Properties

Label 693.4.a.n.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 28x^{3} - 11x^{2} + 108x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.36278\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.36278 q^{2} +20.7594 q^{4} +1.66863 q^{5} -7.00000 q^{7} -68.4261 q^{8} +O(q^{10})\) \(q-5.36278 q^{2} +20.7594 q^{4} +1.66863 q^{5} -7.00000 q^{7} -68.4261 q^{8} -8.94849 q^{10} -11.0000 q^{11} +0.996604 q^{13} +37.5395 q^{14} +200.879 q^{16} +99.5115 q^{17} +32.8695 q^{19} +34.6398 q^{20} +58.9906 q^{22} -72.6019 q^{23} -122.216 q^{25} -5.34457 q^{26} -145.316 q^{28} -45.0027 q^{29} -62.8102 q^{31} -529.860 q^{32} -533.659 q^{34} -11.6804 q^{35} -301.317 q^{37} -176.272 q^{38} -114.178 q^{40} +307.353 q^{41} +214.347 q^{43} -228.354 q^{44} +389.348 q^{46} +602.899 q^{47} +49.0000 q^{49} +655.416 q^{50} +20.6889 q^{52} -592.072 q^{53} -18.3549 q^{55} +478.983 q^{56} +241.339 q^{58} -695.030 q^{59} +442.815 q^{61} +336.837 q^{62} +1234.49 q^{64} +1.66296 q^{65} -555.143 q^{67} +2065.80 q^{68} +62.6394 q^{70} +153.352 q^{71} -147.489 q^{73} +1615.90 q^{74} +682.352 q^{76} +77.0000 q^{77} +676.959 q^{79} +335.192 q^{80} -1648.27 q^{82} +222.412 q^{83} +166.048 q^{85} -1149.50 q^{86} +752.687 q^{88} +1136.35 q^{89} -6.97623 q^{91} -1507.18 q^{92} -3233.22 q^{94} +54.8469 q^{95} +1010.60 q^{97} -262.776 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} - 60 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 5 q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} - 60 q^{8} + 55 q^{10} - 55 q^{11} + 111 q^{13} + 35 q^{14} + 201 q^{16} - 136 q^{17} + 111 q^{19} - 219 q^{20} + 55 q^{22} + 28 q^{23} + 190 q^{25} + q^{26} - 147 q^{28} - 61 q^{29} - 280 q^{31} - 535 q^{32} - 572 q^{34} + 49 q^{35} - 41 q^{37} - 267 q^{38} - 336 q^{40} - 426 q^{41} + 424 q^{43} - 231 q^{44} + 140 q^{46} - 75 q^{47} + 245 q^{49} - 490 q^{50} - 269 q^{52} - 1500 q^{53} + 77 q^{55} + 420 q^{56} - 1767 q^{58} - 757 q^{59} + 658 q^{61} + 568 q^{62} - 748 q^{64} - 537 q^{65} - 583 q^{67} + 1650 q^{68} - 385 q^{70} + 764 q^{71} + 875 q^{73} + 825 q^{74} + 213 q^{76} + 385 q^{77} - 244 q^{79} + 2577 q^{80} - 2006 q^{82} - 924 q^{83} - 1402 q^{85} - 1272 q^{86} + 660 q^{88} + 1110 q^{89} - 777 q^{91} + 2046 q^{92} - 3349 q^{94} - 1923 q^{95} - 852 q^{97} - 245 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.36278 −1.89603 −0.948015 0.318226i \(-0.896913\pi\)
−0.948015 + 0.318226i \(0.896913\pi\)
\(3\) 0 0
\(4\) 20.7594 2.59493
\(5\) 1.66863 0.149247 0.0746233 0.997212i \(-0.476225\pi\)
0.0746233 + 0.997212i \(0.476225\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) −68.4261 −3.02403
\(9\) 0 0
\(10\) −8.94849 −0.282976
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 0.996604 0.0212622 0.0106311 0.999943i \(-0.496616\pi\)
0.0106311 + 0.999943i \(0.496616\pi\)
\(14\) 37.5395 0.716632
\(15\) 0 0
\(16\) 200.879 3.13873
\(17\) 99.5115 1.41971 0.709856 0.704347i \(-0.248760\pi\)
0.709856 + 0.704347i \(0.248760\pi\)
\(18\) 0 0
\(19\) 32.8695 0.396883 0.198441 0.980113i \(-0.436412\pi\)
0.198441 + 0.980113i \(0.436412\pi\)
\(20\) 34.6398 0.387284
\(21\) 0 0
\(22\) 58.9906 0.571675
\(23\) −72.6019 −0.658198 −0.329099 0.944295i \(-0.606745\pi\)
−0.329099 + 0.944295i \(0.606745\pi\)
\(24\) 0 0
\(25\) −122.216 −0.977725
\(26\) −5.34457 −0.0403137
\(27\) 0 0
\(28\) −145.316 −0.980791
\(29\) −45.0027 −0.288165 −0.144082 0.989566i \(-0.546023\pi\)
−0.144082 + 0.989566i \(0.546023\pi\)
\(30\) 0 0
\(31\) −62.8102 −0.363904 −0.181952 0.983307i \(-0.558242\pi\)
−0.181952 + 0.983307i \(0.558242\pi\)
\(32\) −529.860 −2.92709
\(33\) 0 0
\(34\) −533.659 −2.69182
\(35\) −11.6804 −0.0564099
\(36\) 0 0
\(37\) −301.317 −1.33882 −0.669408 0.742895i \(-0.733452\pi\)
−0.669408 + 0.742895i \(0.733452\pi\)
\(38\) −176.272 −0.752502
\(39\) 0 0
\(40\) −114.178 −0.451327
\(41\) 307.353 1.17074 0.585371 0.810765i \(-0.300949\pi\)
0.585371 + 0.810765i \(0.300949\pi\)
\(42\) 0 0
\(43\) 214.347 0.760178 0.380089 0.924950i \(-0.375893\pi\)
0.380089 + 0.924950i \(0.375893\pi\)
\(44\) −228.354 −0.782401
\(45\) 0 0
\(46\) 389.348 1.24796
\(47\) 602.899 1.87110 0.935552 0.353188i \(-0.114902\pi\)
0.935552 + 0.353188i \(0.114902\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 655.416 1.85380
\(51\) 0 0
\(52\) 20.6889 0.0551738
\(53\) −592.072 −1.53448 −0.767239 0.641362i \(-0.778370\pi\)
−0.767239 + 0.641362i \(0.778370\pi\)
\(54\) 0 0
\(55\) −18.3549 −0.0449995
\(56\) 478.983 1.14298
\(57\) 0 0
\(58\) 241.339 0.546369
