Properties

Label 693.4.a.m.1.2
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.18303\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.948670 q^{2} -7.10002 q^{4} +5.36789 q^{5} -7.00000 q^{7} +14.3249 q^{8} +O(q^{10})\) \(q-0.948670 q^{2} -7.10002 q^{4} +5.36789 q^{5} -7.00000 q^{7} +14.3249 q^{8} -5.09236 q^{10} -11.0000 q^{11} -42.9580 q^{13} +6.64069 q^{14} +43.2105 q^{16} +60.8725 q^{17} +140.575 q^{19} -38.1121 q^{20} +10.4354 q^{22} +91.3375 q^{23} -96.1858 q^{25} +40.7529 q^{26} +49.7002 q^{28} -260.968 q^{29} -259.463 q^{31} -155.592 q^{32} -57.7479 q^{34} -37.5752 q^{35} +359.998 q^{37} -133.359 q^{38} +76.8947 q^{40} +320.038 q^{41} -92.3549 q^{43} +78.1003 q^{44} -86.6492 q^{46} -67.4510 q^{47} +49.0000 q^{49} +91.2486 q^{50} +305.003 q^{52} +246.038 q^{53} -59.0468 q^{55} -100.275 q^{56} +247.573 q^{58} +475.095 q^{59} -799.071 q^{61} +246.145 q^{62} -198.079 q^{64} -230.594 q^{65} -725.003 q^{67} -432.196 q^{68} +35.6465 q^{70} -544.359 q^{71} -580.179 q^{73} -341.519 q^{74} -998.086 q^{76} +77.0000 q^{77} -402.439 q^{79} +231.949 q^{80} -303.611 q^{82} +1102.37 q^{83} +326.757 q^{85} +87.6143 q^{86} -157.574 q^{88} -1257.27 q^{89} +300.706 q^{91} -648.499 q^{92} +63.9888 q^{94} +754.591 q^{95} -999.825 q^{97} -46.4848 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 22 q^{4} + 18 q^{5} - 28 q^{7} + 60 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 22 q^{4} + 18 q^{5} - 28 q^{7} + 60 q^{8} - 92 q^{10} - 44 q^{11} - 134 q^{13} - 28 q^{14} - 6 q^{16} + 74 q^{17} - 164 q^{19} - 116 q^{20} - 44 q^{22} - 194 q^{23} + 38 q^{25} - 734 q^{26} - 154 q^{28} + 108 q^{29} - 412 q^{31} + 4 q^{32} - 346 q^{34} - 126 q^{35} + 286 q^{37} - 224 q^{38} - 540 q^{40} + 18 q^{41} - 496 q^{43} - 242 q^{44} - 284 q^{46} - 62 q^{47} + 196 q^{49} - 212 q^{50} - 822 q^{52} + 828 q^{53} - 198 q^{55} - 420 q^{56} + 1388 q^{58} + 1224 q^{59} - 350 q^{61} + 878 q^{62} - 718 q^{64} + 396 q^{65} - 1498 q^{67} - 1058 q^{68} + 644 q^{70} - 2326 q^{71} - 1630 q^{73} + 1156 q^{74} - 3152 q^{76} + 308 q^{77} - 1020 q^{79} - 3072 q^{80} + 2118 q^{82} + 1920 q^{83} + 2008 q^{85} - 1056 q^{86} - 660 q^{88} - 1550 q^{89} + 938 q^{91} - 2592 q^{92} - 1042 q^{94} - 2332 q^{95} - 2202 q^{97} + 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.948670 −0.335406 −0.167703 0.985838i \(-0.553635\pi\)
−0.167703 + 0.985838i \(0.553635\pi\)
\(3\) 0 0
\(4\) −7.10002 −0.887503
\(5\) 5.36789 0.480119 0.240059 0.970758i \(-0.422833\pi\)
0.240059 + 0.970758i \(0.422833\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 14.3249 0.633079
\(9\) 0 0
\(10\) −5.09236 −0.161034
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −42.9580 −0.916492 −0.458246 0.888825i \(-0.651522\pi\)
−0.458246 + 0.888825i \(0.651522\pi\)
\(14\) 6.64069 0.126771
\(15\) 0 0
\(16\) 43.2105 0.675165
\(17\) 60.8725 0.868455 0.434228 0.900803i \(-0.357021\pi\)
0.434228 + 0.900803i \(0.357021\pi\)
\(18\) 0 0
\(19\) 140.575 1.69737 0.848687 0.528895i \(-0.177393\pi\)
0.848687 + 0.528895i \(0.177393\pi\)
\(20\) −38.1121 −0.426107
\(21\) 0 0
\(22\) 10.4354 0.101129
\(23\) 91.3375 0.828052 0.414026 0.910265i \(-0.364122\pi\)
0.414026 + 0.910265i \(0.364122\pi\)
\(24\) 0 0
\(25\) −96.1858 −0.769486
\(26\) 40.7529 0.307397
\(27\) 0 0
\(28\) 49.7002 0.335445
\(29\) −260.968 −1.67105 −0.835527 0.549449i \(-0.814838\pi\)
−0.835527 + 0.549449i \(0.814838\pi\)
\(30\) 0 0
\(31\) −259.463 −1.50326 −0.751629 0.659586i \(-0.770731\pi\)
−0.751629 + 0.659586i \(0.770731\pi\)
\(32\) −155.592 −0.859533
\(33\) 0 0
\(34\) −57.7479 −0.291285
\(35\) −37.5752 −0.181468
\(36\) 0 0
\(37\) 359.998 1.59955 0.799774 0.600301i \(-0.204952\pi\)
0.799774 + 0.600301i \(0.204952\pi\)
\(38\) −133.359 −0.569309
\(39\) 0 0
\(40\) 76.8947 0.303953
\(41\) 320.038 1.21906 0.609531 0.792762i \(-0.291358\pi\)
0.609531 + 0.792762i \(0.291358\pi\)
\(42\) 0 0
\(43\) −92.3549 −0.327535 −0.163767 0.986499i \(-0.552365\pi\)
−0.163767 + 0.986499i \(0.552365\pi\)
\(44\) 78.1003 0.267592
\(45\) 0 0
\(46\) −86.6492 −0.277733
\(47\) −67.4510 −0.209335 −0.104667 0.994507i \(-0.533378\pi\)
−0.104667 + 0.994507i \(0.533378\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 91.2486 0.258090
\(51\) 0 0
\(52\) 305.003 0.813389
\(53\) 246.038 0.637659 0.318830 0.947812i \(-0.396710\pi\)
0.318830 + 0.947812i \(0.396710\pi\)
\(54\) 0 0
\(55\) −59.0468 −0.144761
\(56\) −100.275 −0.239281
\(57\) 0 0
\(58\) 247.573 0.560481
\(59\) 475.095 1.04834 0.524170 0.851613i \(-0.324375\pi\)
0.524170 + 0.851613i \(0.324375\pi\)
\(60\) 0 0
