(827\) −1354.92 −0.0569714 −0.0284857 0.999594i \(-0.509069\pi\)
−0.0284857 + 0.999594i \(0.509069\pi\)
\(828\) 0 0
\(829\) 29760.9 1.24685 0.623426 0.781882i \(-0.285740\pi\)
0.623426 + 0.781882i \(0.285740\pi\)
\(830\) −1880.68 −0.0786496
\(831\) 0 0
\(832\) −29218.6 −1.21752
\(833\) 2226.56 0.0926120
\(834\) 0 0
\(835\) 310.306 0.0128606
\(836\) 9767.46 0.404084
\(837\) 0 0
\(838\) 2990.01 0.123256
\(839\) −33789.1 −1.39038 −0.695191 0.718825i \(-0.744680\pi\)
−0.695191 + 0.718825i \(0.744680\pi\)
\(840\) 0 0
\(841\) −24288.5 −0.995880
\(842\) −723.995 −0.0296324
\(843\) 0 0
\(844\) 33837.7 1.38003
\(845\) −10395.9 −0.423230
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −8434.42 −0.341556
\(849\) 0 0
\(850\) 686.044 0.0276837
\(851\) 19187.9 0.772918
\(852\) 0 0
\(853\) 22293.3 0.894851 0.447426 0.894321i \(-0.352341\pi\)
0.447426 + 0.894321i \(0.352341\pi\)
\(854\) 1067.27 0.0427649
\(855\) 0 0
\(856\) 4050.46 0.161731
\(857\) 43972.3 1.75270 0.876352 0.481672i \(-0.159970\pi\)
0.876352 + 0.481672i \(0.159970\pi\)
\(858\) 0 0
\(859\) −34582.5 −1.37362 −0.686810 0.726837i \(-0.740990\pi\)
−0.686810 + 0.726837i \(0.740990\pi\)
\(860\) −22088.2 −0.875814
\(861\) 0 0
\(862\) −96.5395 −0.00381456
\(863\) −48984.4 −1.93215 −0.966077 0.258254i \(-0.916853\pi\)
−0.966077 + 0.258254i \(0.916853\pi\)
\(864\) 0 0
\(865\) 32980.3 1.29638
\(866\) −1768.24 −0.0693847
\(867\) 0 0
\(868\) 17540.6 0.685907
\(869\) 8523.17 0.332714
\(870\) 0 0
\(871\) −6084.01 −0.236681
\(872\) 1952.33 0.0758189
\(873\) 0 0
\(874\) 2741.46 0.106100
\(875\) −10307.7 −0.398246
\(876\) 0 0
\(877\) 3914.98 0.150741 0.0753703 0.997156i \(-0.475986\pi\)
0.0753703 + 0.997156i \(0.475986\pi\)
\(878\) 369.332 0.0141963
\(879\) 0 0
\(880\) 5350.40 0.204957
\(881\) −4908.77 −0.187719 −0.0938597 0.995585i \(-0.529921\pi\)
−0.0938597 + 0.995585i \(0.529921\pi\)
\(882\) 0 0
\(883\) 8791.82 0.335072 0.167536 0.985866i \(-0.446419\pi\)
0.167536 + 0.985866i \(0.446419\pi\)
\(884\) −21473.3 −0.816996
\(885\) 0 0
\(886\) 769.865 0.0291920
\(887\) 10011.0 0.378958 0.189479 0.981885i \(-0.439320\pi\)
0.189479 + 0.981885i \(0.439320\pi\)
\(888\) 0 0
\(889\) 17254.5 0.650954
\(890\) −908.686 −0.0342239
\(891\) 0 0
\(892\) 21767.7 0.817082
\(893\) −23004.8 −0.862069
\(894\) 0 0
\(895\) 36990.2 1.38150
\(896\) −3282.65 −0.122395
\(897\) 0 0
\(898\) −575.471 −0.0213850
\(899\) −3161.34 −0.117282
\(900\) 0 0
\(901\) −6112.51 −0.226012
\(902\) −1250.13 −0.0461471
\(903\) 0 0
\(904\) 7346.55 0.270290
\(905\) 22923.5 0.841993
\(906\) 0 0
\(907\) −44587.3 −1.63230 −0.816150 0.577840i \(-0.803896\pi\)
−0.816150 + 0.577840i \(0.803896\pi\)
\(908\) 26805.5 0.979706
\(909\) 0 0
\(910\) −752.201 −0.0274013
\(911\) −22201.6 −0.807434 −0.403717 0.914884i \(-0.632282\pi\)
−0.403717 + 0.914884i \(0.632282\pi\)
\(912\) 0 0
\(913\) 11449.7 0.415039
\(914\) −679.370 −0.0245860
\(915\) 0 0
\(916\) −2773.86 −0.100056