\(59\) −695.030 −1.53365 −0.766824 0.641857i \(-0.778164\pi\)
−0.766824 + 0.641857i \(0.778164\pi\)
\(60\) 0 0
\(61\) 442.815 0.929453 0.464726 0.885454i \(-0.346153\pi\)
0.464726 + 0.885454i \(0.346153\pi\)
\(62\) 336.837 0.689974
\(63\) 0 0
\(64\) 1234.49 2.41112
\(65\) 1.66296 0.00317331
\(66\) 0 0
\(67\) −555.143 −1.01226 −0.506131 0.862457i \(-0.668925\pi\)
−0.506131 + 0.862457i \(0.668925\pi\)
\(68\) 2065.80 3.68405
\(69\) 0 0
\(70\) 62.6394 0.106955
\(71\) 153.352 0.256331 0.128166 0.991753i \(-0.459091\pi\)
0.128166 + 0.991753i \(0.459091\pi\)
\(72\) 0 0
\(73\) −147.489 −0.236470 −0.118235 0.992986i \(-0.537724\pi\)
−0.118235 + 0.992986i \(0.537724\pi\)
\(74\) 1615.90 2.53843
\(75\) 0 0
\(76\) 682.352 1.02988
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 676.959 0.964099 0.482050 0.876144i \(-0.339893\pi\)
0.482050 + 0.876144i \(0.339893\pi\)
\(80\) 335.192 0.468445
\(81\) 0 0
\(82\) −1648.27 −2.21976
\(83\) 222.412 0.294131 0.147065 0.989127i \(-0.453017\pi\)
0.147065 + 0.989127i \(0.453017\pi\)
\(84\) 0 0
\(85\) 166.048 0.211887
\(86\) −1149.50 −1.44132
\(87\) 0 0
\(88\) 752.687 0.911781
\(89\) 1136.35 1.35340 0.676699 0.736260i \(-0.263410\pi\)
0.676699 + 0.736260i \(0.263410\pi\)
\(90\) 0 0
\(91\) −6.97623 −0.00803634
\(92\) −1507.18 −1.70798
\(93\) 0 0
\(94\) −3233.22 −3.54767
\(95\) 54.8469 0.0592334
\(96\) 0 0
\(97\) 1010.60 1.05785 0.528923 0.848670i \(-0.322596\pi\)
0.528923 + 0.848670i \(0.322596\pi\)
\(98\) −262.776 −0.270861
\(99\) 0 0
\(100\) −2537.13 −2.53713
\(101\) 400.418 0.394486 0.197243 0.980355i \(-0.436801\pi\)
0.197243 + 0.980355i \(0.436801\pi\)
\(102\) 0 0
\(103\) −419.845 −0.401636 −0.200818 0.979629i \(-0.564360\pi\)
−0.200818 + 0.979629i \(0.564360\pi\)
\(104\) −68.1937 −0.0642975
\(105\) 0 0
\(106\) 3175.15 2.90941
\(107\) −2131.99 −1.92623 −0.963116 0.269085i \(-0.913279\pi\)
−0.963116 + 0.269085i \(0.913279\pi\)
\(108\) 0 0
\(109\) −14.0057 −0.0123074 −0.00615369 0.999981i \(-0.501959\pi\)
−0.00615369 + 0.999981i \(0.501959\pi\)
\(110\) 98.4333 0.0853205
\(111\) 0 0
\(112\) −1406.15 −1.18633
\(113\) −1322.98 −1.10137 −0.550686 0.834712i \(-0.685634\pi\)
−0.550686 + 0.834712i \(0.685634\pi\)
\(114\) 0 0
\(115\) −121.146 −0.0982338
\(116\) −934.230 −0.747768
\(117\) 0 0
\(118\) 3727.30 2.90784
\(119\) −696.581 −0.536601
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −2374.72 −1.76227
\(123\) 0 0
\(124\) −1303.90 −0.944306
\(125\) −412.511 −0.295169
\(126\) 0 0
\(127\) −2199.01 −1.53646 −0.768232 0.640172i \(-0.778863\pi\)
−0.768232 + 0.640172i \(0.778863\pi\)
\(128\) −2381.45 −1.64447
\(129\) 0 0
\(130\) −8.91810 −0.00601668
\(131\) −1450.27 −0.967259 −0.483629 0.875273i \(-0.660682\pi\)
−0.483629 + 0.875273i \(0.660682\pi\)
\(132\) 0 0
\(133\) −230.086 −0.150008
\(134\) 2977.11 1.91928
\(135\) 0 0
\(136\) −6809.19 −4.29326
\(137\) 893.027 0.556909 0.278454 0.960449i \(-0.410178\pi\)
0.278454 + 0.960449i \(0.410178\pi\)
\(138\) 0 0
\(139\) −530.606 −0.323780 −0.161890 0.986809i \(-0.551759\pi\)
−0.161890 + 0.986809i \(0.551759\pi\)
\(140\) −242.478 −0.146380
\(141\) 0 0
\(142\) −822.392 −0.486011
\(143\) −10.9626 −0.00641079
\(144\) 0 0
\(145\) −75.0927 −0.0430076
\(146\) 790.954 0.448355
\(147\) 0 0
\(148\) −6255.17 −3.47413
\(149\) −2958.97 −1.62690 −0.813451 0.581633i \(-0.802414\pi\)
−0.813451 + 0.581633i \(0.802414\pi\)
\(150\) 0 0
\(151\) 1668.28 0.899092 0.449546 0.893257i \(-0.351586\pi\)
0.449546 + 0.893257i \(0.351586\pi\)
\(152\) −2249.13 −1.20019
\(153\) 0 0
\(154\) −412.934 −0.216073
\(155\) −104.807 −0.0543115
\(156\) 0 0
\(157\) −1202.63 −0.611342 −0.305671 0.952137i \(-0.598881\pi\)
−0.305671 + 0.952137i \(0.598881\pi\)
\(158\) −3630.38 −1.82796
\(159\) 0 0
\(160\) −884.139 −0.436858
\(161\) 508.214 0.248775
\(162\) 0 0
\(163\) −2534.83 −1.21806 −0.609029 0.793148i \(-0.708441\pi\)
−0.609029 + 0.793148i \(0.708441\pi\)
\(164\) 6380.47 3.03799
\(165\) 0 0
\(166\) −1192.75 −0.557681
\(167\) −2424.43 −1.12340 −0.561700 0.827341i \(-0.689853\pi\)
−0.561700 + 0.827341i \(0.689853\pi\)
\(168\) 0 0
\(169\) −2196.01 −0.999548
\(170\) −890.478 −0.401744
\(171\) 0 0
\(172\) 4449.73 1.97261
\(173\) −1977.78 −0.869180 −0.434590 0.900628i \(-0.643107\pi\)
−0.434590 + 0.900628i \(0.643107\pi\)
\(174\) 0 0
\(175\) 855.510 0.369545
\(176\) −2209.67 −0.946363
\(177\) 0 0
\(178\) −6093.97 −2.56608
\(179\) −1314.89 −0.549049 −0.274525 0.961580i \(-0.588520\pi\)
−0.274525 + 0.961580i \(0.588520\pi\)
\(180\) 0 0
\(181\) 2118.94 0.870163 0.435081 0.900391i \(-0.356720\pi\)