\(61\) −799.071 −1.67722 −0.838611 0.544731i \(-0.816632\pi\)
−0.838611 + 0.544731i \(0.816632\pi\)
\(62\) 246.145 0.504201
\(63\) 0 0
\(64\) −198.079 −0.386872
\(65\) −230.594 −0.440025
\(66\) 0 0
\(67\) −725.003 −1.32199 −0.660994 0.750391i \(-0.729865\pi\)
−0.660994 + 0.750391i \(0.729865\pi\)
\(68\) −432.196 −0.770757
\(69\) 0 0
\(70\) 35.6465 0.0608653
\(71\) −544.359 −0.909909 −0.454954 0.890515i \(-0.650344\pi\)
−0.454954 + 0.890515i \(0.650344\pi\)
\(72\) 0 0
\(73\) −580.179 −0.930202 −0.465101 0.885258i \(-0.653982\pi\)
−0.465101 + 0.885258i \(0.653982\pi\)
\(74\) −341.519 −0.536498
\(75\) 0 0
\(76\) −998.086 −1.50643
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −402.439 −0.573139 −0.286569 0.958059i \(-0.592515\pi\)
−0.286569 + 0.958059i \(0.592515\pi\)
\(80\) 231.949 0.324159
\(81\) 0 0
\(82\) −303.611 −0.408880
\(83\) 1102.37 1.45784 0.728919 0.684600i \(-0.240023\pi\)
0.728919 + 0.684600i \(0.240023\pi\)
\(84\) 0 0
\(85\) 326.757 0.416962
\(86\) 87.6143 0.109857
\(87\) 0 0
\(88\) −157.574 −0.190881
\(89\) −1257.27 −1.49742 −0.748710 0.662898i \(-0.769326\pi\)
−0.748710 + 0.662898i \(0.769326\pi\)
\(90\) 0 0
\(91\) 300.706 0.346401
\(92\) −648.499 −0.734898
\(93\) 0 0
\(94\) 63.9888 0.0702121
\(95\) 754.591 0.814941
\(96\) 0 0
\(97\) −999.825 −1.04657 −0.523283 0.852159i \(-0.675293\pi\)
−0.523283 + 0.852159i \(0.675293\pi\)
\(98\) −46.4848 −0.0479151
\(99\) 0 0
\(100\) 682.921 0.682921
\(101\) −658.047 −0.648298 −0.324149 0.946006i \(-0.605078\pi\)
−0.324149 + 0.946006i \(0.605078\pi\)
\(102\) 0 0
\(103\) 367.182 0.351258 0.175629 0.984456i \(-0.443804\pi\)
0.175629 + 0.984456i \(0.443804\pi\)
\(104\) −615.371 −0.580212
\(105\) 0 0
\(106\) −233.409 −0.213875
\(107\) −2004.27 −1.81084 −0.905422 0.424513i \(-0.860445\pi\)
−0.905422 + 0.424513i \(0.860445\pi\)
\(108\) 0 0
\(109\) 58.2798 0.0512128 0.0256064 0.999672i \(-0.491848\pi\)
0.0256064 + 0.999672i \(0.491848\pi\)
\(110\) 56.0159 0.0485537
\(111\) 0 0
\(112\) −302.474 −0.255188
\(113\) −1784.84 −1.48588 −0.742938 0.669360i \(-0.766568\pi\)
−0.742938 + 0.669360i \(0.766568\pi\)
\(114\) 0 0
\(115\) 490.290 0.397563
\(116\) 1852.88 1.48307
\(117\) 0 0
\(118\) −450.709 −0.351619
\(119\) −426.107 −0.328245
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 758.055 0.562550
\(123\) 0 0
\(124\) 1842.20 1.33415
\(125\) −1187.30 −0.849563
\(126\) 0 0
\(127\) −371.954 −0.259887 −0.129943 0.991521i \(-0.541480\pi\)
−0.129943 + 0.991521i \(0.541480\pi\)
\(128\) 1432.65 0.989292
\(129\) 0 0
\(130\) 218.757 0.147587
\(131\) −72.8070 −0.0485586 −0.0242793 0.999705i \(-0.507729\pi\)
−0.0242793 + 0.999705i \(0.507729\pi\)
\(132\) 0 0
\(133\) −984.025 −0.641547
\(134\) 687.789 0.443402
\(135\) 0 0
\(136\) 871.995 0.549801
\(137\) −1282.01 −0.799483 −0.399742 0.916628i \(-0.630900\pi\)
−0.399742 + 0.916628i \(0.630900\pi\)
\(138\) 0 0
\(139\) −1372.26 −0.837367 −0.418683 0.908132i \(-0.637508\pi\)
−0.418683 + 0.908132i \(0.637508\pi\)
\(140\) 266.785 0.161053
\(141\) 0 0
\(142\) 516.417 0.305189
\(143\) 472.538 0.276333
\(144\) 0 0
\(145\) −1400.85 −0.802304
\(146\) 550.398 0.311995
\(147\) 0 0
\(148\) −2555.99 −1.41960
\(149\) 248.458 0.136607 0.0683036 0.997665i \(-0.478241\pi\)
0.0683036 + 0.997665i \(0.478241\pi\)
\(150\) 0 0
\(151\) −1247.52 −0.672327 −0.336164 0.941804i \(-0.609130\pi\)
−0.336164 + 0.941804i \(0.609130\pi\)
\(152\) 2013.73 1.07457
\(153\) 0 0
\(154\) −73.0476 −0.0382230
\(155\) −1392.77 −0.721742
\(156\) 0 0
\(157\) 845.901 0.430002 0.215001 0.976614i \(-0.431025\pi\)
0.215001 + 0.976614i \(0.431025\pi\)
\(158\) 381.782 0.192234
\(159\) 0 0
\(160\) −835.201 −0.412678
\(161\) −639.363 −0.312974
\(162\) 0 0
\(163\) −3266.85 −1.56981 −0.784906 0.619615i \(-0.787289\pi\)
−0.784906 + 0.619615i \(0.787289\pi\)
\(164\) −2272.28 −1.08192
\(165\) 0 0
\(166\) −1045.78 −0.488967
\(167\) 527.799 0.244565 0.122282 0.992495i \(-0.460979\pi\)
0.122282 + 0.992495i \(0.460979\pi\)
\(168\) 0 0
\(169\) −351.613 −0.160043
\(170\) −309.984 −0.139851
\(171\) 0 0
\(172\) 655.722 0.290688
\(173\) −27.8340 −0.0122322 −0.00611612 0.999981i \(-0.501947\pi\)
−0.00611612 + 0.999981i \(0.501947\pi\)
\(174\) 0 0
\(175\) 673.300 0.290838
\(176\) −475.316 −0.203570
\(177\) 0 0
\(178\) 1192.73 0.502243
\(179\) −1622.80 −0.677620 −0.338810 0.940855i \(-0.610024\pi\)
−0.338810 + 0.940855i \(0.610024\pi\)
\(180\) 0 0
\(181\) 4440.94 1.82372 0.911859 0.410504i \(-0.134647\pi\)
0.911859 + 0.410504i \(0.134647\pi\)
\(182\) −285.271 −0.116185
\(183\) 0 0
\(184\) 1308.40 0.524222
\(185\) 1932.43 0.767973
