Properties

Label 693.4.a.m.1.4
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.59222\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.05706 q^{2} +17.5738 q^{4} -12.9427 q^{5} -7.00000 q^{7} +48.4155 q^{8} +O(q^{10})\) \(q+5.05706 q^{2} +17.5738 q^{4} -12.9427 q^{5} -7.00000 q^{7} +48.4155 q^{8} -65.4521 q^{10} -11.0000 q^{11} -55.5473 q^{13} -35.3994 q^{14} +104.249 q^{16} -59.2511 q^{17} -33.1777 q^{19} -227.453 q^{20} -55.6276 q^{22} -26.0532 q^{23} +42.5139 q^{25} -280.906 q^{26} -123.017 q^{28} +188.479 q^{29} -278.333 q^{31} +139.870 q^{32} -299.636 q^{34} +90.5990 q^{35} +201.567 q^{37} -167.781 q^{38} -626.628 q^{40} +126.784 q^{41} -454.826 q^{43} -193.312 q^{44} -131.753 q^{46} +129.710 q^{47} +49.0000 q^{49} +214.995 q^{50} -976.179 q^{52} -79.8855 q^{53} +142.370 q^{55} -338.908 q^{56} +953.150 q^{58} +593.670 q^{59} -49.8622 q^{61} -1407.55 q^{62} -126.661 q^{64} +718.932 q^{65} +295.997 q^{67} -1041.27 q^{68} +458.164 q^{70} -546.422 q^{71} -809.232 q^{73} +1019.34 q^{74} -583.059 q^{76} +77.0000 q^{77} -375.244 q^{79} -1349.27 q^{80} +641.154 q^{82} -85.9037 q^{83} +766.870 q^{85} -2300.08 q^{86} -532.570 q^{88} -750.306 q^{89} +388.831 q^{91} -457.856 q^{92} +655.953 q^{94} +429.409 q^{95} -451.876 q^{97} +247.796 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 22 q^{4} + 18 q^{5} - 28 q^{7} + 60 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 22 q^{4} + 18 q^{5} - 28 q^{7} + 60 q^{8} - 92 q^{10} - 44 q^{11} - 134 q^{13} - 28 q^{14} - 6 q^{16} + 74 q^{17} - 164 q^{19} - 116 q^{20} - 44 q^{22} - 194 q^{23} + 38 q^{25} - 734 q^{26} - 154 q^{28} + 108 q^{29} - 412 q^{31} + 4 q^{32} - 346 q^{34} - 126 q^{35} + 286 q^{37} - 224 q^{38} - 540 q^{40} + 18 q^{41} - 496 q^{43} - 242 q^{44} - 284 q^{46} - 62 q^{47} + 196 q^{49} - 212 q^{50} - 822 q^{52} + 828 q^{53} - 198 q^{55} - 420 q^{56} + 1388 q^{58} + 1224 q^{59} - 350 q^{61} + 878 q^{62} - 718 q^{64} + 396 q^{65} - 1498 q^{67} - 1058 q^{68} + 644 q^{70} - 2326 q^{71} - 1630 q^{73} + 1156 q^{74} - 3152 q^{76} + 308 q^{77} - 1020 q^{79} - 3072 q^{80} + 2118 q^{82} + 1920 q^{83} + 2008 q^{85} - 1056 q^{86} - 660 q^{88} - 1550 q^{89} + 938 q^{91} - 2592 q^{92} - 1042 q^{94} - 2332 q^{95} - 2202 q^{97} + 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.05706 1.78794 0.893970 0.448127i \(-0.147909\pi\)
0.893970 + 0.448127i \(0.147909\pi\)
\(3\) 0 0
\(4\) 17.5738 2.19673
\(5\) −12.9427 −1.15763 −0.578816 0.815458i \(-0.696485\pi\)
−0.578816 + 0.815458i \(0.696485\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 48.4155 2.13968
\(9\) 0 0
\(10\) −65.4521 −2.06978
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −55.5473 −1.18508 −0.592540 0.805541i \(-0.701875\pi\)
−0.592540 + 0.805541i \(0.701875\pi\)
\(14\) −35.3994 −0.675778
\(15\) 0 0
\(16\) 104.249 1.62889
\(17\) −59.2511 −0.845324 −0.422662 0.906287i \(-0.638904\pi\)
−0.422662 + 0.906287i \(0.638904\pi\)
\(18\) 0 0
\(19\) −33.1777 −0.400604 −0.200302 0.979734i \(-0.564192\pi\)
−0.200302 + 0.979734i \(0.564192\pi\)
\(20\) −227.453 −2.54300
\(21\) 0 0
\(22\) −55.6276 −0.539084
\(23\) −26.0532 −0.236195 −0.118097 0.993002i \(-0.537679\pi\)
−0.118097 + 0.993002i \(0.537679\pi\)
\(24\) 0 0
\(25\) 42.5139 0.340111
\(26\) −280.906 −2.11885
\(27\) 0 0
\(28\) −123.017 −0.830286
\(29\) 188.479 1.20689 0.603443 0.797406i \(-0.293795\pi\)
0.603443 + 0.797406i \(0.293795\pi\)
\(30\) 0 0
\(31\) −278.333 −1.61259 −0.806293 0.591516i \(-0.798529\pi\)
−0.806293 + 0.591516i \(0.798529\pi\)
\(32\) 139.870 0.772682
\(33\) 0 0
\(34\) −299.636 −1.51139
\(35\) 90.5990 0.437544
\(36\) 0 0
\(37\) 201.567 0.895608 0.447804 0.894132i \(-0.352206\pi\)
0.447804 + 0.894132i \(0.352206\pi\)
\(38\) −167.781 −0.716256
\(39\) 0 0
\(40\) −626.628 −2.47696
\(41\) 126.784 0.482935 0.241467 0.970409i \(-0.422371\pi\)
0.241467 + 0.970409i \(0.422371\pi\)
\(42\) 0 0
\(43\) −454.826 −1.61303 −0.806514 0.591214i \(-0.798649\pi\)
−0.806514 + 0.591214i \(0.798649\pi\)
\(44\) −193.312 −0.662339
\(45\) 0 0
\(46\) −131.753 −0.422302
\(47\) 129.710 0.402558 0.201279 0.979534i \(-0.435490\pi\)
0.201279 + 0.979534i \(0.435490\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 214.995 0.608098
\(51\) 0 0
\(52\) −976.179 −2.60330
\(53\) −79.8855 −0.207040 −0.103520 0.994627i \(-0.533011\pi\)
−0.103520 + 0.994627i \(0.533011\pi\)
\(54\) 0 0
\(55\) 142.370 0.349039
\(56\) −338.908 −0.808724
\(57\) 0 0
\(58\) 953.150 2.15784
\(59\) 593.670 1.30999 0.654994 0.755634i \(-0.272671\pi\)
0.654994 + 0.755634i \(0.272671\pi\)