0.435081 + 0.900391i \(0.356720\pi\)
\(182\) 37.4120 0.0152372
\(183\) 0 0
\(184\) 4967.87 1.99041
\(185\) −502.785 −0.199814
\(186\) 0 0
\(187\) −1094.63 −0.428059
\(188\) 12515.9 4.85538
\(189\) 0 0
\(190\) −294.132 −0.112308
\(191\) −2136.61 −0.809421 −0.404711 0.914445i \(-0.632628\pi\)
−0.404711 + 0.914445i \(0.632628\pi\)
\(192\) 0 0
\(193\) −910.852 −0.339713 −0.169856 0.985469i \(-0.554330\pi\)
−0.169856 + 0.985469i \(0.554330\pi\)
\(194\) −5419.64 −2.00571
\(195\) 0 0
\(196\) 1017.21 0.370704
\(197\) 2485.86 0.899038 0.449519 0.893271i \(-0.351595\pi\)
0.449519 + 0.893271i \(0.351595\pi\)
\(198\) 0 0
\(199\) −384.145 −0.136841 −0.0684204 0.997657i \(-0.521796\pi\)
−0.0684204 + 0.997657i \(0.521796\pi\)
\(200\) 8362.74 2.95668
\(201\) 0 0
\(202\) −2147.36 −0.747958
\(203\) 315.019 0.108916
\(204\) 0 0
\(205\) 512.857 0.174729
\(206\) 2251.54 0.761515
\(207\) 0 0
\(208\) 200.196 0.0667362
\(209\) −361.564 −0.119665
\(210\) 0 0
\(211\) 3875.31 1.26440 0.632198 0.774807i \(-0.282153\pi\)
0.632198 + 0.774807i \(0.282153\pi\)
\(212\) −12291.1 −3.98186
\(213\) 0 0
\(214\) 11433.4 3.65219
\(215\) 357.666 0.113454
\(216\) 0 0
\(217\) 439.671 0.137543
\(218\) 75.1096 0.0233352
\(219\) 0 0
\(220\) −381.037 −0.116771
\(221\) 99.1736 0.0301861
\(222\) 0 0
\(223\) 449.799 0.135071 0.0675354 0.997717i \(-0.478486\pi\)
0.0675354 + 0.997717i \(0.478486\pi\)
\(224\) 3709.02 1.10634
\(225\) 0 0
\(226\) 7094.83 2.08823
\(227\) −5873.32 −1.71729 −0.858647 0.512567i \(-0.828695\pi\)
−0.858647 + 0.512567i \(0.828695\pi\)
\(228\) 0 0
\(229\) 4207.68 1.21420 0.607099 0.794626i \(-0.292333\pi\)
0.607099 + 0.794626i \(0.292333\pi\)
\(230\) 649.677 0.186254
\(231\) 0 0
\(232\) 3079.36 0.871421
\(233\) −5405.81 −1.51994 −0.759970 0.649958i \(-0.774787\pi\)
−0.759970 + 0.649958i \(0.774787\pi\)
\(234\) 0 0
\(235\) 1006.01 0.279256
\(236\) −14428.4 −3.97971
\(237\) 0 0
\(238\) 3735.61 1.01741
\(239\) 5105.16 1.38170 0.690848 0.723000i \(-0.257237\pi\)
0.690848 + 0.723000i \(0.257237\pi\)
\(240\) 0 0
\(241\) 254.138 0.0679273 0.0339637 0.999423i \(-0.489187\pi\)
0.0339637 + 0.999423i \(0.489187\pi\)
\(242\) −648.897 −0.172366
\(243\) 0 0
\(244\) 9192.58 2.41186
\(245\) 81.7627 0.0213209
\(246\) 0 0
\(247\) 32.7579 0.00843859
\(248\) 4297.85 1.10046
\(249\) 0 0
\(250\) 2212.21 0.559649
\(251\) −7030.70 −1.76802 −0.884012 0.467464i \(-0.845168\pi\)
−0.884012 + 0.467464i \(0.845168\pi\)
\(252\) 0 0
\(253\) 798.621 0.198454
\(254\) 11792.8 2.91318
\(255\) 0 0
\(256\) 2895.22 0.706841
\(257\) −6053.67 −1.46933 −0.734664 0.678431i \(-0.762660\pi\)
−0.734664 + 0.678431i \(0.762660\pi\)
\(258\) 0 0
\(259\) 2109.22 0.506025
\(260\) 34.5221 0.00823451
\(261\) 0 0
\(262\) 7777.50 1.83395
\(263\) 6106.79 1.43179 0.715895 0.698208i \(-0.246019\pi\)
0.715895 + 0.698208i \(0.246019\pi\)
\(264\) 0 0
\(265\) −987.947 −0.229015
\(266\) 1233.90 0.284419
\(267\) 0 0
\(268\) −11524.5 −2.62675
\(269\) −4855.91 −1.10063 −0.550316 0.834956i \(-0.685493\pi\)
−0.550316 + 0.834956i \(0.685493\pi\)
\(270\) 0 0
\(271\) −8501.09 −1.90555 −0.952775 0.303676i \(-0.901786\pi\)
−0.952775 + 0.303676i \(0.901786\pi\)
\(272\) 19989.7 4.45609
\(273\) 0 0
\(274\) −4789.11 −1.05592
\(275\) 1344.37 0.294795
\(276\) 0 0
\(277\) −6830.18 −1.48154 −0.740768 0.671761i \(-0.765538\pi\)
−0.740768 + 0.671761i \(0.765538\pi\)
\(278\) 2845.52 0.613896
\(279\) 0 0
\(280\) 799.243 0.170585
\(281\) −4987.88 −1.05890 −0.529452 0.848340i \(-0.677603\pi\)
−0.529452 + 0.848340i \(0.677603\pi\)
\(282\) 0 0
\(283\) −1952.88 −0.410200 −0.205100 0.978741i \(-0.565752\pi\)
−0.205100 + 0.978741i \(0.565752\pi\)
\(284\) 3183.50 0.665161
\(285\) 0 0
\(286\) 58.7903 0.0121550
\(287\) −2151.47 −0.442499
\(288\) 0 0
\(289\) 4989.55 1.01558
\(290\) 402.706 0.0815438
\(291\) 0 0
\(292\) −3061.80 −0.613624
\(293\) 3220.72 0.642172 0.321086 0.947050i \(-0.395952\pi\)
0.321086 + 0.947050i \(0.395952\pi\)
\(294\) 0 0
\(295\) −1159.75 −0.228892
\(296\) 20617.9 4.04862
\(297\) 0 0
\(298\) 15868.3 3.08466
\(299\) −72.3554 −0.0139947
\(300\) 0 0
\(301\) −1500.43 −0.287320
\(302\) −8946.64 −1.70471
\(303\) 0 0
\(304\) 6602.78 1.24571
\(305\) 738.893 0.138718
\(306\) 0 0
\(307\) −5325.08 −0.989963 −0.494981 0.868904i \(-0.664825\pi\)
−0.494981 + 0.868904i \(0.664825\pi\)
\(308\) 1598.48 0.295720
\(309\) 0 0
\(310\) 562.056 0.102976
\(311\) 9625.36 1.75500 0.877498 0.479580i \(-0.159211\pi\)
0.877498 + 0.479580i \(0.159211\pi\)
\(312\) 0 0
\(313\) −4315.55 −0.779327 −0.389664 0.920957i \(-0.627409\pi\)
−0.389664 + 0.920957i \(0.627409\pi\)