\(186\) 0 0
\(187\) −669.597 −0.261849
\(188\) 478.904 0.185785
\(189\) 0 0
\(190\) −715.858 −0.273336
\(191\) 1118.93 0.423889 0.211945 0.977282i \(-0.432020\pi\)
0.211945 + 0.977282i \(0.432020\pi\)
\(192\) 0 0
\(193\) 321.905 0.120058 0.0600291 0.998197i \(-0.480881\pi\)
0.0600291 + 0.998197i \(0.480881\pi\)
\(194\) 948.504 0.351024
\(195\) 0 0
\(196\) −347.901 −0.126786
\(197\) 2409.72 0.871498 0.435749 0.900068i \(-0.356483\pi\)
0.435749 + 0.900068i \(0.356483\pi\)
\(198\) 0 0
\(199\) 1702.46 0.606454 0.303227 0.952918i \(-0.401936\pi\)
0.303227 + 0.952918i \(0.401936\pi\)
\(200\) −1377.86 −0.487146
\(201\) 0 0
\(202\) 624.270 0.217443
\(203\) 1826.78 0.631599
\(204\) 0 0
\(205\) 1717.93 0.585295
\(206\) −348.335 −0.117814
\(207\) 0 0
\(208\) −1856.24 −0.618783
\(209\) −1546.33 −0.511778
\(210\) 0 0
\(211\) −2319.86 −0.756899 −0.378449 0.925622i \(-0.623543\pi\)
−0.378449 + 0.925622i \(0.623543\pi\)
\(212\) −1746.88 −0.565925
\(213\) 0 0
\(214\) 1901.39 0.607367
\(215\) −495.751 −0.157255
\(216\) 0 0
\(217\) 1816.24 0.568178
\(218\) −55.2883 −0.0171770
\(219\) 0 0
\(220\) 419.234 0.128476
\(221\) −2614.96 −0.795932
\(222\) 0 0
\(223\) 791.377 0.237644 0.118822 0.992916i \(-0.462088\pi\)
0.118822 + 0.992916i \(0.462088\pi\)
\(224\) 1089.14 0.324873
\(225\) 0 0
\(226\) 1693.23 0.498371
\(227\) 1345.34 0.393363 0.196681 0.980467i \(-0.436984\pi\)
0.196681 + 0.980467i \(0.436984\pi\)
\(228\) 0 0
\(229\) 1209.53 0.349030 0.174515 0.984655i \(-0.444164\pi\)
0.174515 + 0.984655i \(0.444164\pi\)
\(230\) −465.123 −0.133345
\(231\) 0 0
\(232\) −3738.36 −1.05791
\(233\) 5101.45 1.43436 0.717182 0.696886i \(-0.245431\pi\)
0.717182 + 0.696886i \(0.245431\pi\)
\(234\) 0 0
\(235\) −362.070 −0.100506
\(236\) −3373.19 −0.930406
\(237\) 0 0
\(238\) 404.235 0.110095
\(239\) −2072.93 −0.561032 −0.280516 0.959849i \(-0.590506\pi\)
−0.280516 + 0.959849i \(0.590506\pi\)
\(240\) 0 0
\(241\) 2896.10 0.774085 0.387042 0.922062i \(-0.373497\pi\)
0.387042 + 0.922062i \(0.373497\pi\)
\(242\) −114.789 −0.0304914
\(243\) 0 0
\(244\) 5673.42 1.48854
\(245\) 263.027 0.0685884
\(246\) 0 0
\(247\) −6038.82 −1.55563
\(248\) −3716.80 −0.951681
\(249\) 0 0
\(250\) 1126.36 0.284948
\(251\) −4226.07 −1.06274 −0.531369 0.847140i \(-0.678322\pi\)
−0.531369 + 0.847140i \(0.678322\pi\)
\(252\) 0 0
\(253\) −1004.71 −0.249667
\(254\) 352.862 0.0871674
\(255\) 0 0
\(256\) 225.518 0.0550582
\(257\) 5075.41 1.23189 0.615945 0.787789i \(-0.288775\pi\)
0.615945 + 0.787789i \(0.288775\pi\)
\(258\) 0 0
\(259\) −2519.99 −0.604573
\(260\) 1637.22 0.390523
\(261\) 0 0
\(262\) 69.0699 0.0162868
\(263\) 123.204 0.0288861 0.0144431 0.999896i \(-0.495402\pi\)
0.0144431 + 0.999896i \(0.495402\pi\)
\(264\) 0 0
\(265\) 1320.71 0.306152
\(266\) 933.516 0.215179
\(267\) 0 0
\(268\) 5147.54 1.17327
\(269\) 3938.48 0.892688 0.446344 0.894861i \(-0.352726\pi\)
0.446344 + 0.894861i \(0.352726\pi\)
\(270\) 0 0
\(271\) −2882.96 −0.646227 −0.323113 0.946360i \(-0.604730\pi\)
−0.323113 + 0.946360i \(0.604730\pi\)
\(272\) 2630.33 0.586350
\(273\) 0 0
\(274\) 1216.20 0.268151
\(275\) 1058.04 0.232009
\(276\) 0 0
\(277\) 1414.61 0.306843 0.153422 0.988161i \(-0.450971\pi\)
0.153422 + 0.988161i \(0.450971\pi\)
\(278\) 1301.83 0.280858
\(279\) 0 0
\(280\) −538.263 −0.114883
\(281\) −2053.20 −0.435886 −0.217943 0.975962i \(-0.569935\pi\)
−0.217943 + 0.975962i \(0.569935\pi\)
\(282\) 0 0
\(283\) −7989.40 −1.67816 −0.839082 0.544005i \(-0.816907\pi\)
−0.839082 + 0.544005i \(0.816907\pi\)
\(284\) 3864.96 0.807547
\(285\) 0 0
\(286\) −448.282 −0.0926836
\(287\) −2240.27 −0.460762
\(288\) 0 0
\(289\) −1207.54 −0.245785
\(290\) 1328.94 0.269097
\(291\) 0 0
\(292\) 4119.28 0.825557
\(293\) −493.055 −0.0983092 −0.0491546 0.998791i \(-0.515653\pi\)
−0.0491546 + 0.998791i \(0.515653\pi\)
\(294\) 0 0
\(295\) 2550.26 0.503328
\(296\) 5156.95 1.01264
\(297\) 0 0
\(298\) −235.705 −0.0458188
\(299\) −3923.67 −0.758903
\(300\) 0 0
\(301\) 646.484 0.123796
\(302\) 1183.48 0.225502
\(303\) 0 0
\(304\) 6074.32 1.14601
\(305\) −4289.32 −0.805265
\(306\) 0 0
\(307\) −4869.60 −0.905287 −0.452643 0.891692i \(-0.649519\pi\)
−0.452643 + 0.891692i \(0.649519\pi\)
\(308\) −546.702 −0.101140
\(309\) 0 0
\(310\) 1321.28 0.242076
\(311\) 9618.02 1.75366 0.876830 0.480801i \(-0.159654\pi\)
0.876830 + 0.480801i \(0.159654\pi\)
\(312\) 0 0
\(313\) −6938.34 −1.25296 −0.626482 0.779436i \(-0.715506\pi\)
−0.626482 + 0.779436i \(0.715506\pi\)
\(314\) −802.481 −0.144225
\(315\) 0 0
\(316\) 2857.33 0.508663
\(317\) −2353.16 −0.416929 −0.208464 0.978030i \(-0.566847\pi\)
