Properties

Label 693.4.a.m.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.509800.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 5x + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.66444\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.76366 q^{2} +6.16515 q^{4} +15.4926 q^{5} -7.00000 q^{7} +6.90574 q^{8} +O(q^{10})\) \(q-3.76366 q^{2} +6.16515 q^{4} +15.4926 q^{5} -7.00000 q^{7} +6.90574 q^{8} -58.3089 q^{10} -11.0000 q^{11} +49.0777 q^{13} +26.3456 q^{14} -75.3121 q^{16} +34.1261 q^{17} -144.114 q^{19} +95.5142 q^{20} +41.4003 q^{22} -118.906 q^{23} +115.020 q^{25} -184.712 q^{26} -43.1561 q^{28} +63.6830 q^{29} -212.912 q^{31} +228.203 q^{32} -128.439 q^{34} -108.448 q^{35} -200.224 q^{37} +542.396 q^{38} +106.988 q^{40} -451.267 q^{41} -130.664 q^{43} -67.8167 q^{44} +447.523 q^{46} +176.271 q^{47} +49.0000 q^{49} -432.898 q^{50} +302.571 q^{52} +629.988 q^{53} -170.419 q^{55} -48.3402 q^{56} -239.681 q^{58} +86.9318 q^{59} +644.248 q^{61} +801.330 q^{62} -256.384 q^{64} +760.340 q^{65} -400.974 q^{67} +210.393 q^{68} +408.162 q^{70} -507.611 q^{71} +176.392 q^{73} +753.575 q^{74} -888.485 q^{76} +77.0000 q^{77} -701.122 q^{79} -1166.78 q^{80} +1698.42 q^{82} +1259.27 q^{83} +528.702 q^{85} +491.775 q^{86} -75.9631 q^{88} -788.394 q^{89} -343.544 q^{91} -733.075 q^{92} -663.423 q^{94} -2232.70 q^{95} +185.039 q^{97} -184.419 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 22 q^{4} + 18 q^{5} - 28 q^{7} + 60 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 22 q^{4} + 18 q^{5} - 28 q^{7} + 60 q^{8} - 92 q^{10} - 44 q^{11} - 134 q^{13} - 28 q^{14} - 6 q^{16} + 74 q^{17} - 164 q^{19} - 116 q^{20} - 44 q^{22} - 194 q^{23} + 38 q^{25} - 734 q^{26} - 154 q^{28} + 108 q^{29} - 412 q^{31} + 4 q^{32} - 346 q^{34} - 126 q^{35} + 286 q^{37} - 224 q^{38} - 540 q^{40} + 18 q^{41} - 496 q^{43} - 242 q^{44} - 284 q^{46} - 62 q^{47} + 196 q^{49} - 212 q^{50} - 822 q^{52} + 828 q^{53} - 198 q^{55} - 420 q^{56} + 1388 q^{58} + 1224 q^{59} - 350 q^{61} + 878 q^{62} - 718 q^{64} + 396 q^{65} - 1498 q^{67} - 1058 q^{68} + 644 q^{70} - 2326 q^{71} - 1630 q^{73} + 1156 q^{74} - 3152 q^{76} + 308 q^{77} - 1020 q^{79} - 3072 q^{80} + 2118 q^{82} + 1920 q^{83} + 2008 q^{85} - 1056 q^{86} - 660 q^{88} - 1550 q^{89} + 938 q^{91} - 2592 q^{92} - 1042 q^{94} - 2332 q^{95} - 2202 q^{97} + 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.76366 −1.33066 −0.665328 0.746551i \(-0.731708\pi\)
−0.665328 + 0.746551i \(0.731708\pi\)
\(3\) 0 0
\(4\) 6.16515 0.770644
\(5\) 15.4926 1.38570 0.692850 0.721082i \(-0.256355\pi\)
0.692850 + 0.721082i \(0.256355\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 6.90574 0.305193
\(9\) 0 0