\(917\) −3864.33 −0.139162
\(918\) 0 0
\(919\) −4755.83 −0.170708 −0.0853538 0.996351i \(-0.527202\pi\)
−0.0853538 + 0.996351i \(0.527202\pi\)
\(920\) 3034.54 0.108745
\(921\) 0 0
\(922\) −1440.76 −0.0514630
\(923\) −7084.84 −0.252655
\(924\) 0 0
\(925\) 11809.0 0.419759
\(926\) 4433.95 0.157353
\(927\) 0 0
\(928\) 444.236 0.0157142
\(929\) 22020.9 0.777699 0.388849 0.921301i \(-0.372873\pi\)
0.388849 + 0.921301i \(0.372873\pi\)
\(930\) 0 0
\(931\) 5475.83 0.192764
\(932\) 17564.8 0.617333
\(933\) 0 0
\(934\) −754.874 −0.0264457
\(935\) 3877.49 0.135623
\(936\) 0 0
\(937\) 29862.2 1.04115 0.520573 0.853817i \(-0.325718\pi\)
0.520573 + 0.853817i \(0.325718\pi\)
\(938\) −166.784 −0.00580565
\(939\) 0 0
\(940\) −12688.8 −0.440279
\(941\) 8090.56 0.280281 0.140141 0.990132i \(-0.455245\pi\)
0.140141 + 0.990132i \(0.455245\pi\)
\(942\) 0 0
\(943\) 51393.3 1.77476
\(944\) 55929.1 1.92832
\(945\) 0 0
\(946\) −918.099 −0.0315539
\(947\) −4398.75 −0.150940 −0.0754700 0.997148i \(-0.524046\pi\)
−0.0754700 + 0.997148i \(0.524046\pi\)
\(948\) 0 0
\(949\) −20593.0 −0.704402
\(950\) 1687.20 0.0576211
\(951\) 0 0
\(952\) −1181.34 −0.0402178
\(953\) 4288.91 0.145783 0.0728917 0.997340i \(-0.476777\pi\)
0.0728917 + 0.997340i \(0.476777\pi\)
\(954\) 0 0
\(955\) 5550.48 0.188073
\(956\) −32363.3 −1.09488
\(957\) 0 0
\(958\) 4113.69 0.138734
\(959\) 5559.85 0.187213
\(960\) 0 0
\(961\) 69663.3 2.33840
\(962\) 2523.53 0.0845756
\(963\) 0 0
\(964\) −15634.1 −0.522344
\(965\) −13958.6 −0.465640
\(966\) 0 0
\(967\) 34271.8 1.13972 0.569858 0.821743i \(-0.306998\pi\)
0.569858 + 0.821743i \(0.306998\pi\)
\(968\) 449.389 0.0149214
\(969\) 0 0
\(970\) −1697.10 −0.0561760
\(971\) −36628.3 −1.21056 −0.605282 0.796011i \(-0.706940\pi\)
−0.605282 + 0.796011i \(0.706940\pi\)
\(972\) 0 0
\(973\) −3016.79 −0.0993977
\(974\) 2595.48 0.0853845
\(975\) 0 0
\(976\) 41044.9 1.34612
\(977\) −29087.7 −0.952504 −0.476252 0.879309i \(-0.658005\pi\)
−0.476252 + 0.879309i \(0.658005\pi\)
\(978\) 0 0
\(979\) 5532.17 0.180602
\(980\) 3020.30 0.0984490
\(981\) 0 0
\(982\) 1682.46 0.0546737
\(983\) 32900.7 1.06752 0.533758 0.845637i \(-0.320779\pi\)
0.533758 + 0.845637i \(0.320779\pi\)
\(984\) 0 0
\(985\) 23106.0 0.747429
\(986\) 106.094 0.00342668
\(987\) 0 0
\(988\) −52809.7 −1.70051
\(989\) 37743.5 1.21352
\(990\) 0 0
\(991\) 7288.46 0.233628 0.116814 0.993154i \(-0.462732\pi\)
0.116814 + 0.993154i \(0.462732\pi\)
\(992\) −13975.5 −0.447301
\(993\) 0 0
\(994\) −194.221 −0.00619749
\(995\) 17866.6 0.569257
\(996\) 0 0
\(997\) 2983.80 0.0947822 0.0473911 0.998876i \(-0.484909\pi\)
0.0473911 + 0.998876i \(0.484909\pi\)
\(998\) 3207.51 0.101735
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.n.1.3 5
3.2 odd 2 231.4.a.l.1.3 5
21.20 even 2 1617.4.a.p.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.l.1.3 5 3.2 odd 2
693.4.a.n.1.3 5 1.1 even 1 trivial
1617.4.a.p.1.3 5 21.20 even 2