−0.208464 + 0.978030i \(0.566847\pi\)
\(318\) 0 0
\(319\) 2870.65 0.503842
\(320\) −1063.26 −0.185745
\(321\) 0 0
\(322\) 606.544 0.104973
\(323\) 8557.15 1.47409
\(324\) 0 0
\(325\) 4131.94 0.705228
\(326\) 3099.16 0.526524
\(327\) 0 0
\(328\) 4584.53 0.771763
\(329\) 472.157 0.0791212
\(330\) 0 0
\(331\) 1512.04 0.251086 0.125543 0.992088i \(-0.459933\pi\)
0.125543 + 0.992088i \(0.459933\pi\)
\(332\) −7826.84 −1.29384
\(333\) 0 0
\(334\) −500.707 −0.0820284
\(335\) −3891.74 −0.634711
\(336\) 0 0
\(337\) 2506.25 0.405116 0.202558 0.979270i \(-0.435074\pi\)
0.202558 + 0.979270i \(0.435074\pi\)
\(338\) 333.565 0.0536792
\(339\) 0 0
\(340\) −2319.98 −0.370055
\(341\) 2854.10 0.453249
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −1322.98 −0.207355
\(345\) 0 0
\(346\) 26.4053 0.00410276
\(347\) 6737.01 1.04225 0.521126 0.853479i \(-0.325512\pi\)
0.521126 + 0.853479i \(0.325512\pi\)
\(348\) 0 0
\(349\) 1832.13 0.281008 0.140504 0.990080i \(-0.455128\pi\)
0.140504 + 0.990080i \(0.455128\pi\)
\(350\) −638.740 −0.0975488
\(351\) 0 0
\(352\) 1711.51 0.259159
\(353\) −3946.57 −0.595056 −0.297528 0.954713i \(-0.596162\pi\)
−0.297528 + 0.954713i \(0.596162\pi\)
\(354\) 0 0
\(355\) −2922.06 −0.436864
\(356\) 8926.65 1.32896
\(357\) 0 0
\(358\) 1539.50 0.227277
\(359\) −5598.84 −0.823108 −0.411554 0.911385i \(-0.635014\pi\)
−0.411554 + 0.911385i \(0.635014\pi\)
\(360\) 0 0
\(361\) 12902.3 1.88108
\(362\) −4212.99 −0.611685
\(363\) 0 0
\(364\) −2135.02 −0.307432
\(365\) −3114.33 −0.446607
\(366\) 0 0
\(367\) 8179.50 1.16340 0.581698 0.813405i \(-0.302388\pi\)
0.581698 + 0.813405i \(0.302388\pi\)
\(368\) 3946.74 0.559071
\(369\) 0 0
\(370\) −1833.24 −0.257583
\(371\) −1722.27 −0.241013
\(372\) 0 0
\(373\) 11627.3 1.61405 0.807025 0.590518i \(-0.201076\pi\)
0.807025 + 0.590518i \(0.201076\pi\)
\(374\) 635.227 0.0878257
\(375\) 0 0
\(376\) −966.232 −0.132526
\(377\) 11210.7 1.53151
\(378\) 0 0
\(379\) 1588.59 0.215305 0.107653 0.994189i \(-0.465667\pi\)
0.107653 + 0.994189i \(0.465667\pi\)
\(380\) −5357.62 −0.723263
\(381\) 0 0
\(382\) −1061.49 −0.142175
\(383\) 40.4622 0.00539823 0.00269912 0.999996i \(-0.499141\pi\)
0.00269912 + 0.999996i \(0.499141\pi\)
\(384\) 0 0
\(385\) 413.327 0.0547146
\(386\) −305.382 −0.0402682
\(387\) 0 0
\(388\) 7098.78 0.928830
\(389\) −6230.86 −0.812126 −0.406063 0.913845i \(-0.633099\pi\)
−0.406063 + 0.913845i \(0.633099\pi\)
\(390\) 0 0
\(391\) 5559.94 0.719126
\(392\) 701.922 0.0904399
\(393\) 0 0
\(394\) −2286.03 −0.292305
\(395\) −2160.25 −0.275175
\(396\) 0 0
\(397\) −3686.24 −0.466013 −0.233007 0.972475i \(-0.574856\pi\)
−0.233007 + 0.972475i \(0.574856\pi\)
\(398\) −1615.08 −0.203408
\(399\) 0 0
\(400\) −4156.24 −0.519530
\(401\) −438.764 −0.0546405 −0.0273202 0.999627i \(-0.508697\pi\)
−0.0273202 + 0.999627i \(0.508697\pi\)
\(402\) 0 0
\(403\) 11146.0 1.37772
\(404\) 4672.15 0.575367
\(405\) 0 0
\(406\) −1733.01 −0.211842
\(407\) −3959.98 −0.482282
\(408\) 0 0
\(409\) −6813.22 −0.823697 −0.411848 0.911252i \(-0.635117\pi\)
−0.411848 + 0.911252i \(0.635117\pi\)
\(410\) −1629.75 −0.196311
\(411\) 0 0
\(412\) −2607.00 −0.311742
\(413\) −3325.67 −0.396236
\(414\) 0 0
\(415\) 5917.39 0.699935
\(416\) 6683.92 0.787755
\(417\) 0 0
\(418\) 1466.95 0.171653
\(419\) −4789.84 −0.558471 −0.279235 0.960223i \(-0.590081\pi\)
−0.279235 + 0.960223i \(0.590081\pi\)
\(420\) 0 0
\(421\) −5912.30 −0.684436 −0.342218 0.939621i \(-0.611178\pi\)
−0.342218 + 0.939621i \(0.611178\pi\)
\(422\) 2200.78 0.253868
\(423\) 0 0
\(424\) 3524.48 0.403689
\(425\) −5855.06 −0.668264
\(426\) 0 0
\(427\) 5593.49 0.633930
\(428\) 14230.4 1.60713
\(429\) 0 0
\(430\) 470.304 0.0527444
\(431\) 13228.6 1.47842 0.739208 0.673477i \(-0.235200\pi\)
0.739208 + 0.673477i \(0.235200\pi\)
\(432\) 0 0
\(433\) −13817.8 −1.53359 −0.766793 0.641895i \(-0.778149\pi\)
−0.766793 + 0.641895i \(0.778149\pi\)
\(434\) −1723.02 −0.190570
\(435\) 0 0
\(436\) −413.788 −0.0454515
\(437\) 12839.8 1.40551
\(438\) 0 0
\(439\) −5078.63 −0.552141 −0.276070 0.961137i \(-0.589032\pi\)
−0.276070 + 0.961137i \(0.589032\pi\)
\(440\) −845.842 −0.0916453
\(441\) 0 0
\(442\) 2480.73 0.266960
\(443\) 8477.52 0.909208 0.454604 0.890694i \(-0.349781\pi\)
0.454604 + 0.890694i \(0.349781\pi\)
\(444\) 0 0
\(445\) −6748.89 −0.718939
\(446\) −750.756 −0.0797070
\(447\) 0 0
\(448\) 1386.55 0.146224
\(449\) −17792.1 −1.87007 −0.935033 0.354561i \(-0.884630\pi\)
−0.935033 + 0.354561i \(0.884630\pi\)
\(450\) 0 0
\(451\) −3520.42 −0.367561
\(452\) 12672.4 1.31872
\(453\) 0 0