\(60\) 0 0
\(61\) −49.8622 −0.104659 −0.0523295 0.998630i \(-0.516665\pi\)
−0.0523295 + 0.998630i \(0.516665\pi\)
\(62\) −1407.55 −2.88321
\(63\) 0 0
\(64\) −126.661 −0.247385
\(65\) 718.932 1.37189
\(66\) 0 0
\(67\) 295.997 0.539728 0.269864 0.962898i \(-0.413021\pi\)
0.269864 + 0.962898i \(0.413021\pi\)
\(68\) −1041.27 −1.85695
\(69\) 0 0
\(70\) 458.164 0.782302
\(71\) −546.422 −0.913357 −0.456679 0.889632i \(-0.650961\pi\)
−0.456679 + 0.889632i \(0.650961\pi\)
\(72\) 0 0
\(73\) −809.232 −1.29744 −0.648722 0.761025i \(-0.724696\pi\)
−0.648722 + 0.761025i \(0.724696\pi\)
\(74\) 1019.34 1.60129
\(75\) 0 0
\(76\) −583.059 −0.880019
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −375.244 −0.534408 −0.267204 0.963640i \(-0.586100\pi\)
−0.267204 + 0.963640i \(0.586100\pi\)
\(80\) −1349.27 −1.88566
\(81\) 0 0
\(82\) 641.154 0.863459
\(83\) −85.9037 −0.113604 −0.0568022 0.998385i \(-0.518090\pi\)
−0.0568022 + 0.998385i \(0.518090\pi\)
\(84\) 0 0
\(85\) 766.870 0.978574
\(86\) −2300.08 −2.88400
\(87\) 0 0
\(88\) −532.570 −0.645138
\(89\) −750.306 −0.893621 −0.446810 0.894629i \(-0.647440\pi\)
−0.446810 + 0.894629i \(0.647440\pi\)
\(90\) 0 0
\(91\) 388.831 0.447918
\(92\) −457.856 −0.518856
\(93\) 0 0
\(94\) 655.953 0.719749
\(95\) 429.409 0.463752
\(96\) 0 0
\(97\) −451.876 −0.473001 −0.236500 0.971631i \(-0.576000\pi\)
−0.236500 + 0.971631i \(0.576000\pi\)
\(98\) 247.796 0.255420
\(99\) 0 0
\(100\) 747.132 0.747132
\(101\) 1414.20 1.39325 0.696626 0.717434i \(-0.254684\pi\)
0.696626 + 0.717434i \(0.254684\pi\)
\(102\) 0 0
\(103\) −27.8798 −0.0266707 −0.0133354 0.999911i \(-0.504245\pi\)
−0.0133354 + 0.999911i \(0.504245\pi\)
\(104\) −2689.35 −2.53569
\(105\) 0 0
\(106\) −403.985 −0.370175
\(107\) 778.142 0.703045 0.351523 0.936179i \(-0.385664\pi\)
0.351523 + 0.936179i \(0.385664\pi\)
\(108\) 0 0
\(109\) −219.545 −0.192923 −0.0964615 0.995337i \(-0.530752\pi\)
−0.0964615 + 0.995337i \(0.530752\pi\)
\(110\) 719.973 0.624061
\(111\) 0 0
\(112\) −729.744 −0.615664
\(113\) −607.402 −0.505660 −0.252830 0.967511i \(-0.581361\pi\)
−0.252830 + 0.967511i \(0.581361\pi\)
\(114\) 0 0
\(115\) 337.200 0.273426
\(116\) 3312.30 2.65120
\(117\) 0 0
\(118\) 3002.22 2.34218
\(119\) 414.758 0.319502
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −252.156 −0.187124
\(123\) 0 0
\(124\) −4891.39 −3.54242
\(125\) 1067.59 0.763908
\(126\) 0 0
\(127\) 1949.05 1.36181 0.680905 0.732372i \(-0.261587\pi\)
0.680905 + 0.732372i \(0.261587\pi\)
\(128\) −1759.49 −1.21499
\(129\) 0 0
\(130\) 3635.68 2.45285
\(131\) 1782.57 1.18888 0.594442 0.804138i \(-0.297373\pi\)
0.594442 + 0.804138i \(0.297373\pi\)
\(132\) 0 0
\(133\) 232.244 0.151414
\(134\) 1496.87 0.965001
\(135\) 0 0
\(136\) −2868.67 −1.80872
\(137\) 3080.56 1.92109 0.960546 0.278120i \(-0.0897111\pi\)
0.960546 + 0.278120i \(0.0897111\pi\)
\(138\) 0 0
\(139\) 1171.35 0.714769 0.357384 0.933957i \(-0.383669\pi\)
0.357384 + 0.933957i \(0.383669\pi\)
\(140\) 1592.17 0.961165
\(141\) 0 0
\(142\) −2763.29 −1.63303
\(143\) 611.020 0.357315
\(144\) 0 0
\(145\) −2439.43 −1.39713
\(146\) −4092.33 −2.31975
\(147\) 0 0
\(148\) 3542.31 1.96741
\(149\) −1237.66 −0.680492 −0.340246 0.940337i \(-0.610510\pi\)
−0.340246 + 0.940337i \(0.610510\pi\)
\(150\) 0 0
\(151\) 1581.62 0.852388 0.426194 0.904632i \(-0.359854\pi\)
0.426194 + 0.904632i \(0.359854\pi\)
\(152\) −1606.31 −0.857165
\(153\) 0 0
\(154\) 389.394 0.203755
\(155\) 3602.39 1.86678
\(156\) 0 0
\(157\) −3209.77 −1.63164 −0.815821 0.578304i \(-0.803715\pi\)
−0.815821 + 0.578304i \(0.803715\pi\)
\(158\) −1897.63 −0.955489
\(159\) 0 0
\(160\) −1810.30 −0.894481
\(161\) 182.373 0.0892732
\(162\) 0 0
\(163\) −139.967 −0.0672579 −0.0336290 0.999434i \(-0.510706\pi\)
−0.0336290 + 0.999434i \(0.510706\pi\)
\(164\) 2228.08 1.06088
\(165\) 0 0
\(166\) −434.420 −0.203118
\(167\) −1425.74 −0.660641 −0.330320 0.943869i \(-0.607157\pi\)
−0.330320 + 0.943869i \(0.607157\pi\)
\(168\) 0 0
\(169\) 888.497 0.404414
\(170\) 3878.11 1.74963
\(171\) 0 0
\(172\) −7993.03 −3.54339
\(173\) −1527.01 −0.671077 −0.335538 0.942027i \(-0.608918\pi\)
−0.335538 + 0.942027i \(0.608918\pi\)
\(174\) 0 0
\(175\) −297.597 −0.128550
\(176\) −1146.74 −0.491130
\(177\) 0 0
\(178\) −3794.34 −1.59774
\(179\) −4512.37 −1.88419 −0.942095 0.335346i \(-0.891147\pi\)
−0.942095 + 0.335346i \(0.891147\pi\)
\(180\) 0 0
\(181\) −2973.55 −1.22112 −0.610559 0.791970i \(-0.709055\pi\)
−0.610559 + 0.791970i \(0.709055\pi\)
\(182\) 1966.34 0.800851
\(183\) 0 0
\(184\) −1261.38 −0.505381