\(314\) 6449.46 1.15912
\(315\) 0 0
\(316\) 14053.3 2.50177
\(317\) 7399.84 1.31109 0.655546 0.755155i \(-0.272438\pi\)
0.655546 + 0.755155i \(0.272438\pi\)
\(318\) 0 0
\(319\) 495.029 0.0868850
\(320\) 2059.91 0.359852
\(321\) 0 0
\(322\) −2725.44 −0.471686
\(323\) 3270.89 0.563459
\(324\) 0 0
\(325\) −121.801 −0.0207886
\(326\) 13593.8 2.30947
\(327\) 0 0
\(328\) −21031.0 −3.54037
\(329\) −4220.30 −0.707211
\(330\) 0 0
\(331\) −4899.29 −0.813562 −0.406781 0.913526i \(-0.633349\pi\)
−0.406781 + 0.913526i \(0.633349\pi\)
\(332\) 4617.14 0.763248
\(333\) 0 0
\(334\) 13001.7 2.13000
\(335\) −926.327 −0.151077
\(336\) 0 0
\(337\) −1445.02 −0.233577 −0.116788 0.993157i \(-0.537260\pi\)
−0.116788 + 0.993157i \(0.537260\pi\)
\(338\) 11776.7 1.89517
\(339\) 0 0
\(340\) 3447.06 0.549832
\(341\) 690.912 0.109721
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −14666.9 −2.29880
\(345\) 0 0
\(346\) 10606.4 1.64799
\(347\) −4351.93 −0.673268 −0.336634 0.941636i \(-0.609289\pi\)
−0.336634 + 0.941636i \(0.609289\pi\)
\(348\) 0 0
\(349\) 7971.30 1.22262 0.611309 0.791392i \(-0.290643\pi\)
0.611309 + 0.791392i \(0.290643\pi\)
\(350\) −4587.91 −0.700669
\(351\) 0 0
\(352\) 5828.46 0.882551
\(353\) 1169.88 0.176393 0.0881963 0.996103i \(-0.471890\pi\)
0.0881963 + 0.996103i \(0.471890\pi\)
\(354\) 0 0
\(355\) 255.887 0.0382565
\(356\) 23589.9 3.51197
\(357\) 0 0
\(358\) 7051.49 1.04101
\(359\) −11998.8 −1.76400 −0.881998 0.471253i \(-0.843802\pi\)
−0.881998 + 0.471253i \(0.843802\pi\)
\(360\) 0 0
\(361\) −5778.60 −0.842484
\(362\) −11363.4 −1.64985
\(363\) 0 0
\(364\) −144.823 −0.0208537
\(365\) −246.105 −0.0352924
\(366\) 0 0
\(367\) −8489.94 −1.20755 −0.603776 0.797154i \(-0.706338\pi\)
−0.603776 + 0.797154i \(0.706338\pi\)
\(368\) −14584.2 −2.06590
\(369\) 0 0
\(370\) 2696.33 0.378853
\(371\) 4144.50 0.579978
\(372\) 0 0
\(373\) −13306.1 −1.84708 −0.923542 0.383498i \(-0.874719\pi\)
−0.923542 + 0.383498i \(0.874719\pi\)
\(374\) 5870.25 0.811613
\(375\) 0 0
\(376\) −41254.0 −5.65828
\(377\) −44.8498 −0.00612701
\(378\) 0 0
\(379\) −10645.0 −1.44274 −0.721368 0.692552i \(-0.756486\pi\)
−0.721368 + 0.692552i \(0.756486\pi\)
\(380\) 1138.59 0.153707
\(381\) 0 0
\(382\) 11458.2 1.53469
\(383\) −2299.39 −0.306771 −0.153385 0.988166i \(-0.549018\pi\)
−0.153385 + 0.988166i \(0.549018\pi\)
\(384\) 0 0
\(385\) 128.484 0.0170082
\(386\) 4884.70 0.644105
\(387\) 0 0
\(388\) 20979.5 2.74504
\(389\) 3243.77 0.422791 0.211395 0.977401i \(-0.432199\pi\)
0.211395 + 0.977401i \(0.432199\pi\)
\(390\) 0 0
\(391\) −7224.73 −0.934451
\(392\) −3352.88 −0.432005
\(393\) 0 0
\(394\) −13331.1 −1.70460
\(395\) 1129.59 0.143888
\(396\) 0 0
\(397\) 13850.8 1.75102 0.875508 0.483203i \(-0.160527\pi\)
0.875508 + 0.483203i \(0.160527\pi\)
\(398\) 2060.09 0.259454
\(399\) 0 0
\(400\) −24550.5 −3.06882
\(401\) −1238.44 −0.154227 −0.0771133 0.997022i \(-0.524570\pi\)
−0.0771133 + 0.997022i \(0.524570\pi\)
\(402\) 0 0
\(403\) −62.5969 −0.00773740
\(404\) 8312.46 1.02366
\(405\) 0 0
\(406\) −1689.38 −0.206508
\(407\) 3314.48 0.403668
\(408\) 0 0
\(409\) −3951.51 −0.477726 −0.238863 0.971053i \(-0.576775\pi\)
−0.238863 + 0.971053i \(0.576775\pi\)
\(410\) −2750.34 −0.331292
\(411\) 0 0
\(412\) −8715.74 −1.04222
\(413\) 4865.21 0.579665
\(414\) 0 0
\(415\) 371.122 0.0438980
\(416\) −528.061 −0.0622363
\(417\) 0 0
\(418\) 1938.99 0.226888
\(419\) 11603.6 1.35292 0.676462 0.736477i \(-0.263512\pi\)
0.676462 + 0.736477i \(0.263512\pi\)
\(420\) 0 0
\(421\) −10498.9 −1.21541 −0.607703 0.794165i \(-0.707909\pi\)
−0.607703 + 0.794165i \(0.707909\pi\)
\(422\) −20782.5 −2.39733
\(423\) 0 0
\(424\) 40513.1 4.64031
\(425\) −12161.9 −1.38809
\(426\) 0 0
\(427\) −3099.70 −0.351300
\(428\) −44258.8 −4.99844
\(429\) 0 0
\(430\) −1918.08 −0.215112
\(431\) 11109.2 1.24156 0.620778 0.783986i \(-0.286817\pi\)
0.620778 + 0.783986i \(0.286817\pi\)
\(432\) 0 0
\(433\) 12535.7 1.39129 0.695644 0.718387i \(-0.255119\pi\)
0.695644 + 0.718387i \(0.255119\pi\)
\(434\) −2357.86 −0.260786
\(435\) 0 0
\(436\) −290.751 −0.0319368
\(437\) −2386.39 −0.261227
\(438\) 0 0
\(439\) 2227.80 0.242203 0.121102 0.992640i \(-0.461357\pi\)
0.121102 + 0.992640i \(0.461357\pi\)
\(440\) 1255.95 0.136080
\(441\) 0 0
\(442\) −531.846 −0.0572338
\(443\) 833.252 0.0893657 0.0446828 0.999001i \(-0.485772\pi\)
0.0446828 + 0.999001i \(0.485772\pi\)
\(444\) 0 0
\(445\) 1896.14 0.201990
\(446\) −2412.17 −0.256098
\(447\) 0 0
\(448\) −8641.46 −0.911319
\(449\) 4903.89 0.515432 0.257716 0.966221i \(-0.417030\pi\)