\(454\) −1276.28 −0.131936
\(455\) 1614.16 0.166314
\(456\) 0 0
\(457\) −1385.23 −0.141791 −0.0708955 0.997484i \(-0.522586\pi\)
−0.0708955 + 0.997484i \(0.522586\pi\)
\(458\) −1147.44 −0.117067
\(459\) 0 0
\(460\) −3481.07 −0.352838
\(461\) 9174.59 0.926906 0.463453 0.886122i \(-0.346610\pi\)
0.463453 + 0.886122i \(0.346610\pi\)
\(462\) 0 0
\(463\) 4066.00 0.408127 0.204064 0.978958i \(-0.434585\pi\)
0.204064 + 0.978958i \(0.434585\pi\)
\(464\) −11276.6 −1.12824
\(465\) 0 0
\(466\) −4839.59 −0.481094
\(467\) −16393.7 −1.62443 −0.812216 0.583356i \(-0.801739\pi\)
−0.812216 + 0.583356i \(0.801739\pi\)
\(468\) 0 0
\(469\) 5075.02 0.499665
\(470\) 343.485 0.0337102
\(471\) 0 0
\(472\) 6805.71 0.663683
\(473\) 1015.90 0.0987554
\(474\) 0 0
\(475\) −13521.3 −1.30611
\(476\) 3025.37 0.291319
\(477\) 0 0
\(478\) 1966.53 0.188173
\(479\) −12328.2 −1.17597 −0.587986 0.808871i \(-0.700079\pi\)
−0.587986 + 0.808871i \(0.700079\pi\)
\(480\) 0 0
\(481\) −15464.8 −1.46597
\(482\) −2747.45 −0.259632
\(483\) 0 0
\(484\) −859.103 −0.0806821
\(485\) −5366.95 −0.502476
\(486\) 0 0
\(487\) −1891.56 −0.176006 −0.0880028 0.996120i \(-0.528048\pi\)
−0.0880028 + 0.996120i \(0.528048\pi\)
\(488\) −11446.6 −1.06181
\(489\) 0 0
\(490\) −249.526 −0.0230049
\(491\) −484.518 −0.0445336 −0.0222668 0.999752i \(-0.507088\pi\)
−0.0222668 + 0.999752i \(0.507088\pi\)
\(492\) 0 0
\(493\) −15885.8 −1.45124
\(494\) 5728.85 0.521767
\(495\) 0 0
\(496\) −11211.5 −1.01495
\(497\) 3810.51 0.343913
\(498\) 0 0
\(499\) −10923.0 −0.979917 −0.489959 0.871746i \(-0.662988\pi\)
−0.489959 + 0.871746i \(0.662988\pi\)
\(500\) 8429.86 0.753990
\(501\) 0 0
\(502\) 4009.15 0.356448
\(503\) −16.4363 −0.00145697 −0.000728486 1.00000i \(-0.500232\pi\)
−0.000728486 1.00000i \(0.500232\pi\)
\(504\) 0 0
\(505\) −3532.32 −0.311260
\(506\) 953.141 0.0837397
\(507\) 0 0
\(508\) 2640.88 0.230650
\(509\) −5133.84 −0.447060 −0.223530 0.974697i \(-0.571758\pi\)
−0.223530 + 0.974697i \(0.571758\pi\)
\(510\) 0 0
\(511\) 4061.25 0.351583
\(512\) −11675.1 −1.00776
\(513\) 0 0
\(514\) −4814.89 −0.413183
\(515\) 1970.99 0.168645
\(516\) 0 0
\(517\) 741.961 0.0631169
\(518\) 2390.64 0.202777
\(519\) 0 0
\(520\) −3303.24 −0.278571
\(521\) 4454.52 0.374580 0.187290 0.982305i \(-0.440030\pi\)
0.187290 + 0.982305i \(0.440030\pi\)
\(522\) 0 0
\(523\) −226.348 −0.0189245 −0.00946224 0.999955i \(-0.503012\pi\)
−0.00946224 + 0.999955i \(0.503012\pi\)
\(524\) 516.932 0.0430959
\(525\) 0 0
\(526\) −116.880 −0.00968858
\(527\) −15794.2 −1.30551
\(528\) 0 0
\(529\) −3824.46 −0.314331
\(530\) −1252.91 −0.102685
\(531\) 0 0
\(532\) 6986.60 0.569375
\(533\) −13748.2 −1.11726
\(534\) 0 0
\(535\) −10758.7 −0.869420
\(536\) −10385.6 −0.836923
\(537\) 0 0
\(538\) −3736.32 −0.299413
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 11808.2 0.938401 0.469201 0.883092i \(-0.344542\pi\)
0.469201 + 0.883092i \(0.344542\pi\)
\(542\) 2734.98 0.216748
\(543\) 0 0
\(544\) −9471.28 −0.746466
\(545\) 312.839 0.0245882
\(546\) 0 0
\(547\) 11208.4 0.876122 0.438061 0.898945i \(-0.355665\pi\)
0.438061 + 0.898945i \(0.355665\pi\)
\(548\) 9102.28 0.709544
\(549\) 0 0
\(550\) −1003.73 −0.0778171
\(551\) −36685.6 −2.83641
\(552\) 0 0
\(553\) 2817.08 0.216626
\(554\) −1342.00 −0.102917
\(555\) 0 0
\(556\) 9743.11 0.743166
\(557\) 21505.6 1.63594 0.817972 0.575259i \(-0.195099\pi\)
0.817972 + 0.575259i \(0.195099\pi\)
\(558\) 0 0
\(559\) 3967.38 0.300183
\(560\) −1623.65 −0.122521
\(561\) 0 0
\(562\) 1947.81 0.146198
\(563\) −18770.5 −1.40512 −0.702559 0.711626i \(-0.747959\pi\)
−0.702559 + 0.711626i \(0.747959\pi\)
\(564\) 0 0
\(565\) −9580.85 −0.713397
\(566\) 7579.31 0.562866
\(567\) 0 0
\(568\) −7797.91 −0.576044
\(569\) 19439.7 1.43226 0.716130 0.697967i \(-0.245912\pi\)
0.716130 + 0.697967i \(0.245912\pi\)
\(570\) 0 0
\(571\) 5978.67 0.438178 0.219089 0.975705i \(-0.429692\pi\)
0.219089 + 0.975705i \(0.429692\pi\)
\(572\) −3355.03 −0.245246
\(573\) 0 0
\(574\) 2125.27 0.154542
\(575\) −8785.37 −0.637174
\(576\) 0 0
\(577\) −17704.6 −1.27739 −0.638695 0.769460i \(-0.720525\pi\)
−0.638695 + 0.769460i \(0.720525\pi\)
\(578\) 1145.56 0.0824377
\(579\) 0 0
\(580\) 9946.06 0.712048
\(581\) −7716.57 −0.551011
\(582\) 0 0
\(583\) −2706.42 −0.192262
\(584\) −8311.03 −0.588892
\(585\) 0 0
\(586\) 467.747 0.0329735
\(587\) 1063.42 0.0747738 0.0373869 0.999301i \(-0.488097\pi\)
0.0373869 + 0.999301i \(0.488097\pi\)
\(588\) 0 0
\(589\) −36474.1 −2.55159
\(590\) −2419.35 −0.168819
\(591\) 0 0
\(592\) 15555.7 1.07996
\(593\) 18456.7 1.27812 0.639061 0.769156i \(-0.279323\pi\)