\(185\) −2608.83 −1.03678
\(186\) 0 0
\(187\) 651.762 0.254875
\(188\) 2279.51 0.884311
\(189\) 0 0
\(190\) 2171.55 0.829161
\(191\) 1275.56 0.483225 0.241613 0.970373i \(-0.422324\pi\)
0.241613 + 0.970373i \(0.422324\pi\)
\(192\) 0 0
\(193\) −121.983 −0.0454950 −0.0227475 0.999741i \(-0.507241\pi\)
−0.0227475 + 0.999741i \(0.507241\pi\)
\(194\) −2285.17 −0.845697
\(195\) 0 0
\(196\) 861.118 0.313819
\(197\) 3483.97 1.26001 0.630007 0.776589i \(-0.283052\pi\)
0.630007 + 0.776589i \(0.283052\pi\)
\(198\) 0 0
\(199\) 2655.65 0.946002 0.473001 0.881062i \(-0.343171\pi\)
0.473001 + 0.881062i \(0.343171\pi\)
\(200\) 2058.33 0.727730
\(201\) 0 0
\(202\) 7151.71 2.49105
\(203\) −1319.35 −0.456160
\(204\) 0 0
\(205\) −1640.93 −0.559061
\(206\) −140.990 −0.0476856
\(207\) 0 0
\(208\) −5790.75 −1.93037
\(209\) 364.954 0.120787
\(210\) 0 0
\(211\) 1909.91 0.623147 0.311573 0.950222i \(-0.399144\pi\)
0.311573 + 0.950222i \(0.399144\pi\)
\(212\) −1403.89 −0.454811
\(213\) 0 0
\(214\) 3935.11 1.25700
\(215\) 5886.68 1.86729
\(216\) 0 0
\(217\) 1948.33 0.609500
\(218\) −1110.25 −0.344935
\(219\) 0 0
\(220\) 2501.99 0.766745
\(221\) 3291.24 1.00178
\(222\) 0 0
\(223\) −4381.22 −1.31564 −0.657821 0.753174i \(-0.728522\pi\)
−0.657821 + 0.753174i \(0.728522\pi\)
\(224\) −979.092 −0.292046
\(225\) 0 0
\(226\) −3071.67 −0.904090
\(227\) −1711.28 −0.500359 −0.250180 0.968199i \(-0.580490\pi\)
−0.250180 + 0.968199i \(0.580490\pi\)
\(228\) 0 0
\(229\) 2617.84 0.755423 0.377712 0.925923i \(-0.376711\pi\)
0.377712 + 0.925923i \(0.376711\pi\)
\(230\) 1705.24 0.488870
\(231\) 0 0
\(232\) 9125.31 2.58235
\(233\) −3593.09 −1.01026 −0.505131 0.863043i \(-0.668556\pi\)
−0.505131 + 0.863043i \(0.668556\pi\)
\(234\) 0 0
\(235\) −1678.81 −0.466014
\(236\) 10433.1 2.87769
\(237\) 0 0
\(238\) 2097.45 0.571251
\(239\) −1841.19 −0.498312 −0.249156 0.968463i \(-0.580153\pi\)
−0.249156 + 0.968463i \(0.580153\pi\)
\(240\) 0 0
\(241\) 2209.45 0.590552 0.295276 0.955412i \(-0.404588\pi\)
0.295276 + 0.955412i \(0.404588\pi\)
\(242\) 611.904 0.162540
\(243\) 0 0
\(244\) −876.270 −0.229907
\(245\) −634.193 −0.165376
\(246\) 0 0
\(247\) 1842.93 0.474748
\(248\) −13475.6 −3.45042
\(249\) 0 0
\(250\) 5398.89 1.36582
\(251\) −1066.68 −0.268240 −0.134120 0.990965i \(-0.542821\pi\)
−0.134120 + 0.990965i \(0.542821\pi\)
\(252\) 0 0
\(253\) 286.586 0.0712154
\(254\) 9856.44 2.43483
\(255\) 0 0
\(256\) −7884.58 −1.92495
\(257\) −2990.18 −0.725769 −0.362884 0.931834i \(-0.618208\pi\)
−0.362884 + 0.931834i \(0.618208\pi\)
\(258\) 0 0
\(259\) −1410.97 −0.338508
\(260\) 12634.4 3.01366
\(261\) 0 0
\(262\) 9014.56 2.12565
\(263\) −4240.32 −0.994181 −0.497090 0.867699i \(-0.665598\pi\)
−0.497090 + 0.867699i \(0.665598\pi\)
\(264\) 0 0
\(265\) 1033.93 0.239676
\(266\) 1174.47 0.270719
\(267\) 0 0
\(268\) 5201.80 1.18564
\(269\) −5364.21 −1.21584 −0.607922 0.793997i \(-0.707997\pi\)
−0.607922 + 0.793997i \(0.707997\pi\)
\(270\) 0 0
\(271\) 1476.11 0.330876 0.165438 0.986220i \(-0.447096\pi\)
0.165438 + 0.986220i \(0.447096\pi\)
\(272\) −6176.88 −1.37694
\(273\) 0 0
\(274\) 15578.6 3.43480
\(275\) −467.653 −0.102547
\(276\) 0 0
\(277\) 2371.67 0.514439 0.257219 0.966353i \(-0.417194\pi\)
0.257219 + 0.966353i \(0.417194\pi\)
\(278\) 5923.60 1.27796
\(279\) 0 0
\(280\) 4386.39 0.936204
\(281\) 1619.54 0.343821 0.171911 0.985113i \(-0.445006\pi\)
0.171911 + 0.985113i \(0.445006\pi\)
\(282\) 0 0
\(283\) −3779.82 −0.793947 −0.396973 0.917830i \(-0.629939\pi\)
−0.396973 + 0.917830i \(0.629939\pi\)
\(284\) −9602.73 −2.00640
\(285\) 0 0
\(286\) 3089.96 0.638858
\(287\) −887.488 −0.182532
\(288\) 0 0
\(289\) −1402.31 −0.285427
\(290\) −12336.4 −2.49798
\(291\) 0 0
\(292\) −14221.3 −2.85014
\(293\) −2884.18 −0.575070 −0.287535 0.957770i \(-0.592836\pi\)
−0.287535 + 0.957770i \(0.592836\pi\)
\(294\) 0 0
\(295\) −7683.70 −1.51648
\(296\) 9758.98 1.91632
\(297\) 0 0
\(298\) −6258.93 −1.21668
\(299\) 1447.19 0.279909
\(300\) 0 0
\(301\) 3183.78 0.609668
\(302\) 7998.35 1.52402
\(303\) 0 0
\(304\) −3458.74 −0.652541
\(305\) 645.352 0.121156
\(306\) 0 0
\(307\) −4242.88 −0.788774 −0.394387 0.918944i \(-0.629043\pi\)
−0.394387 + 0.918944i \(0.629043\pi\)
\(308\) 1353.19 0.250341
\(309\) 0 0
\(310\) 18217.5 3.33769
\(311\) 9658.23 1.76099 0.880495 0.474055i \(-0.157210\pi\)
0.880495 + 0.474055i \(0.157210\pi\)
\(312\) 0 0
\(313\) 10683.6 1.92930 0.964651 0.263529i \(-0.0848866\pi\)
0.964651 + 0.263529i \(0.0848866\pi\)
\(314\) −16232.0 −2.91728
\(315\) 0 0
\(316\) −6594.47 −1.17395