0.257716 + 0.966221i \(0.417030\pi\)
\(450\) 0 0
\(451\) −3380.88 −0.352992
\(452\) −27464.2 −2.85798
\(453\) 0 0
\(454\) 31497.3 3.25604
\(455\) −11.6407 −0.00119940
\(456\) 0 0
\(457\) 12100.7 1.23861 0.619307 0.785149i \(-0.287414\pi\)
0.619307 + 0.785149i \(0.287414\pi\)
\(458\) −22564.9 −2.30216
\(459\) 0 0
\(460\) −2514.91 −0.254910
\(461\) 1271.16 0.128425 0.0642125 0.997936i \(-0.479546\pi\)
0.0642125 + 0.997936i \(0.479546\pi\)
\(462\) 0 0
\(463\) −16020.3 −1.60805 −0.804024 0.594596i \(-0.797312\pi\)
−0.804024 + 0.594596i \(0.797312\pi\)
\(464\) −9040.08 −0.904472
\(465\) 0 0
\(466\) 28990.2 2.88185
\(467\) 10696.1 1.05986 0.529930 0.848042i \(-0.322218\pi\)
0.529930 + 0.848042i \(0.322218\pi\)
\(468\) 0 0
\(469\) 3886.00 0.382599
\(470\) −5395.04 −0.529478
\(471\) 0 0
\(472\) 47558.2 4.63780
\(473\) −2357.82 −0.229202
\(474\) 0 0
\(475\) −4017.17 −0.388043
\(476\) −14460.6 −1.39244
\(477\) 0 0
\(478\) −27377.9 −2.61974
\(479\) 12055.2 1.14993 0.574963 0.818179i \(-0.305016\pi\)
0.574963 + 0.818179i \(0.305016\pi\)
\(480\) 0 0
\(481\) −300.293 −0.0284661
\(482\) −1362.89 −0.128792
\(483\) 0 0
\(484\) 2511.89 0.235903
\(485\) 1686.32 0.157880
\(486\) 0 0
\(487\) −14273.2 −1.32809 −0.664045 0.747693i \(-0.731162\pi\)
−0.664045 + 0.747693i \(0.731162\pi\)
\(488\) −30300.1 −2.81070
\(489\) 0 0
\(490\) −438.476 −0.0404251
\(491\) 15616.7 1.43538 0.717691 0.696362i \(-0.245199\pi\)
0.717691 + 0.696362i \(0.245199\pi\)
\(492\) 0 0
\(493\) −4478.28 −0.409111
\(494\) −175.673 −0.0159998
\(495\) 0 0
\(496\) −12617.2 −1.14220
\(497\) −1073.46 −0.0968841
\(498\) 0 0
\(499\) 5820.03 0.522125 0.261062 0.965322i \(-0.415927\pi\)
0.261062 + 0.965322i \(0.415927\pi\)
\(500\) −8563.49 −0.765942
\(501\) 0 0
\(502\) 37704.1 3.35223
\(503\) 1744.38 0.154629 0.0773143 0.997007i \(-0.475366\pi\)
0.0773143 + 0.997007i \(0.475366\pi\)
\(504\) 0 0
\(505\) 668.149 0.0588757
\(506\) −4282.83 −0.376275
\(507\) 0 0
\(508\) −45650.3 −3.98701
\(509\) 4561.13 0.397187 0.198594 0.980082i \(-0.436363\pi\)
0.198594 + 0.980082i \(0.436363\pi\)
\(510\) 0 0
\(511\) 1032.43 0.0893774
\(512\) 3525.13 0.304278
\(513\) 0 0
\(514\) 32464.5 2.78589
\(515\) −700.565 −0.0599429
\(516\) 0 0
\(517\) −6631.89 −0.564159
\(518\) −11311.3 −0.959438
\(519\) 0 0
\(520\) −113.790 −0.00959619
\(521\) 311.151 0.0261646 0.0130823 0.999914i \(-0.495836\pi\)
0.0130823 + 0.999914i \(0.495836\pi\)
\(522\) 0 0
\(523\) 18159.9 1.51831 0.759154 0.650911i \(-0.225613\pi\)
0.759154 + 0.650911i \(0.225613\pi\)
\(524\) −30106.8 −2.50997
\(525\) 0 0
\(526\) −32749.4 −2.71472
\(527\) −6250.34 −0.516639
\(528\) 0 0
\(529\) −6895.96 −0.566776
\(530\) 5298.14 0.434220
\(531\) 0 0
\(532\) −4776.46 −0.389259
\(533\) 306.309 0.0248925
\(534\) 0 0
\(535\) −3557.49 −0.287484
\(536\) 37986.3 3.06111
\(537\) 0 0
\(538\) 26041.2 2.08683
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 10858.8 0.862951 0.431476 0.902125i \(-0.357993\pi\)
0.431476 + 0.902125i \(0.357993\pi\)
\(542\) 45589.5 3.61298
\(543\) 0 0
\(544\) −52727.2 −4.15562
\(545\) −23.3703 −0.00183683
\(546\) 0 0
\(547\) 9560.10 0.747277 0.373638 0.927574i \(-0.378110\pi\)
0.373638 + 0.927574i \(0.378110\pi\)
\(548\) 18538.7 1.44514
\(549\) 0 0
\(550\) −7209.58 −0.558941
\(551\) −1479.21 −0.114368
\(552\) 0 0
\(553\) −4738.71 −0.364395
\(554\) 36628.8 2.80904
\(555\) 0 0
\(556\) −11015.1 −0.840186
\(557\) 961.471 0.0731397 0.0365699 0.999331i \(-0.488357\pi\)
0.0365699 + 0.999331i \(0.488357\pi\)
\(558\) 0 0
\(559\) 213.619 0.0161630
\(560\) −2346.34 −0.177055
\(561\) 0 0
\(562\) 26748.9 2.00772
\(563\) −26376.5 −1.97449 −0.987245 0.159206i \(-0.949106\pi\)
−0.987245 + 0.159206i \(0.949106\pi\)
\(564\) 0 0
\(565\) −2207.55 −0.164376
\(566\) 10472.9 0.777751
\(567\) 0 0
\(568\) −10493.3 −0.775154
\(569\) −8256.23 −0.608294 −0.304147 0.952625i \(-0.598371\pi\)
−0.304147 + 0.952625i \(0.598371\pi\)
\(570\) 0 0
\(571\) −25003.0 −1.83248 −0.916239 0.400632i \(-0.868791\pi\)
−0.916239 + 0.400632i \(0.868791\pi\)
\(572\) −227.578 −0.0166355
\(573\) 0 0
\(574\) 11537.9 0.838992
\(575\) 8873.09 0.643537
\(576\) 0 0
\(577\) −5560.17 −0.401166 −0.200583 0.979677i \(-0.564284\pi\)
−0.200583 + 0.979677i \(0.564284\pi\)
\(578\) −26757.9 −1.92557
\(579\) 0 0
\(580\) −1558.88 −0.111602
\(581\) −1556.88 −0.111171
\(582\) 0 0
\(583\) 6512.79 0.462662
\(584\) 10092.1 0.715094
\(585\) 0 0
\(586\) −17272.0 −1.21758
\(587\) −3926.82 −0.276111 −0.138055 0.990425i \(-0.544085\pi\)
−0.138055 + 0.990425i \(0.544085\pi\)
\(588\) 0 0
