Properties

Label 693.4.a.n
Level $693$
Weight $4$
Character orbit 693.a
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 28x^{3} - 11x^{2} + 108x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + (\beta_{2} - \beta_1 + 4) q^{4} + ( - \beta_{4} + \beta_1 - 1) q^{5} - 7 q^{7} + (\beta_{4} - \beta_{3} - 2 \beta_{2} + \cdots - 12) q^{8} + (\beta_{4} - 2 \beta_{3} - 2 \beta_{2} + \cdots + 11) q^{10}+ \cdots + (49 \beta_1 - 49) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} - 60 q^{8} + 55 q^{10} - 55 q^{11} + 111 q^{13} + 35 q^{14} + 201 q^{16} - 136 q^{17} + 111 q^{19} - 219 q^{20} + 55 q^{22} + 28 q^{23} + 190 q^{25} + q^{26}+ \cdots - 245 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 28x^{3} - 11x^{2} + 108x - 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 26\nu^{2} - 17\nu + 64 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 2\nu^{3} - 28\nu^{2} - 57\nu + 74 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - \beta_{3} + \beta_{2} + 21\beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{3} + 26\beta_{2} + 43\beta _1 + 222 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.36278
−2.85551
0.767088
1.30014
5.15106
−5.36278 0 20.7594 1.66863 0 −7.00000 −68.4261 0 −8.94849
1.2 −3.85551 0 6.86494 −18.0422 0 −7.00000 4.37623 0 69.5618
1.3 −0.232912 0 −7.94575 −7.75746 0 −7.00000 3.71396 0 1.80680
1.4 0.300143 0 −7.90991 20.3930 0 −7.00000 −4.77526 0 6.12084
1.5 4.15106 0 9.23129 −3.26204 0 −7.00000 5.11115 0 −13.5409
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 693.4.a.n 5
3.b odd 2 1 231.4.a.l 5
21.c even 2 1 1617.4.a.p 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.4.a.l 5 3.b odd 2 1
693.4.a.n 5 1.a even 1 1 trivial
1617.4.a.p 5 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(693))\):

\( T_{2}^{5} + 5T_{2}^{4} - 18T_{2}^{3} - 85T_{2}^{2} + 7T_{2} + 6 \) Copy content Toggle raw display
\( T_{5}^{5} + 7T_{5}^{4} - 383T_{5}^{3} - 3499T_{5}^{2} - 2446T_{5} + 15536 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + 5 T^{4} + \cdots + 6 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + 7 T^{4} + \cdots + 15536 \) Copy content Toggle raw display
$7$ \( (T + 7)^{5} \) Copy content Toggle raw display
$11$ \( (T + 11)^{5} \) Copy content Toggle raw display
$13$ \( T^{5} - 111 T^{4} + \cdots - 276332 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 3184406528 \) Copy content Toggle raw display
$19$ \( T^{5} - 111 T^{4} + \cdots - 2596968 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 9848447488 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 1678137108 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 97533466624 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 82159135548 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 2830976555008 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 1905935989632 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 417603397024 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 3927875616864 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 211529924045472 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 14480622579168 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 8392173156048 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 2460667275264 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 1051447598248 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 93230064402432 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 15123167361792 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 1811669774112 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 346762905716192 \) Copy content Toggle raw display
show more
show less