\(317\) 2077.90 0.368160 0.184080 0.982911i \(-0.441069\pi\)
0.184080 + 0.982911i \(0.441069\pi\)
\(318\) 0 0
\(319\) −2073.27 −0.363890
\(320\) 1639.34 0.286380
\(321\) 0 0
\(322\) 922.269 0.159615
\(323\) 1965.81 0.338640
\(324\) 0 0
\(325\) −2361.53 −0.403059
\(326\) −707.820 −0.120253
\(327\) 0 0
\(328\) 6138.31 1.03333
\(329\) −907.973 −0.152153
\(330\) 0 0
\(331\) −11020.5 −1.83004 −0.915019 0.403410i \(-0.867825\pi\)
−0.915019 + 0.403410i \(0.867825\pi\)
\(332\) −1509.66 −0.249558
\(333\) 0 0
\(334\) −7210.05 −1.18119
\(335\) −3831.00 −0.624806
\(336\) 0 0
\(337\) −5932.54 −0.958950 −0.479475 0.877556i \(-0.659173\pi\)
−0.479475 + 0.877556i \(0.659173\pi\)
\(338\) 4493.18 0.723068
\(339\) 0 0
\(340\) 13476.9 2.14966
\(341\) 3061.67 0.486213
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −22020.6 −3.45137
\(345\) 0 0
\(346\) −7722.17 −1.19985
\(347\) 4115.57 0.636701 0.318351 0.947973i \(-0.396871\pi\)
0.318351 + 0.947973i \(0.396871\pi\)
\(348\) 0 0
\(349\) −3760.31 −0.576746 −0.288373 0.957518i \(-0.593114\pi\)
−0.288373 + 0.957518i \(0.593114\pi\)
\(350\) −1504.97 −0.229840
\(351\) 0 0
\(352\) −1538.57 −0.232972
\(353\) 888.701 0.133997 0.0669983 0.997753i \(-0.478658\pi\)
0.0669983 + 0.997753i \(0.478658\pi\)
\(354\) 0 0
\(355\) 7072.18 1.05733
\(356\) −13185.8 −1.96304
\(357\) 0 0
\(358\) −22819.3 −3.36882
\(359\) −10561.1 −1.55263 −0.776314 0.630347i \(-0.782913\pi\)
−0.776314 + 0.630347i \(0.782913\pi\)
\(360\) 0 0
\(361\) −5758.24 −0.839516
\(362\) −15037.4 −2.18329
\(363\) 0 0
\(364\) 6833.25 0.983955
\(365\) 10473.7 1.50196
\(366\) 0 0
\(367\) 2773.62 0.394500 0.197250 0.980353i \(-0.436799\pi\)
0.197250 + 0.980353i \(0.436799\pi\)
\(368\) −2716.03 −0.384736
\(369\) 0 0
\(370\) −13193.0 −1.85371
\(371\) 559.198 0.0782537
\(372\) 0 0
\(373\) −11360.2 −1.57697 −0.788484 0.615056i \(-0.789134\pi\)
−0.788484 + 0.615056i \(0.789134\pi\)
\(374\) 3296.00 0.455701
\(375\) 0 0
\(376\) 6279.99 0.861346
\(377\) −10469.5 −1.43026
\(378\) 0 0
\(379\) −10948.5 −1.48387 −0.741936 0.670470i \(-0.766092\pi\)
−0.741936 + 0.670470i \(0.766092\pi\)
\(380\) 7546.37 1.01874
\(381\) 0 0
\(382\) 6450.56 0.863978
\(383\) −11122.1 −1.48385 −0.741923 0.670485i \(-0.766086\pi\)
−0.741923 + 0.670485i \(0.766086\pi\)
\(384\) 0 0
\(385\) −996.589 −0.131924
\(386\) −616.875 −0.0813423
\(387\) 0 0
\(388\) −7941.20 −1.03906
\(389\) 7938.70 1.03473 0.517363 0.855766i \(-0.326914\pi\)
0.517363 + 0.855766i \(0.326914\pi\)
\(390\) 0 0
\(391\) 1543.68 0.199661
\(392\) 2372.36 0.305669
\(393\) 0 0
\(394\) 17618.7 2.25283
\(395\) 4856.67 0.618647
\(396\) 0 0
\(397\) 1060.60 0.134080 0.0670402 0.997750i \(-0.478644\pi\)
0.0670402 + 0.997750i \(0.478644\pi\)
\(398\) 13429.8 1.69139
\(399\) 0 0
\(400\) 4432.04 0.554005
\(401\) 2776.24 0.345733 0.172866 0.984945i \(-0.444697\pi\)
0.172866 + 0.984945i \(0.444697\pi\)
\(402\) 0 0
\(403\) 15460.7 1.91104
\(404\) 24853.0 3.06060
\(405\) 0 0
\(406\) −6672.05 −0.815587
\(407\) −2217.24 −0.270036
\(408\) 0 0
\(409\) 8725.98 1.05494 0.527472 0.849573i \(-0.323140\pi\)
0.527472 + 0.849573i \(0.323140\pi\)
\(410\) −8298.27 −0.999567
\(411\) 0 0
\(412\) −489.956 −0.0585883
\(413\) −4155.69 −0.495129
\(414\) 0 0
\(415\) 1111.83 0.131512
\(416\) −7769.41 −0.915689
\(417\) 0 0
\(418\) 1845.59 0.215959
\(419\) 2390.49 0.278719 0.139359 0.990242i \(-0.455496\pi\)
0.139359 + 0.990242i \(0.455496\pi\)
\(420\) 0 0
\(421\) −8626.42 −0.998636 −0.499318 0.866419i \(-0.666416\pi\)
−0.499318 + 0.866419i \(0.666416\pi\)
\(422\) 9658.55 1.11415
\(423\) 0 0
\(424\) −3867.69 −0.442999
\(425\) −2519.00 −0.287504
\(426\) 0 0
\(427\) 349.035 0.0395574
\(428\) 13674.9 1.54440
\(429\) 0 0
\(430\) 29769.3 3.33861
\(431\) −4143.05 −0.463025 −0.231512 0.972832i \(-0.574367\pi\)
−0.231512 + 0.972832i \(0.574367\pi\)
\(432\) 0 0
\(433\) 161.696 0.0179460 0.00897302 0.999960i \(-0.497144\pi\)
0.00897302 + 0.999960i \(0.497144\pi\)
\(434\) 9852.84 1.08975
\(435\) 0 0
\(436\) −3858.25 −0.423800
\(437\) 864.386 0.0946205
\(438\) 0 0
\(439\) 12921.0 1.40475 0.702376 0.711806i \(-0.252123\pi\)
0.702376 + 0.711806i \(0.252123\pi\)
\(440\) 6892.90 0.746833
\(441\) 0 0
\(442\) 16644.0 1.79112
\(443\) 10175.2 1.09128 0.545640 0.838020i \(-0.316287\pi\)
0.545640 + 0.838020i \(0.316287\pi\)
\(444\) 0 0
\(445\) 9711.00 1.03448
\(446\) −22156.1 −2.35229
\(447\) 0 0
\(448\) 886.626 0.0935026
\(449\) −3995.27 −0.419930 −0.209965 0.977709i \(-0.567335\pi\)
−0.209965 + 0.977709i \(0.567335\pi\)
\(450\) 0 0
\(451\) −1394.62 −0.145610
\(452\) −10674.4 −1.11080