0.639061 + 0.769156i \(0.279323\pi\)
\(594\) 0 0
\(595\) −2287.30 −0.157597
\(596\) −1764.06 −0.121239
\(597\) 0 0
\(598\) 3722.27 0.254540
\(599\) −24953.5 −1.70213 −0.851063 0.525064i \(-0.824041\pi\)
−0.851063 + 0.525064i \(0.824041\pi\)
\(600\) 0 0
\(601\) 16330.2 1.10836 0.554179 0.832398i \(-0.313032\pi\)
0.554179 + 0.832398i \(0.313032\pi\)
\(602\) −613.300 −0.0415220
\(603\) 0 0
\(604\) 8857.39 0.596692
\(605\) 649.515 0.0436471
\(606\) 0 0
\(607\) −12193.8 −0.815371 −0.407686 0.913122i \(-0.633664\pi\)
−0.407686 + 0.913122i \(0.633664\pi\)
\(608\) −21872.4 −1.45895
\(609\) 0 0
\(610\) 4069.15 0.270090
\(611\) 2897.56 0.191854
\(612\) 0 0
\(613\) 18075.5 1.19097 0.595483 0.803368i \(-0.296961\pi\)
0.595483 + 0.803368i \(0.296961\pi\)
\(614\) 4619.65 0.303638
\(615\) 0 0
\(616\) 1103.02 0.0721461
\(617\) 20714.8 1.35162 0.675809 0.737077i \(-0.263795\pi\)
0.675809 + 0.737077i \(0.263795\pi\)
\(618\) 0 0
\(619\) −23526.6 −1.52765 −0.763825 0.645423i \(-0.776681\pi\)
−0.763825 + 0.645423i \(0.776681\pi\)
\(620\) 9888.70 0.640548
\(621\) 0 0
\(622\) −9124.33 −0.588187
\(623\) 8800.89 0.565971
\(624\) 0 0
\(625\) 5649.92 0.361595
\(626\) 6582.19 0.420251
\(627\) 0 0
\(628\) −6005.92 −0.381628
\(629\) 21914.0 1.38914
\(630\) 0 0
\(631\) 7890.00 0.497775 0.248887 0.968532i \(-0.419935\pi\)
0.248887 + 0.968532i \(0.419935\pi\)
\(632\) −5764.92 −0.362842
\(633\) 0 0
\(634\) 2232.37 0.139840
\(635\) −1996.61 −0.124776
\(636\) 0 0
\(637\) −2104.94 −0.130927
\(638\) −2723.30 −0.168991
\(639\) 0 0
\(640\) 7690.30 0.474978
\(641\) −20817.4 −1.28274 −0.641370 0.767232i \(-0.721634\pi\)
−0.641370 + 0.767232i \(0.721634\pi\)
\(642\) 0 0
\(643\) −22246.1 −1.36439 −0.682193 0.731172i \(-0.738973\pi\)
−0.682193 + 0.731172i \(0.738973\pi\)
\(644\) 4539.49 0.277765
\(645\) 0 0
\(646\) −8117.91 −0.494420
\(647\) 30769.4 1.86966 0.934829 0.355099i \(-0.115553\pi\)
0.934829 + 0.355099i \(0.115553\pi\)
\(648\) 0 0
\(649\) −5226.05 −0.316087
\(650\) −3919.85 −0.236537
\(651\) 0 0
\(652\) 23194.7 1.39321
\(653\) −14927.0 −0.894546 −0.447273 0.894397i \(-0.647605\pi\)
−0.447273 + 0.894397i \(0.647605\pi\)
\(654\) 0 0
\(655\) −390.820 −0.0233139
\(656\) 13829.0 0.823068
\(657\) 0 0
\(658\) −447.922 −0.0265377
\(659\) 11593.6 0.685318 0.342659 0.939460i \(-0.388673\pi\)
0.342659 + 0.939460i \(0.388673\pi\)
\(660\) 0 0
\(661\) 24733.6 1.45541 0.727704 0.685891i \(-0.240587\pi\)
0.727704 + 0.685891i \(0.240587\pi\)
\(662\) −1434.43 −0.0842155
\(663\) 0 0
\(664\) 15791.4 0.922927
\(665\) −5282.14 −0.308019
\(666\) 0 0
\(667\) −23836.2 −1.38372
\(668\) −3747.39 −0.217052
\(669\) 0 0
\(670\) 3691.97 0.212886
\(671\) 8789.78 0.505701
\(672\) 0 0
\(673\) −22202.2 −1.27167 −0.635834 0.771826i \(-0.719344\pi\)
−0.635834 + 0.771826i \(0.719344\pi\)
\(674\) −2377.61 −0.135878
\(675\) 0 0
\(676\) 2496.46 0.142038
\(677\) 10445.5 0.592989 0.296494 0.955035i \(-0.404182\pi\)
0.296494 + 0.955035i \(0.404182\pi\)
\(678\) 0 0
\(679\) 6998.77 0.395565
\(680\) 4680.77 0.263970
\(681\) 0 0
\(682\) −2707.60 −0.152022
\(683\) 15600.1 0.873969 0.436985 0.899469i \(-0.356046\pi\)
0.436985 + 0.899469i \(0.356046\pi\)
\(684\) 0 0
\(685\) −6881.67 −0.383847
\(686\) 325.394 0.0181102
\(687\) 0 0
\(688\) −3990.70 −0.221140
\(689\) −10569.3 −0.584410
\(690\) 0 0
\(691\) −26622.8 −1.46567 −0.732835 0.680406i \(-0.761803\pi\)
−0.732835 + 0.680406i \(0.761803\pi\)
\(692\) 197.622 0.0108562
\(693\) 0 0
\(694\) −6391.20 −0.349578
\(695\) −7366.17 −0.402035
\(696\) 0 0
\(697\) 19481.5 1.05870
\(698\) −1738.09 −0.0942517
\(699\) 0 0
\(700\) −4780.45 −0.258120
\(701\) 16091.8 0.867017 0.433508 0.901150i \(-0.357275\pi\)
0.433508 + 0.901150i \(0.357275\pi\)
\(702\) 0 0
\(703\) 50606.7 2.71503
\(704\) 2178.87 0.116646
\(705\) 0 0
\(706\) 3743.99 0.199585
\(707\) 4606.33 0.245034
\(708\) 0 0
\(709\) 58.1652 0.00308101 0.00154051 0.999999i \(-0.499510\pi\)
0.00154051 + 0.999999i \(0.499510\pi\)
\(710\) 2772.07 0.146527
\(711\) 0 0
\(712\) −18010.3 −0.947985
\(713\) −23698.7 −1.24477
\(714\) 0 0
\(715\) 2536.53 0.132672
\(716\) 11521.9 0.601390
\(717\) 0 0
\(718\) 5311.46 0.276075
\(719\) −2437.03 −0.126406 −0.0632030 0.998001i \(-0.520132\pi\)
−0.0632030 + 0.998001i \(0.520132\pi\)
\(720\) 0 0
\(721\) −2570.28 −0.132763
\(722\) −12240.1 −0.630925
\(723\) 0 0
\(724\) −31530.8 −1.61855
\(725\) 25101.4 1.28585
\(726\) 0 0
\(727\) −5394.60 −0.275206 −0.137603 0.990487i \(-0.543940\pi\)
−0.137603 + 0.990487i \(0.543940\pi\)
\(728\) 4307.59 0.219300
\(729\) 0 0
\(730\) 2954.48 0.149795