\(589\) −2064.54 −0.144427
\(590\) 6219.47 0.433986
\(591\) 0 0
\(592\) −60528.1 −4.20218
\(593\) 14397.6 0.997027 0.498514 0.866882i \(-0.333879\pi\)
0.498514 + 0.866882i \(0.333879\pi\)
\(594\) 0 0
\(595\) −1162.33 −0.0800858
\(596\) −61426.6 −4.22170
\(597\) 0 0
\(598\) 388.026 0.0265344
\(599\) 14711.0 1.00347 0.501734 0.865022i \(-0.332696\pi\)
0.501734 + 0.865022i \(0.332696\pi\)
\(600\) 0 0
\(601\) 27436.8 1.86218 0.931090 0.364790i \(-0.118859\pi\)
0.931090 + 0.364790i \(0.118859\pi\)
\(602\) 8046.48 0.544768
\(603\) 0 0
\(604\) 34632.6 2.33308
\(605\) 201.904 0.0135679
\(606\) 0 0
\(607\) 6090.69 0.407271 0.203636 0.979047i \(-0.434724\pi\)
0.203636 + 0.979047i \(0.434724\pi\)
\(608\) −17416.2 −1.16171
\(609\) 0 0
\(610\) −3962.52 −0.263013
\(611\) 600.852 0.0397837
\(612\) 0 0
\(613\) 5175.61 0.341013 0.170506 0.985357i \(-0.445460\pi\)
0.170506 + 0.985357i \(0.445460\pi\)
\(614\) 28557.3 1.87700
\(615\) 0 0
\(616\) −5268.81 −0.344621
\(617\) 10544.9 0.688044 0.344022 0.938962i \(-0.388211\pi\)
0.344022 + 0.938962i \(0.388211\pi\)
\(618\) 0 0
\(619\) −8378.59 −0.544045 −0.272023 0.962291i \(-0.587693\pi\)
−0.272023 + 0.962291i \(0.587693\pi\)
\(620\) −2175.73 −0.140934
\(621\) 0 0
\(622\) −51618.7 −3.32753
\(623\) −7954.42 −0.511536
\(624\) 0 0
\(625\) 14588.6 0.933673
\(626\) 23143.4 1.47763
\(627\) 0 0
\(628\) −24966.0 −1.58639
\(629\) −29984.5 −1.90073
\(630\) 0 0
\(631\) −2651.03 −0.167251 −0.0836257 0.996497i \(-0.526650\pi\)
−0.0836257 + 0.996497i \(0.526650\pi\)
\(632\) −46321.6 −2.91547
\(633\) 0 0
\(634\) −39683.7 −2.48587
\(635\) −3669.33 −0.229312
\(636\) 0 0
\(637\) 48.8336 0.00303745
\(638\) −2654.73 −0.164737
\(639\) 0 0
\(640\) −3973.75 −0.245431
\(641\) 6716.00 0.413831 0.206916 0.978359i \(-0.433657\pi\)
0.206916 + 0.978359i \(0.433657\pi\)
\(642\) 0 0
\(643\) 752.048 0.0461242 0.0230621 0.999734i \(-0.492658\pi\)
0.0230621 + 0.999734i \(0.492658\pi\)
\(644\) 10550.2 0.645555
\(645\) 0 0
\(646\) −17541.1 −1.06834
\(647\) 10412.8 0.632717 0.316358 0.948640i \(-0.397540\pi\)
0.316358 + 0.948640i \(0.397540\pi\)
\(648\) 0 0
\(649\) 7645.33 0.462412
\(650\) 653.190 0.0394157
\(651\) 0 0
\(652\) −52621.7 −3.16077
\(653\) −15442.9 −0.925462 −0.462731 0.886499i \(-0.653130\pi\)
−0.462731 + 0.886499i \(0.653130\pi\)
\(654\) 0 0
\(655\) −2419.96 −0.144360
\(656\) 61740.6 3.67464
\(657\) 0 0
\(658\) 22632.5 1.34089
\(659\) 5333.13 0.315249 0.157625 0.987499i \(-0.449616\pi\)
0.157625 + 0.987499i \(0.449616\pi\)
\(660\) 0 0
\(661\) 15118.3 0.889614 0.444807 0.895626i \(-0.353272\pi\)
0.444807 + 0.895626i \(0.353272\pi\)
\(662\) 26273.8 1.54254
\(663\) 0 0
\(664\) −15218.8 −0.889461
\(665\) −383.928 −0.0223881
\(666\) 0 0
\(667\) 3267.28 0.189670
\(668\) −50329.8 −2.91514
\(669\) 0 0
\(670\) 4967.69 0.286446
\(671\) −4870.96 −0.280241
\(672\) 0 0
\(673\) −813.476 −0.0465931 −0.0232966 0.999729i \(-0.507416\pi\)
−0.0232966 + 0.999729i \(0.507416\pi\)
\(674\) 7749.33 0.442868
\(675\) 0 0
\(676\) −45587.9 −2.59376
\(677\) −10390.3 −0.589854 −0.294927 0.955520i \(-0.595295\pi\)
−0.294927 + 0.955520i \(0.595295\pi\)
\(678\) 0 0
\(679\) −7074.22 −0.399828
\(680\) −11362.0 −0.640754
\(681\) 0 0
\(682\) −3705.21 −0.208035
\(683\) −24315.7 −1.36225 −0.681124 0.732168i \(-0.738509\pi\)
−0.681124 + 0.732168i \(0.738509\pi\)
\(684\) 0 0
\(685\) 1490.13 0.0831167
\(686\) 1839.43 0.102376
\(687\) 0 0
\(688\) 43057.8 2.38599
\(689\) −590.061 −0.0326263
\(690\) 0 0
\(691\) −15379.7 −0.846701 −0.423351 0.905966i \(-0.639146\pi\)
−0.423351 + 0.905966i \(0.639146\pi\)
\(692\) −41057.7 −2.25546
\(693\) 0 0
\(694\) 23338.5 1.27654
\(695\) −885.384 −0.0483230
\(696\) 0 0
\(697\) 30585.2 1.66212
\(698\) −42748.3 −2.31812
\(699\) 0 0
\(700\) 17759.9 0.958944
\(701\) 2397.08 0.129153 0.0645766 0.997913i \(-0.479430\pi\)
0.0645766 + 0.997913i \(0.479430\pi\)
\(702\) 0 0
\(703\) −9904.13 −0.531353
\(704\) −13579.4 −0.726981
\(705\) 0 0
\(706\) −6273.83 −0.334446
\(707\) −2802.93 −0.149102
\(708\) 0 0
\(709\) 17121.2 0.906912 0.453456 0.891279i \(-0.350191\pi\)
0.453456 + 0.891279i \(0.350191\pi\)
\(710\) −1372.27 −0.0725355
\(711\) 0 0
\(712\) −77755.6 −4.09272
\(713\) 4560.14 0.239521
\(714\) 0 0
\(715\) −18.2926 −0.000956788 0
\(716\) −27296.5 −1.42474
\(717\) 0 0
\(718\) 64347.2 3.34459
\(719\) −34131.4 −1.77036 −0.885179 0.465251i \(-0.845964\pi\)
−0.885179 + 0.465251i \(0.845964\pi\)
\(720\) 0 0
\(721\) 2938.91 0.151804
\(722\) 30989.4 1.59737
\(723\) 0 0
\(724\) 43988.0 2.25801
\(725\) 5500.03 0.281746
\(726\) 0 0