\(453\) 0 0
\(454\) −8654.04 −0.894613
\(455\) −5032.53 −0.518524
\(456\) 0 0
\(457\) 12445.5 1.27391 0.636956 0.770900i \(-0.280193\pi\)
0.636956 + 0.770900i \(0.280193\pi\)
\(458\) 13238.6 1.35065
\(459\) 0 0
\(460\) 5925.89 0.600644
\(461\) −11977.5 −1.21009 −0.605043 0.796193i \(-0.706844\pi\)
−0.605043 + 0.796193i \(0.706844\pi\)
\(462\) 0 0
\(463\) 17335.0 1.74002 0.870009 0.493037i \(-0.164113\pi\)
0.870009 + 0.493037i \(0.164113\pi\)
\(464\) 19648.8 1.96589
\(465\) 0 0
\(466\) −18170.4 −1.80629
\(467\) −4014.05 −0.397747 −0.198874 0.980025i \(-0.563728\pi\)
−0.198874 + 0.980025i \(0.563728\pi\)
\(468\) 0 0
\(469\) −2071.98 −0.203998
\(470\) −8489.82 −0.833204
\(471\) 0 0
\(472\) 28742.8 2.80296
\(473\) 5003.08 0.486346
\(474\) 0 0
\(475\) −1410.51 −0.136250
\(476\) 7288.89 0.701861
\(477\) 0 0
\(478\) −9310.99 −0.890952
\(479\) 6809.91 0.649588 0.324794 0.945785i \(-0.394705\pi\)
0.324794 + 0.945785i \(0.394705\pi\)
\(480\) 0 0
\(481\) −11196.5 −1.06137
\(482\) 11173.3 1.05587
\(483\) 0 0
\(484\) 2126.43 0.199703
\(485\) 5848.51 0.547561
\(486\) 0 0
\(487\) −16342.2 −1.52060 −0.760302 0.649570i \(-0.774949\pi\)
−0.760302 + 0.649570i \(0.774949\pi\)
\(488\) −2414.10 −0.223937
\(489\) 0 0
\(490\) −3207.15 −0.295682
\(491\) −1686.53 −0.155014 −0.0775070 0.996992i \(-0.524696\pi\)
−0.0775070 + 0.996992i \(0.524696\pi\)
\(492\) 0 0
\(493\) −11167.6 −1.02021
\(494\) 9319.79 0.848821
\(495\) 0 0
\(496\) −29016.0 −2.62673
\(497\) 3824.95 0.345217
\(498\) 0 0
\(499\) 1992.19 0.178723 0.0893616 0.995999i \(-0.471517\pi\)
0.0893616 + 0.995999i \(0.471517\pi\)
\(500\) 18761.7 1.67810
\(501\) 0 0
\(502\) −5394.27 −0.479597
\(503\) −11525.3 −1.02165 −0.510824 0.859685i \(-0.670660\pi\)
−0.510824 + 0.859685i \(0.670660\pi\)
\(504\) 0 0
\(505\) −18303.6 −1.61287
\(506\) 1449.28 0.127329
\(507\) 0 0
\(508\) 34252.2 2.99153
\(509\) 12191.9 1.06168 0.530842 0.847471i \(-0.321876\pi\)
0.530842 + 0.847471i \(0.321876\pi\)
\(510\) 0 0
\(511\) 5664.63 0.490388
\(512\) −25796.8 −2.22670
\(513\) 0 0
\(514\) −15121.5 −1.29763
\(515\) 360.841 0.0308748
\(516\) 0 0
\(517\) −1426.81 −0.121376
\(518\) −7135.37 −0.605232
\(519\) 0 0
\(520\) 34807.4 2.93540
\(521\) −11196.1 −0.941482 −0.470741 0.882271i \(-0.656013\pi\)
−0.470741 + 0.882271i \(0.656013\pi\)
\(522\) 0 0
\(523\) −11969.2 −1.00072 −0.500361 0.865817i \(-0.666799\pi\)
−0.500361 + 0.865817i \(0.666799\pi\)
\(524\) 31326.6 2.61166
\(525\) 0 0
\(526\) −21443.6 −1.77754
\(527\) 16491.6 1.36316
\(528\) 0 0
\(529\) −11488.2 −0.944212
\(530\) 5228.67 0.428526
\(531\) 0 0
\(532\) 4081.41 0.332616
\(533\) −7042.50 −0.572316
\(534\) 0 0
\(535\) −10071.3 −0.813867
\(536\) 14330.8 1.15485
\(537\) 0 0
\(538\) −27127.1 −2.17385
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 10468.1 0.831905 0.415953 0.909386i \(-0.363448\pi\)
0.415953 + 0.909386i \(0.363448\pi\)
\(542\) 7464.78 0.591587
\(543\) 0 0
\(544\) −8287.47 −0.653166
\(545\) 2841.51 0.223334
\(546\) 0 0
\(547\) −18969.5 −1.48277 −0.741386 0.671078i \(-0.765831\pi\)
−0.741386 + 0.671078i \(0.765831\pi\)
\(548\) 54137.2 4.22012
\(549\) 0 0
\(550\) −2364.95 −0.183349
\(551\) −6253.30 −0.483484
\(552\) 0 0
\(553\) 2626.71 0.201987
\(554\) 11993.6 0.919786
\(555\) 0 0
\(556\) 20585.2 1.57015
\(557\) −11524.3 −0.876658 −0.438329 0.898815i \(-0.644430\pi\)
−0.438329 + 0.898815i \(0.644430\pi\)
\(558\) 0 0
\(559\) 25264.3 1.91157
\(560\) 9444.87 0.712712
\(561\) 0 0
\(562\) 8190.12 0.614732
\(563\) −14117.8 −1.05683 −0.528415 0.848986i \(-0.677213\pi\)
−0.528415 + 0.848986i \(0.677213\pi\)
\(564\) 0 0
\(565\) 7861.43 0.585368
\(566\) −19114.8 −1.41953
\(567\) 0 0
\(568\) −26455.3 −1.95429
\(569\) 16291.9 1.20034 0.600168 0.799874i \(-0.295101\pi\)
0.600168 + 0.799874i \(0.295101\pi\)
\(570\) 0 0
\(571\) 4581.10 0.335750 0.167875 0.985808i \(-0.446310\pi\)
0.167875 + 0.985808i \(0.446310\pi\)
\(572\) 10738.0 0.784925
\(573\) 0 0
\(574\) −4488.08 −0.326357
\(575\) −1107.62 −0.0803324
\(576\) 0 0
\(577\) 20971.6 1.51310 0.756550 0.653935i \(-0.226883\pi\)
0.756550 + 0.653935i \(0.226883\pi\)
\(578\) −7091.54 −0.510327
\(579\) 0 0
\(580\) −42870.2 −3.06912
\(581\) 601.326 0.0429384
\(582\) 0 0
\(583\) 878.740 0.0624249
\(584\) −39179.4 −2.77612
\(585\) 0 0
\(586\) −14585.5 −1.02819
\(587\) −26603.0 −1.87057 −0.935283 0.353900i \(-0.884855\pi\)
−0.935283 + 0.353900i \(0.884855\pi\)
\(588\) 0 0
\(589\) 9234.45 0.646008
\(590\) −38856.9 −2.71138
\(591\) 0 0
\(592\) 21013.2 1.45885
\(593\) 13431.6 0.930135 0.465068 0.885275i \(-0.346030\pi\)