\(731\) −5621.87 −0.284449
\(732\) 0 0
\(733\) −21145.5 −1.06552 −0.532761 0.846266i \(-0.678845\pi\)
−0.532761 + 0.846266i \(0.678845\pi\)
\(734\) −7759.65 −0.390210
\(735\) 0 0
\(736\) −14211.4 −0.711738
\(737\) 7975.03 0.398594
\(738\) 0 0
\(739\) −37759.5 −1.87957 −0.939787 0.341760i \(-0.888977\pi\)
−0.939787 + 0.341760i \(0.888977\pi\)
\(740\) −13720.3 −0.681579
\(741\) 0 0
\(742\) 1633.86 0.0808370
\(743\) 9418.47 0.465047 0.232524 0.972591i \(-0.425302\pi\)
0.232524 + 0.972591i \(0.425302\pi\)
\(744\) 0 0
\(745\) 1333.69 0.0655876
\(746\) −11030.5 −0.541361
\(747\) 0 0
\(748\) 4754.16 0.232392
\(749\) 14029.9 0.684435
\(750\) 0 0
\(751\) 19452.5 0.945185 0.472592 0.881281i \(-0.343318\pi\)
0.472592 + 0.881281i \(0.343318\pi\)
\(752\) −2914.60 −0.141336
\(753\) 0 0
\(754\) −10635.2 −0.513676
\(755\) −6696.53 −0.322797
\(756\) 0 0
\(757\) −5870.88 −0.281877 −0.140938 0.990018i \(-0.545012\pi\)
−0.140938 + 0.990018i \(0.545012\pi\)
\(758\) −1507.05 −0.0722145
\(759\) 0 0
\(760\) 10809.5 0.515922
\(761\) −9711.24 −0.462591 −0.231296 0.972883i \(-0.574296\pi\)
−0.231296 + 0.972883i \(0.574296\pi\)
\(762\) 0 0
\(763\) −407.958 −0.0193566
\(764\) −7944.42 −0.376203
\(765\) 0 0
\(766\) −38.3853 −0.00181060
\(767\) −20409.1 −0.960796
\(768\) 0 0
\(769\) 3693.86 0.173217 0.0866085 0.996242i \(-0.472397\pi\)
0.0866085 + 0.996242i \(0.472397\pi\)
\(770\) −392.112 −0.0183516
\(771\) 0 0
\(772\) −2285.53 −0.106552
\(773\) −38031.9 −1.76962 −0.884808 0.465955i \(-0.845711\pi\)
−0.884808 + 0.465955i \(0.845711\pi\)
\(774\) 0 0
\(775\) 24956.7 1.15674
\(776\) −14322.4 −0.662559
\(777\) 0 0
\(778\) 5911.03 0.272392
\(779\) 44989.4 2.06921
\(780\) 0 0
\(781\) 5987.95 0.274348
\(782\) −5274.55 −0.241199
\(783\) 0 0
\(784\) 2117.32 0.0964521
\(785\) 4540.70 0.206452
\(786\) 0 0
\(787\) 3509.51 0.158959 0.0794793 0.996837i \(-0.474674\pi\)
0.0794793 + 0.996837i \(0.474674\pi\)
\(788\) −17109.0 −0.773457
\(789\) 0 0
\(790\) 2049.37 0.0922951
\(791\) 12493.9 0.561608
\(792\) 0 0
\(793\) 34326.4 1.53716
\(794\) 3497.03 0.156303
\(795\) 0 0
\(796\) −12087.5 −0.538230
\(797\) −32249.5 −1.43330 −0.716648 0.697435i \(-0.754324\pi\)
−0.716648 + 0.697435i \(0.754324\pi\)
\(798\) 0 0
\(799\) −4105.91 −0.181798
\(800\) 14965.7 0.661399
\(801\) 0 0
\(802\) 416.242 0.0183267
\(803\) 6381.97 0.280467
\(804\) 0 0
\(805\) −3432.03 −0.150265
\(806\) −10573.9 −0.462096
\(807\) 0 0
\(808\) −9426.49 −0.410424
\(809\) 10977.6 0.477072 0.238536 0.971134i \(-0.423332\pi\)
0.238536 + 0.971134i \(0.423332\pi\)
\(810\) 0 0
\(811\) 39624.5 1.71567 0.857833 0.513928i \(-0.171810\pi\)
0.857833 + 0.513928i \(0.171810\pi\)
\(812\) −12970.2 −0.560546
\(813\) 0 0
\(814\) 3756.71 0.161760
\(815\) −17536.1 −0.753696
\(816\) 0 0
\(817\) −12982.8 −0.555949
\(818\) 6463.50 0.276272
\(819\) 0 0
\(820\) −12197.3 −0.519451
\(821\) 13918.0 0.591647 0.295824 0.955243i \(-0.404406\pi\)
0.295824 + 0.955243i \(0.404406\pi\)
\(822\) 0 0
\(823\) 8300.77 0.351575 0.175788 0.984428i \(-0.443753\pi\)
0.175788 + 0.984428i \(0.443753\pi\)
\(824\) 5259.87 0.222374
\(825\) 0 0
\(826\) 3154.96 0.132900
\(827\) −7729.99 −0.325028 −0.162514 0.986706i \(-0.551960\pi\)
−0.162514 + 0.986706i \(0.551960\pi\)
\(828\) 0 0
\(829\) 19095.7 0.800027 0.400014 0.916509i \(-0.369005\pi\)
0.400014 + 0.916509i \(0.369005\pi\)
\(830\) −5613.65 −0.234762
\(831\) 0 0
\(832\) 8509.06 0.354565
\(833\) 2982.75 0.124065
\(834\) 0 0
\(835\) 2833.17 0.117420
\(836\) 10978.9 0.454204
\(837\) 0 0
\(838\) 4543.98 0.187314
\(839\) −37318.3 −1.53560 −0.767801 0.640688i \(-0.778649\pi\)
−0.767801 + 0.640688i \(0.778649\pi\)
\(840\) 0 0
\(841\) 43715.4 1.79242
\(842\) 5608.82 0.229564
\(843\) 0 0
\(844\) 16471.0 0.671750
\(845\) −1887.42 −0.0768394
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 10631.4 0.430525
\(849\) 0 0
\(850\) 5554.53 0.224140
\(851\) 32881.3 1.32451
\(852\) 0 0
\(853\) −2096.82 −0.0841663 −0.0420831 0.999114i \(-0.513399\pi\)
−0.0420831 + 0.999114i \(0.513399\pi\)
\(854\) −5306.38 −0.212624
\(855\) 0 0
\(856\) −28711.1 −1.14641
\(857\) −11671.7 −0.465223 −0.232611 0.972570i \(-0.574727\pi\)
−0.232611 + 0.972570i \(0.574727\pi\)
\(858\) 0 0
\(859\) −25386.7 −1.00836 −0.504181 0.863598i \(-0.668206\pi\)
−0.504181 + 0.863598i \(0.668206\pi\)
\(860\) 3519.84 0.139565
\(861\) 0 0
\(862\) −12549.5 −0.495869
\(863\) −2360.78 −0.0931191 −0.0465596 0.998916i \(-0.514826\pi\)
−0.0465596 + 0.998916i \(0.514826\pi\)
\(864\) 0 0
\(865\) −149.410 −0.00587293
\(866\) 13108.6 0.514373
\(867\) 0 0
\(868\) −12895.4 −0.504260