\(727\) −1143.65 −0.0583434 −0.0291717 0.999574i \(-0.509287\pi\)
−0.0291717 + 0.999574i \(0.509287\pi\)
\(728\) 477.356 0.0243022
\(729\) 0 0
\(730\) 1319.81 0.0669154
\(731\) 21330.0 1.07923
\(732\) 0 0
\(733\) 24224.7 1.22068 0.610342 0.792138i \(-0.291032\pi\)
0.610342 + 0.792138i \(0.291032\pi\)
\(734\) 45529.7 2.28955
\(735\) 0 0
\(736\) 38468.9 1.92660
\(737\) 6106.57 0.305208
\(738\) 0 0
\(739\) 25815.9 1.28505 0.642525 0.766265i \(-0.277887\pi\)
0.642525 + 0.766265i \(0.277887\pi\)
\(740\) −10437.5 −0.518502
\(741\) 0 0
\(742\) −22226.1 −1.09966
\(743\) 17221.1 0.850312 0.425156 0.905120i \(-0.360219\pi\)
0.425156 + 0.905120i \(0.360219\pi\)
\(744\) 0 0
\(745\) −4937.42 −0.242810
\(746\) 71357.5 3.50212
\(747\) 0 0
\(748\) −22723.8 −1.11078
\(749\) 14923.9 0.728048
\(750\) 0 0
\(751\) −15631.7 −0.759531 −0.379766 0.925083i \(-0.623995\pi\)
−0.379766 + 0.925083i \(0.623995\pi\)
\(752\) 121110. 5.87289
\(753\) 0 0
\(754\) 240.520 0.0116170
\(755\) 2783.74 0.134186
\(756\) 0 0
\(757\) 24756.7 1.18864 0.594319 0.804230i \(-0.297422\pi\)
0.594319 + 0.804230i \(0.297422\pi\)
\(758\) 57086.8 2.73547
\(759\) 0 0
\(760\) −3752.96 −0.179124
\(761\) 9087.20 0.432866 0.216433 0.976297i \(-0.430558\pi\)
0.216433 + 0.976297i \(0.430558\pi\)
\(762\) 0 0
\(763\) 98.0400 0.00465175
\(764\) −44354.8 −2.10039
\(765\) 0 0
\(766\) 12331.1 0.581647
\(767\) −692.670 −0.0326087
\(768\) 0 0
\(769\) 10699.9 0.501753 0.250876 0.968019i \(-0.419281\pi\)
0.250876 + 0.968019i \(0.419281\pi\)
\(770\) −689.033 −0.0322481
\(771\) 0 0
\(772\) −18908.8 −0.881531
\(773\) 6586.45 0.306466 0.153233 0.988190i \(-0.451032\pi\)
0.153233 + 0.988190i \(0.451032\pi\)
\(774\) 0 0
\(775\) 7676.39 0.355799
\(776\) −69151.5 −3.19896
\(777\) 0 0
\(778\) −17395.6 −0.801623
\(779\) 10102.5 0.464648
\(780\) 0 0
\(781\) −1686.87 −0.0772867
\(782\) 38744.7 1.77175
\(783\) 0 0
\(784\) 9843.06 0.448390
\(785\) −2006.75 −0.0912406
\(786\) 0 0
\(787\) −5581.26 −0.252796 −0.126398 0.991980i \(-0.540342\pi\)
−0.126398 + 0.991980i \(0.540342\pi\)
\(788\) 51605.1 2.33294
\(789\) 0 0
\(790\) −6057.76 −0.272817
\(791\) 9260.83 0.416280
\(792\) 0 0
\(793\) 441.311 0.0197622
\(794\) −74279.0 −3.31998
\(795\) 0 0
\(796\) −7974.64 −0.355092
\(797\) 20336.2 0.903821 0.451911 0.892063i \(-0.350743\pi\)
0.451911 + 0.892063i \(0.350743\pi\)
\(798\) 0 0
\(799\) 59995.5 2.65643
\(800\) 64757.2 2.86189
\(801\) 0 0
\(802\) 6641.49 0.292418
\(803\) 1622.38 0.0712985
\(804\) 0 0
\(805\) 848.019 0.0371289
\(806\) 335.693 0.0146703
\(807\) 0 0
\(808\) −27399.1 −1.19294
\(809\) −5494.43 −0.238781 −0.119391 0.992847i \(-0.538094\pi\)
−0.119391 + 0.992847i \(0.538094\pi\)
\(810\) 0 0
\(811\) 33839.3 1.46518 0.732590 0.680671i \(-0.238312\pi\)
0.732590 + 0.680671i \(0.238312\pi\)
\(812\) 6539.61 0.282630
\(813\) 0 0
\(814\) −17774.9 −0.765367
\(815\) −4229.69 −0.181791
\(816\) 0 0
\(817\) 7045.48 0.301702
\(818\) 21191.1 0.905782
\(819\) 0 0
\(820\) 10646.6 0.453410
\(821\) −35849.2 −1.52393 −0.761965 0.647618i \(-0.775765\pi\)
−0.761965 + 0.647618i \(0.775765\pi\)
\(822\) 0 0
\(823\) −14873.5 −0.629961 −0.314981 0.949098i \(-0.601998\pi\)
−0.314981 + 0.949098i \(0.601998\pi\)
\(824\) 28728.3 1.21456
\(825\) 0 0
\(826\) −26091.1 −1.09906
\(827\) −5757.86 −0.242104 −0.121052 0.992646i \(-0.538627\pi\)
−0.121052 + 0.992646i \(0.538627\pi\)
\(828\) 0 0
\(829\) −38718.4 −1.62213 −0.811064 0.584957i \(-0.801111\pi\)
−0.811064 + 0.584957i \(0.801111\pi\)
\(830\) −1990.25 −0.0832319
\(831\) 0 0
\(832\) 1230.30 0.0512657
\(833\) 4876.07 0.202816
\(834\) 0 0
\(835\) −4045.47 −0.167664
\(836\) −7505.87 −0.310521
\(837\) 0 0
\(838\) −62227.8 −2.56518
\(839\) 36011.2 1.48182 0.740908 0.671606i \(-0.234395\pi\)
0.740908 + 0.671606i \(0.234395\pi\)
\(840\) 0 0
\(841\) −22363.8 −0.916961
\(842\) 56303.4 2.30445
\(843\) 0 0
\(844\) 80449.3 3.28102
\(845\) −3664.32 −0.149179
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −118935. −4.81631
\(849\) 0 0
\(850\) 65221.5 2.63186
\(851\) 21876.2 0.881205
\(852\) 0 0
\(853\) −12086.6 −0.485157 −0.242578 0.970132i \(-0.577993\pi\)
−0.242578 + 0.970132i \(0.577993\pi\)
\(854\) 16623.0 0.666075
\(855\) 0 0
\(856\) 145883. 5.82499
\(857\) 8653.97 0.344941 0.172470 0.985015i \(-0.444825\pi\)
0.172470 + 0.985015i \(0.444825\pi\)
\(858\) 0 0
\(859\) −46141.6 −1.83275 −0.916374 0.400324i \(-0.868898\pi\)
−0.916374 + 0.400324i \(0.868898\pi\)
\(860\) 7424.94 0.294405
\(861\) 0 0
\(862\) −59576.1 −2.35403
\(863\) −16324.1 −0.643893 −0.321946 0.946758i \(-0.604337\pi\)