0.465068 + 0.885275i \(0.346030\pi\)
\(594\) 0 0
\(595\) −5368.09 −0.369866
\(596\) −21750.5 −1.49486
\(597\) 0 0
\(598\) 7318.50 0.500461
\(599\) 7329.80 0.499979 0.249990 0.968249i \(-0.419573\pi\)
0.249990 + 0.968249i \(0.419573\pi\)
\(600\) 0 0
\(601\) −9241.26 −0.627219 −0.313610 0.949552i \(-0.601538\pi\)
−0.313610 + 0.949552i \(0.601538\pi\)
\(602\) 16100.6 1.09005
\(603\) 0 0
\(604\) 27795.2 1.87247
\(605\) −1566.07 −0.105239
\(606\) 0 0
\(607\) 11068.2 0.740109 0.370054 0.929010i \(-0.379339\pi\)
0.370054 + 0.929010i \(0.379339\pi\)
\(608\) −4640.57 −0.309539
\(609\) 0 0
\(610\) 3263.58 0.216621
\(611\) −7205.06 −0.477063
\(612\) 0 0
\(613\) −22528.7 −1.48438 −0.742191 0.670189i \(-0.766213\pi\)
−0.742191 + 0.670189i \(0.766213\pi\)
\(614\) −21456.5 −1.41028
\(615\) 0 0
\(616\) 3727.99 0.243839
\(617\) −6859.59 −0.447579 −0.223790 0.974637i \(-0.571843\pi\)
−0.223790 + 0.974637i \(0.571843\pi\)
\(618\) 0 0
\(619\) 14905.2 0.967833 0.483917 0.875114i \(-0.339214\pi\)
0.483917 + 0.875114i \(0.339214\pi\)
\(620\) 63307.8 4.10081
\(621\) 0 0
\(622\) 48842.2 3.14854
\(623\) 5252.14 0.337757
\(624\) 0 0
\(625\) −19131.8 −1.22444
\(626\) 54027.5 3.44948
\(627\) 0 0
\(628\) −56408.1 −3.58428
\(629\) −11943.1 −0.757079
\(630\) 0 0
\(631\) 20709.3 1.30653 0.653267 0.757128i \(-0.273398\pi\)
0.653267 + 0.757128i \(0.273398\pi\)
\(632\) −18167.6 −1.14346
\(633\) 0 0
\(634\) 10508.1 0.658248
\(635\) −25225.9 −1.57647
\(636\) 0 0
\(637\) −2721.82 −0.169297
\(638\) −10484.7 −0.650613
\(639\) 0 0
\(640\) 22772.6 1.40651
\(641\) −30663.6 −1.88945 −0.944727 0.327859i \(-0.893673\pi\)
−0.944727 + 0.327859i \(0.893673\pi\)
\(642\) 0 0
\(643\) −12820.9 −0.786326 −0.393163 0.919469i \(-0.628619\pi\)
−0.393163 + 0.919469i \(0.628619\pi\)
\(644\) 3204.99 0.196109
\(645\) 0 0
\(646\) 9941.23 0.605468
\(647\) 21345.2 1.29701 0.648506 0.761209i \(-0.275394\pi\)
0.648506 + 0.761209i \(0.275394\pi\)
\(648\) 0 0
\(649\) −6530.37 −0.394976
\(650\) −11942.4 −0.720645
\(651\) 0 0
\(652\) −2459.75 −0.147748
\(653\) 17194.7 1.03044 0.515222 0.857057i \(-0.327709\pi\)
0.515222 + 0.857057i \(0.327709\pi\)
\(654\) 0 0
\(655\) −23071.3 −1.37629
\(656\) 13217.1 0.786649
\(657\) 0 0
\(658\) −4591.67 −0.272040
\(659\) −27892.6 −1.64877 −0.824386 0.566027i \(-0.808480\pi\)
−0.824386 + 0.566027i \(0.808480\pi\)
\(660\) 0 0
\(661\) −17082.0 −1.00516 −0.502582 0.864529i \(-0.667617\pi\)
−0.502582 + 0.864529i \(0.667617\pi\)
\(662\) −55731.4 −3.27200
\(663\) 0 0
\(664\) −4159.07 −0.243077
\(665\) −3005.86 −0.175282
\(666\) 0 0
\(667\) −4910.49 −0.285060
\(668\) −25055.7 −1.45125
\(669\) 0 0
\(670\) −19373.6 −1.11712
\(671\) 548.484 0.0315559
\(672\) 0 0
\(673\) −27727.6 −1.58814 −0.794071 0.607825i \(-0.792042\pi\)
−0.794071 + 0.607825i \(0.792042\pi\)
\(674\) −30001.2 −1.71454
\(675\) 0 0
\(676\) 15614.3 0.888388
\(677\) 3018.10 0.171337 0.0856685 0.996324i \(-0.472697\pi\)
0.0856685 + 0.996324i \(0.472697\pi\)
\(678\) 0 0
\(679\) 3163.13 0.178778
\(680\) 37128.4 2.09384
\(681\) 0 0
\(682\) 15483.0 0.869320
\(683\) −33614.8 −1.88321 −0.941607 0.336714i \(-0.890684\pi\)
−0.941607 + 0.336714i \(0.890684\pi\)
\(684\) 0 0
\(685\) −39870.8 −2.22392
\(686\) −1734.57 −0.0965397
\(687\) 0 0
\(688\) −47415.2 −2.62745
\(689\) 4437.42 0.245359
\(690\) 0 0
\(691\) −14923.1 −0.821565 −0.410783 0.911733i \(-0.634744\pi\)
−0.410783 + 0.911733i \(0.634744\pi\)
\(692\) −26835.4 −1.47417
\(693\) 0 0
\(694\) 20812.7 1.13838
\(695\) −15160.5 −0.827439
\(696\) 0 0
\(697\) −7512.09 −0.408236
\(698\) −19016.1 −1.03119
\(699\) 0 0
\(700\) −5229.93 −0.282389
\(701\) −15440.5 −0.831928 −0.415964 0.909381i \(-0.636556\pi\)
−0.415964 + 0.909381i \(0.636556\pi\)
\(702\) 0 0
\(703\) −6687.54 −0.358784
\(704\) 1393.27 0.0745893
\(705\) 0 0
\(706\) 4494.21 0.239578
\(707\) −9899.43 −0.526600
\(708\) 0 0
\(709\) 25441.7 1.34765 0.673825 0.738891i \(-0.264650\pi\)
0.673825 + 0.738891i \(0.264650\pi\)
\(710\) 35764.5 1.89044
\(711\) 0 0
\(712\) −36326.4 −1.91206
\(713\) 7251.49 0.380884
\(714\) 0 0
\(715\) −7908.26 −0.413639
\(716\) −79299.6 −4.13906
\(717\) 0 0
\(718\) −53408.1 −2.77601
\(719\) 11335.3 0.587951 0.293976 0.955813i \(-0.405022\pi\)
0.293976 + 0.955813i \(0.405022\pi\)
\(720\) 0 0
\(721\) 195.159 0.0100806
\(722\) −29119.8 −1.50101
\(723\) 0 0
\(724\) −52256.8 −2.68247
\(725\) 8012.98 0.410475
\(726\) 0 0
\(727\) −11169.8 −0.569830 −0.284915 0.958553i \(-0.591965\pi\)
−0.284915 + 0.958553i \(0.591965\pi\)
\(728\) 18825.4 0.958402
\(729\) 0 0
\(730\) 52965.9 2.68542