\(869\) 4426.83 0.172808
\(870\) 0 0
\(871\) 31144.7 1.21159
\(872\) 834.855 0.0324217
\(873\) 0 0
\(874\) −12180.7 −0.471417
\(875\) 8311.10 0.321105
\(876\) 0 0
\(877\) 8504.19 0.327441 0.163721 0.986507i \(-0.447650\pi\)
0.163721 + 0.986507i \(0.447650\pi\)
\(878\) 4817.95 0.185191
\(879\) 0 0
\(880\) −2551.44 −0.0977377
\(881\) 8050.60 0.307868 0.153934 0.988081i \(-0.450806\pi\)
0.153934 + 0.988081i \(0.450806\pi\)
\(882\) 0 0
\(883\) −38768.2 −1.47752 −0.738762 0.673966i \(-0.764589\pi\)
−0.738762 + 0.673966i \(0.764589\pi\)
\(884\) 18566.3 0.706392
\(885\) 0 0
\(886\) −8042.37 −0.304953
\(887\) −41925.4 −1.58705 −0.793526 0.608536i \(-0.791757\pi\)
−0.793526 + 0.608536i \(0.791757\pi\)
\(888\) 0 0
\(889\) 2603.68 0.0982279
\(890\) 6402.47 0.241136
\(891\) 0 0
\(892\) −5618.79 −0.210909
\(893\) −9481.93 −0.355320
\(894\) 0 0
\(895\) −8711.02 −0.325338
\(896\) −10028.5 −0.373917
\(897\) 0 0
\(898\) 16878.8 0.627231
\(899\) 67711.7 2.51203
\(900\) 0 0
\(901\) 14977.0 0.553779
\(902\) 3339.72 0.123282
\(903\) 0 0
\(904\) −25567.8 −0.940677
\(905\) 23838.5 0.875601
\(906\) 0 0
\(907\) −12962.1 −0.474533 −0.237266 0.971445i \(-0.576251\pi\)
−0.237266 + 0.971445i \(0.576251\pi\)
\(908\) −9551.95 −0.349111
\(909\) 0 0
\(910\) −1531.30 −0.0557826
\(911\) −29894.3 −1.08720 −0.543602 0.839343i \(-0.682940\pi\)
−0.543602 + 0.839343i \(0.682940\pi\)
\(912\) 0 0
\(913\) −12126.0 −0.439555
\(914\) 1314.13 0.0475575
\(915\) 0 0
\(916\) −8587.68 −0.309765
\(917\) 509.649 0.0183534
\(918\) 0 0
\(919\) 1297.57 0.0465754 0.0232877 0.999729i \(-0.492587\pi\)
0.0232877 + 0.999729i \(0.492587\pi\)
\(920\) 7023.37 0.251689
\(921\) 0 0
\(922\) −8703.67 −0.310889
\(923\) 23384.6 0.833924
\(924\) 0 0
\(925\) −34626.7 −1.23083
\(926\) −3857.29 −0.136888
\(927\) 0 0
\(928\) 40604.6 1.43633
\(929\) 38299.3 1.35259 0.676297 0.736629i \(-0.263584\pi\)
0.676297 + 0.736629i \(0.263584\pi\)
\(930\) 0 0
\(931\) 6888.18 0.242482
\(932\) −36220.4 −1.27300
\(933\) 0 0
\(934\) 15552.2 0.544844
\(935\) −3594.32 −0.125719
\(936\) 0 0
\(937\) −17601.2 −0.613667 −0.306834 0.951763i \(-0.599269\pi\)
−0.306834 + 0.951763i \(0.599269\pi\)
\(938\) −4814.52 −0.167590
\(939\) 0 0
\(940\) 2570.70 0.0891990
\(941\) −39385.4 −1.36443 −0.682214 0.731152i \(-0.738983\pi\)
−0.682214 + 0.731152i \(0.738983\pi\)
\(942\) 0 0
\(943\) 29231.5 1.00945
\(944\) 20529.1 0.707803
\(945\) 0 0
\(946\) −963.757 −0.0331231
\(947\) −42471.2 −1.45737 −0.728685 0.684849i \(-0.759868\pi\)
−0.728685 + 0.684849i \(0.759868\pi\)
\(948\) 0 0
\(949\) 24923.3 0.852523
\(950\) 12827.3 0.438075
\(951\) 0 0
\(952\) −6103.96 −0.207805
\(953\) 39650.2 1.34774 0.673870 0.738850i \(-0.264631\pi\)
0.673870 + 0.738850i \(0.264631\pi\)
\(954\) 0 0
\(955\) 6006.28 0.203517
\(956\) 14717.9 0.497918
\(957\) 0 0
\(958\) 11695.4 0.394428
\(959\) 8974.05 0.302176
\(960\) 0 0
\(961\) 37530.2 1.25978
\(962\) 14671.0 0.491696
\(963\) 0 0
\(964\) −20562.4 −0.687003
\(965\) 1727.95 0.0576421
\(966\) 0 0
\(967\) −48452.2 −1.61129 −0.805644 0.592399i \(-0.798181\pi\)
−0.805644 + 0.592399i \(0.798181\pi\)
\(968\) 1733.32 0.0575527
\(969\) 0 0
\(970\) 5091.47 0.168533
\(971\) 10531.1 0.348051 0.174026 0.984741i \(-0.444322\pi\)
0.174026 + 0.984741i \(0.444322\pi\)
\(972\) 0 0
\(973\) 9605.85 0.316495
\(974\) 1794.47 0.0590333
\(975\) 0 0
\(976\) −34528.3 −1.13240
\(977\) −49108.4 −1.60810 −0.804052 0.594559i \(-0.797327\pi\)
−0.804052 + 0.594559i \(0.797327\pi\)
\(978\) 0 0
\(979\) 13830.0 0.451489
\(980\) −1867.50 −0.0608724
\(981\) 0 0
\(982\) 459.648 0.0149368
\(983\) 2280.32 0.0739888 0.0369944 0.999315i \(-0.488222\pi\)
0.0369944 + 0.999315i \(0.488222\pi\)
\(984\) 0 0
\(985\) 12935.1 0.418423
\(986\) 15070.4 0.486753
\(987\) 0 0
\(988\) 42875.7 1.38063
\(989\) −8435.46 −0.271215
\(990\) 0 0
\(991\) −15807.2 −0.506691 −0.253345 0.967376i \(-0.581531\pi\)
−0.253345 + 0.967376i \(0.581531\pi\)
\(992\) 40370.4 1.29210
\(993\) 0 0
\(994\) −3614.92 −0.115350
\(995\) 9138.63 0.291170
\(996\) 0 0
\(997\) 51827.2 1.64632 0.823161 0.567808i \(-0.192208\pi\)
0.823161 + 0.567808i \(0.192208\pi\)
\(998\) 10362.3 0.328670
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.m.1.2 4
3.2 odd 2 77.4.a.c.1.3 4
12.11 even 2 1232.4.a.w.1.2 4
15.14 odd 2 1925.4.a.q.1.2 4
21.20 even 2 539.4.a.f.1.3 4
33.32 even 2 847.4.a.e.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.3 4 3.2 odd 2
539.4.a.f.1.3 4 21.20 even 2
693.4.a.m.1.2 4 1.1 even 1 trivial
847.4.a.e.1.2 4 33.32 even 2
1232.4.a.w.1.2 4 12.11 even 2
1925.4.a.q.1.2 4 15.14 odd 2