−0.321946 + 0.946758i \(0.604337\pi\)
\(864\) 0 0
\(865\) −3300.19 −0.129722
\(866\) −67226.2 −2.63792
\(867\) 0 0
\(868\) 9127.32 0.356914
\(869\) −7446.55 −0.290687
\(870\) 0 0
\(871\) −553.258 −0.0215229
\(872\) 958.356 0.0372179
\(873\) 0 0
\(874\) 12797.7 0.495295
\(875\) 2887.58 0.111563
\(876\) 0 0
\(877\) 17297.6 0.666017 0.333008 0.942924i \(-0.391936\pi\)
0.333008 + 0.942924i \(0.391936\pi\)
\(878\) −11947.2 −0.459225
\(879\) 0 0
\(880\) −3687.11 −0.141241
\(881\) −45762.2 −1.75002 −0.875009 0.484106i \(-0.839145\pi\)
−0.875009 + 0.484106i \(0.839145\pi\)
\(882\) 0 0
\(883\) −1535.96 −0.0585380 −0.0292690 0.999572i \(-0.509318\pi\)
−0.0292690 + 0.999572i \(0.509318\pi\)
\(884\) 2058.79 0.0783309
\(885\) 0 0
\(886\) −4468.55 −0.169440
\(887\) 47975.2 1.81607 0.908033 0.418899i \(-0.137584\pi\)
0.908033 + 0.418899i \(0.137584\pi\)
\(888\) 0 0
\(889\) 15393.1 0.580729
\(890\) −10168.6 −0.382979
\(891\) 0 0
\(892\) 9337.57 0.350499
\(893\) 19817.0 0.742610
\(894\) 0 0
\(895\) −2194.07 −0.0819437
\(896\) 16670.1 0.621551
\(897\) 0 0
\(898\) −26298.5 −0.977274
\(899\) 2826.62 0.104865
\(900\) 0 0
\(901\) −58918.0 −2.17851
\(902\) 18130.9 0.669284
\(903\) 0 0
\(904\) 90526.0 3.33059
\(905\) 3535.72 0.129869
\(906\) 0 0
\(907\) 16461.0 0.602622 0.301311 0.953526i \(-0.402576\pi\)
0.301311 + 0.953526i \(0.402576\pi\)
\(908\) −121927. −4.45626
\(909\) 0 0
\(910\) 62.4267 0.00227409
\(911\) 4712.18 0.171374 0.0856869 0.996322i \(-0.472692\pi\)
0.0856869 + 0.996322i \(0.472692\pi\)
\(912\) 0 0
\(913\) −2446.53 −0.0886837
\(914\) −64893.4 −2.34845
\(915\) 0 0
\(916\) 87349.1 3.15076
\(917\) 10151.9 0.365589
\(918\) 0 0
\(919\) 16055.3 0.576294 0.288147 0.957586i \(-0.406961\pi\)
0.288147 + 0.957586i \(0.406961\pi\)
\(920\) 8289.52 0.297062
\(921\) 0 0
\(922\) −6816.97 −0.243498
\(923\) 152.831 0.00545016
\(924\) 0 0
\(925\) 36825.6 1.30899
\(926\) 85913.4 3.04891
\(927\) 0 0
\(928\) 23845.1 0.843485
\(929\) −9378.49 −0.331215 −0.165607 0.986192i \(-0.552958\pi\)
−0.165607 + 0.986192i \(0.552958\pi\)
\(930\) 0 0
\(931\) 1610.60 0.0566976
\(932\) −112222. −3.94414
\(933\) 0 0
\(934\) −57360.6 −2.00953
\(935\) −1826.52 −0.0638864
\(936\) 0 0
\(937\) 9100.65 0.317295 0.158647 0.987335i \(-0.449287\pi\)
0.158647 + 0.987335i \(0.449287\pi\)
\(938\) −20839.8 −0.725419
\(939\) 0 0
\(940\) 20884.3 0.724650
\(941\) −9738.84 −0.337383 −0.168691 0.985669i \(-0.553954\pi\)
−0.168691 + 0.985669i \(0.553954\pi\)
\(942\) 0 0
\(943\) −22314.4 −0.770580
\(944\) −139617. −4.81371
\(945\) 0 0
\(946\) 12644.5 0.434574
\(947\) −47225.8 −1.62052 −0.810260 0.586071i \(-0.800674\pi\)
−0.810260 + 0.586071i \(0.800674\pi\)
\(948\) 0 0
\(949\) −146.989 −0.00502787
\(950\) 21543.2 0.735740
\(951\) 0 0
\(952\) 47664.3 1.62270
\(953\) −972.630 −0.0330604 −0.0165302 0.999863i \(-0.505262\pi\)
−0.0165302 + 0.999863i \(0.505262\pi\)
\(954\) 0 0
\(955\) −3565.20 −0.120803
\(956\) 105980. 3.58541
\(957\) 0 0
\(958\) −64649.3 −2.18030
\(959\) −6251.19 −0.210492
\(960\) 0 0
\(961\) −25845.9 −0.867574
\(962\) 1610.41 0.0539726
\(963\) 0 0
\(964\) 5275.77 0.176267
\(965\) −1519.87 −0.0507010
\(966\) 0 0
\(967\) −21987.5 −0.731199 −0.365599 0.930772i \(-0.619136\pi\)
−0.365599 + 0.930772i \(0.619136\pi\)
\(968\) −8279.56 −0.274912
\(969\) 0 0
\(970\) −9043.36 −0.299345
\(971\) 18194.5 0.601326 0.300663 0.953730i \(-0.402792\pi\)
0.300663 + 0.953730i \(0.402792\pi\)
\(972\) 0 0
\(973\) 3714.24 0.122377
\(974\) 76544.0 2.51810
\(975\) 0 0
\(976\) 88952.0 2.91730
\(977\) 14356.0 0.470103 0.235051 0.971983i \(-0.424474\pi\)
0.235051 + 0.971983i \(0.424474\pi\)
\(978\) 0 0
\(979\) −12499.8 −0.408065
\(980\) 1697.35 0.0553263
\(981\) 0 0
\(982\) −83749.1 −2.72153
\(983\) −25765.5 −0.836005 −0.418002 0.908446i \(-0.637270\pi\)
−0.418002 + 0.908446i \(0.637270\pi\)
\(984\) 0 0
\(985\) 4147.98 0.134178
\(986\) 24016.1 0.775687
\(987\) 0 0
\(988\) 680.035 0.0218976
\(989\) −15562.0 −0.500347
\(990\) 0 0
\(991\) 7750.45 0.248437 0.124219 0.992255i \(-0.460358\pi\)
0.124219 + 0.992255i \(0.460358\pi\)
\(992\) 33280.6 1.06518
\(993\) 0 0
\(994\) 5756.75 0.183695
\(995\) −640.995 −0.0204230
\(996\) 0 0
\(997\) 12105.1 0.384528 0.192264 0.981343i \(-0.438417\pi\)
0.192264 + 0.981343i \(0.438417\pi\)
\(998\) −31211.5 −0.989964
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.n.1.1 5
3.2 odd 2 231.4.a.l.1.5 5
21.20 even 2 1617.4.a.p.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.l.1.5 5 3.2 odd 2
693.4.a.n.1.1 5 1.1 even 1 trivial
1617.4.a.p.1.5 5 21.20 even 2