\(731\) 26948.9 1.36353
\(732\) 0 0
\(733\) 25635.5 1.29177 0.645885 0.763435i \(-0.276488\pi\)
0.645885 + 0.763435i \(0.276488\pi\)
\(734\) 14026.3 0.705343
\(735\) 0 0
\(736\) −3644.08 −0.182503
\(737\) −3255.97 −0.162734
\(738\) 0 0
\(739\) 20947.2 1.04270 0.521350 0.853343i \(-0.325429\pi\)
0.521350 + 0.853343i \(0.325429\pi\)
\(740\) −45847.2 −2.27753
\(741\) 0 0
\(742\) 2827.90 0.139913
\(743\) 4063.24 0.200627 0.100314 0.994956i \(-0.468015\pi\)
0.100314 + 0.994956i \(0.468015\pi\)
\(744\) 0 0
\(745\) 16018.7 0.787759
\(746\) −57449.2 −2.81952
\(747\) 0 0
\(748\) 11454.0 0.559891
\(749\) −5446.99 −0.265726
\(750\) 0 0
\(751\) 24644.9 1.19747 0.598737 0.800945i \(-0.295669\pi\)
0.598737 + 0.800945i \(0.295669\pi\)
\(752\) 13522.2 0.655724
\(753\) 0 0
\(754\) −52944.9 −2.55721
\(755\) −20470.5 −0.986751
\(756\) 0 0
\(757\) −17258.3 −0.828618 −0.414309 0.910136i \(-0.635977\pi\)
−0.414309 + 0.910136i \(0.635977\pi\)
\(758\) −55367.3 −2.65308
\(759\) 0 0
\(760\) 20790.0 0.992282
\(761\) −12931.6 −0.615990 −0.307995 0.951388i \(-0.599658\pi\)
−0.307995 + 0.951388i \(0.599658\pi\)
\(762\) 0 0
\(763\) 1536.82 0.0729180
\(764\) 22416.4 1.06152
\(765\) 0 0
\(766\) −56245.1 −2.65303
\(767\) −32976.7 −1.55244
\(768\) 0 0
\(769\) 13584.8 0.637034 0.318517 0.947917i \(-0.396815\pi\)
0.318517 + 0.947917i \(0.396815\pi\)
\(770\) −5039.81 −0.235873
\(771\) 0 0
\(772\) −2143.71 −0.0999402
\(773\) −2239.95 −0.104224 −0.0521121 0.998641i \(-0.516595\pi\)
−0.0521121 + 0.998641i \(0.516595\pi\)
\(774\) 0 0
\(775\) −11833.0 −0.548458
\(776\) −21877.8 −1.01207
\(777\) 0 0
\(778\) 40146.5 1.85003
\(779\) −4206.40 −0.193466
\(780\) 0 0
\(781\) 6010.64 0.275388
\(782\) 7806.50 0.356982
\(783\) 0 0
\(784\) 5108.21 0.232699
\(785\) 41543.2 1.88884
\(786\) 0 0
\(787\) 10614.2 0.480758 0.240379 0.970679i \(-0.422728\pi\)
0.240379 + 0.970679i \(0.422728\pi\)
\(788\) 61226.8 2.76791
\(789\) 0 0
\(790\) 24560.5 1.10610
\(791\) 4251.82 0.191122
\(792\) 0 0
\(793\) 2769.71 0.124029
\(794\) 5363.51 0.239728
\(795\) 0 0
\(796\) 46670.1 2.07811
\(797\) −1020.65 −0.0453616 −0.0226808 0.999743i \(-0.507220\pi\)
−0.0226808 + 0.999743i \(0.507220\pi\)
\(798\) 0 0
\(799\) −7685.49 −0.340292
\(800\) 5946.43 0.262798
\(801\) 0 0
\(802\) 14039.6 0.618150
\(803\) 8901.55 0.391194
\(804\) 0 0
\(805\) −2360.40 −0.103345
\(806\) 78185.5 3.41683
\(807\) 0 0
\(808\) 68469.4 2.98112
\(809\) 44041.1 1.91397 0.956985 0.290139i \(-0.0937016\pi\)
0.956985 + 0.290139i \(0.0937016\pi\)
\(810\) 0 0
\(811\) −16722.4 −0.724048 −0.362024 0.932169i \(-0.617914\pi\)
−0.362024 + 0.932169i \(0.617914\pi\)
\(812\) −23186.1 −1.00206
\(813\) 0 0
\(814\) −11212.7 −0.482808
\(815\) 1811.55 0.0778599
\(816\) 0 0
\(817\) 15090.0 0.646186
\(818\) 44127.8 1.88618
\(819\) 0 0
\(820\) −28837.4 −1.22811
\(821\) −30420.1 −1.29314 −0.646570 0.762855i \(-0.723797\pi\)
−0.646570 + 0.762855i \(0.723797\pi\)
\(822\) 0 0
\(823\) −330.412 −0.0139945 −0.00699724 0.999976i \(-0.502227\pi\)
−0.00699724 + 0.999976i \(0.502227\pi\)
\(824\) −1349.82 −0.0570668
\(825\) 0 0
\(826\) −21015.6 −0.885261
\(827\) −4475.72 −0.188194 −0.0940968 0.995563i \(-0.529996\pi\)
−0.0940968 + 0.995563i \(0.529996\pi\)
\(828\) 0 0
\(829\) −10923.6 −0.457651 −0.228825 0.973467i \(-0.573489\pi\)
−0.228825 + 0.973467i \(0.573489\pi\)
\(830\) 5622.58 0.235136
\(831\) 0 0
\(832\) 7035.67 0.293170
\(833\) −2903.30 −0.120761
\(834\) 0 0
\(835\) 18452.9 0.764779
\(836\) 6413.65 0.265336
\(837\) 0 0
\(838\) 12088.8 0.498332
\(839\) 28354.8 1.16677 0.583383 0.812197i \(-0.301729\pi\)
0.583383 + 0.812197i \(0.301729\pi\)
\(840\) 0 0
\(841\) 11135.4 0.456574
\(842\) −43624.3 −1.78550
\(843\) 0 0
\(844\) 33564.5 1.36888
\(845\) −11499.6 −0.468162
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −8327.99 −0.337246
\(849\) 0 0
\(850\) −12738.7 −0.514040
\(851\) −5251.49 −0.211538
\(852\) 0 0
\(853\) 39699.8 1.59355 0.796774 0.604278i \(-0.206538\pi\)
0.796774 + 0.604278i \(0.206538\pi\)
\(854\) 1765.09 0.0707262
\(855\) 0 0
\(856\) 37674.1 1.50429
\(857\) −6093.09 −0.242866 −0.121433 0.992600i \(-0.538749\pi\)
−0.121433 + 0.992600i \(0.538749\pi\)
\(858\) 0 0
\(859\) 20688.1 0.821733 0.410867 0.911695i \(-0.365226\pi\)
0.410867 + 0.911695i \(0.365226\pi\)
\(860\) 103452. 4.10194
\(861\) 0 0
\(862\) −20951.6 −0.827860
\(863\) 38835.1 1.53182 0.765910 0.642948i \(-0.222289\pi\)
0.765910 + 0.642948i \(0.222289\pi\)
\(864\) 0 0
\(865\) 19763.6 0.776860
\(866\) 817.708 0.0320864
\(867\) 0 0
\(868\) 34239.7 1.33891
\(869\) 4127.68 0.161130
\(870\) 0 0
\(871\) −16441.8 −0.639621
\(872\) −10629.4 −0.412794
\(873\) 0 0
\(874\) 4371.25 0.169176
\(875\) −7473.16 −0.288730
\(876\) 0 0
\(877\) −14454.3 −0.556543 −0.278272 0.960502i \(-0.589762\pi\)
−0.278272 + 0.960502i \(0.589762\pi\)
\(878\) 65342.3 2.51161
\(879\) 0 0
\(880\) 14841.9 0.568547
\(881\) 21890.5 0.837130 0.418565 0.908187i \(-0.362533\pi\)
0.418565 + 0.908187i \(0.362533\pi\)
\(882\) 0 0
\(883\) −34415.2 −1.31162 −0.655812 0.754924i \(-0.727674\pi\)
−0.655812 + 0.754924i \(0.727674\pi\)
\(884\) 57839.7 2.20063
\(885\) 0 0
\(886\) 51456.4 1.95114
\(887\) 288.789 0.0109319 0.00546594 0.999985i \(-0.498260\pi\)
0.00546594 + 0.999985i \(0.498260\pi\)
\(888\) 0 0
\(889\) −13643.3 −0.514716
\(890\) 49109.1 1.84960
\(891\) 0 0
\(892\) −76994.9 −2.89011
\(893\) −4303.49 −0.161266
\(894\) 0 0
\(895\) 58402.3 2.18120
\(896\) 12316.5 0.459223
\(897\) 0 0
\(898\) −20204.3 −0.750809
\(899\) −52460.1 −1.94621
\(900\) 0 0
\(901\) 4733.30 0.175016
\(902\) −7052.69 −0.260343
\(903\) 0 0
\(904\) −29407.7 −1.08195
\(905\) 38485.9 1.41361
\(906\) 0 0
\(907\) −36248.0 −1.32701 −0.663503 0.748174i \(-0.730931\pi\)
−0.663503 + 0.748174i \(0.730931\pi\)
\(908\) −30073.7 −1.09915
\(909\) 0 0
\(910\) −25449.8 −0.927090
\(911\) 4600.52 0.167313 0.0836564 0.996495i \(-0.473340\pi\)
0.0836564 + 0.996495i \(0.473340\pi\)
\(912\) 0 0
\(913\) 944.941 0.0342530
\(914\) 62937.8 2.27768
\(915\) 0 0
\(916\) 46005.6 1.65946
\(917\) −12478.0 −0.449356
\(918\) 0 0
\(919\) −46257.9 −1.66040 −0.830200 0.557466i \(-0.811774\pi\)
−0.830200 + 0.557466i \(0.811774\pi\)
\(920\) 16325.7 0.585046
\(921\) 0 0
\(922\) −60571.1 −2.16356
\(923\) 30352.2 1.08240
\(924\) 0 0
\(925\) 8569.42 0.304606
\(926\) 87664.3 3.11105
\(927\) 0 0
\(928\) 26362.6 0.932539
\(929\) 3303.31 0.116661 0.0583305 0.998297i \(-0.481422\pi\)
0.0583305 + 0.998297i \(0.481422\pi\)
\(930\) 0 0
\(931\) −1625.71 −0.0572291
\(932\) −63144.3 −2.21927
\(933\) 0 0
\(934\) −20299.3 −0.711148
\(935\) −8435.57 −0.295051
\(936\) 0 0
\(937\) −44736.9 −1.55975 −0.779877 0.625932i \(-0.784719\pi\)
−0.779877 + 0.625932i \(0.784719\pi\)
\(938\) −10478.1 −0.364736
\(939\) 0 0
\(940\) −29503.1 −1.02371
\(941\) 21009.4 0.727829 0.363914 0.931432i \(-0.381440\pi\)
0.363914 + 0.931432i \(0.381440\pi\)
\(942\) 0 0
\(943\) −3303.13 −0.114067
\(944\) 61889.6 2.13383
\(945\) 0 0
\(946\) 25300.9 0.869558
\(947\) −11343.0 −0.389227 −0.194613 0.980880i \(-0.562345\pi\)
−0.194613 + 0.980880i \(0.562345\pi\)
\(948\) 0 0
\(949\) 44950.6 1.53758
\(950\) −7133.04 −0.243607
\(951\) 0 0
\(952\) 20080.7 0.683634
\(953\) 45452.4 1.54496 0.772481 0.635038i \(-0.219015\pi\)
0.772481 + 0.635038i \(0.219015\pi\)
\(954\) 0 0
\(955\) −16509.2 −0.559397
\(956\) −32356.7 −1.09466
\(957\) 0 0
\(958\) 34438.1 1.16142
\(959\) −21563.9 −0.726105
\(960\) 0 0
\(961\) 47678.5 1.60043
\(962\) −56621.5 −1.89766
\(963\) 0 0
\(964\) 38828.5 1.29728
\(965\) 1578.79 0.0526664
\(966\) 0 0
\(967\) 4435.17 0.147493 0.0737464 0.997277i \(-0.476504\pi\)
0.0737464 + 0.997277i \(0.476504\pi\)
\(968\) 5858.27 0.194517
\(969\) 0 0
\(970\) 29576.2 0.979006
\(971\) 33349.3 1.10219 0.551097 0.834441i \(-0.314209\pi\)
0.551097 + 0.834441i \(0.314209\pi\)
\(972\) 0 0
\(973\) −8199.47 −0.270157
\(974\) −82643.3 −2.71875
\(975\) 0 0
\(976\) −5198.09 −0.170478
\(977\) 39719.6 1.30066 0.650328 0.759653i \(-0.274631\pi\)
0.650328 + 0.759653i \(0.274631\pi\)
\(978\) 0 0
\(979\) 8253.36 0.269437
\(980\) −11145.2 −0.363286
\(981\) 0 0
\(982\) −8528.86 −0.277156
\(983\) −16117.6 −0.522963 −0.261482 0.965208i \(-0.584211\pi\)
−0.261482 + 0.965208i \(0.584211\pi\)
\(984\) 0 0
\(985\) −45092.1 −1.45863
\(986\) −56475.2 −1.82407
\(987\) 0 0
\(988\) 32387.3 1.04289
\(989\) 11849.7 0.380989
\(990\) 0 0
\(991\) −14926.8 −0.478471 −0.239236 0.970962i \(-0.576897\pi\)
−0.239236 + 0.970962i \(0.576897\pi\)
\(992\) −38930.6 −1.24602
\(993\) 0 0
\(994\) 19343.0 0.617227
\(995\) −34371.4 −1.09512
\(996\) 0 0
\(997\) 51206.2 1.62660 0.813298 0.581847i \(-0.197670\pi\)
0.813298 + 0.581847i \(0.197670\pi\)
\(998\) 10074.6 0.319546
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.m.1.4 4
3.2 odd 2 77.4.a.c.1.1 4
12.11 even 2 1232.4.a.w.1.4 4
15.14 odd 2 1925.4.a.q.1.4 4
21.20 even 2 539.4.a.f.1.1 4
33.32 even 2 847.4.a.e.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.1 4 3.2 odd 2
539.4.a.f.1.1 4 21.20 even 2
693.4.a.m.1.4 4 1.1 even 1 trivial
847.4.a.e.1.4 4 33.32 even 2
1232.4.a.w.1.4 4 12.11 even 2
1925.4.a.q.1.4 4 15.14 odd 2