\(10\) −58.3089 −1.84389
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 49.0777 1.04705 0.523527 0.852009i \(-0.324616\pi\)
0.523527 + 0.852009i \(0.324616\pi\)
\(14\) 26.3456 0.502941
\(15\) 0 0
\(16\) −75.3121 −1.17675
\(17\) 34.1261 0.486871 0.243435 0.969917i \(-0.421726\pi\)
0.243435 + 0.969917i \(0.421726\pi\)
\(18\) 0 0
\(19\) −144.114 −1.74011 −0.870053 0.492958i \(-0.835916\pi\)
−0.870053 + 0.492958i \(0.835916\pi\)
\(20\) 95.5142 1.06788
\(21\) 0 0
\(22\) 41.4003 0.401208
\(23\) −118.906 −1.07798 −0.538992 0.842311i \(-0.681195\pi\)
−0.538992 + 0.842311i \(0.681195\pi\)
\(24\) 0 0
\(25\) 115.020 0.920164
\(26\) −184.712 −1.39327
\(27\) 0 0
\(28\) −43.1561 −0.291276
\(29\) 63.6830 0.407780 0.203890 0.978994i \(-0.434641\pi\)
0.203890 + 0.978994i \(0.434641\pi\)
\(30\) 0 0
\(31\) −212.912 −1.23355 −0.616777 0.787138i \(-0.711562\pi\)
−0.616777 + 0.787138i \(0.711562\pi\)
\(32\) 228.203 1.26066
\(33\) 0 0
\(34\) −128.439 −0.647857
\(35\) −108.448 −0.523745
\(36\) 0 0
\(37\) −200.224 −0.889638 −0.444819 0.895620i \(-0.646732\pi\)
−0.444819 + 0.895620i \(0.646732\pi\)
\(38\) 542.396 2.31548
\(39\) 0 0
\(40\) 106.988 0.422907
\(41\) −451.267 −1.71893 −0.859464 0.511197i \(-0.829202\pi\)
−0.859464 + 0.511197i \(0.829202\pi\)
\(42\) 0 0
\(43\) −130.664 −0.463396 −0.231698 0.972788i \(-0.574428\pi\)
−0.231698 + 0.972788i \(0.574428\pi\)
\(44\) −67.8167 −0.232358
\(45\) 0 0
\(46\) 447.523 1.43443
\(47\) 176.271 0.547057 0.273529 0.961864i \(-0.411809\pi\)
0.273529 + 0.961864i \(0.411809\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −432.898 −1.22442
\(51\) 0 0
\(52\) 302.571 0.806906
\(53\) 629.988 1.63274 0.816372 0.577526i \(-0.195982\pi\)
0.816372 + 0.577526i \(0.195982\pi\)
\(54\) 0 0
\(55\) −170.419 −0.417804
\(56\) −48.3402 −0.115352
\(57\) 0 0
\(58\) −239.681 −0.542615
\(59\) 86.9318 0.191823 0.0959115 0.995390i \(-0.469423\pi\)
0.0959115 + 0.995390i \(0.469423\pi\)
\(60\) 0 0
\(61\) 644.248 1.35225 0.676127 0.736785i \(-0.263657\pi\)
0.676127 + 0.736785i \(0.263657\pi\)
\(62\) 801.330 1.64143
\(63\) 0 0
\(64\) −256.384 −0.500750
\(65\) 760.340 1.45090
\(66\) 0 0
\(67\) −400.974 −0.731147 −0.365573 0.930783i \(-0.619127\pi\)
−0.365573 + 0.930783i \(0.619127\pi\)
\(68\) 210.393 0.375204
\(69\) 0 0
\(70\) 408.162 0.696925
\(71\) −507.611 −0.848484 −0.424242 0.905549i \(-0.639459\pi\)
−0.424242 + 0.905549i \(0.639459\pi\)
\(72\) 0 0
\(73\) 176.392 0.282811 0.141405 0.989952i \(-0.454838\pi\)
0.141405 + 0.989952i \(0.454838\pi\)
\(74\) 753.575 1.18380
\(75\) 0 0
\(76\) −888.485 −1.34100
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −701.122 −0.998512 −0.499256 0.866455i \(-0.666393\pi\)
−0.499256 + 0.866455i \(0.666393\pi\)
\(80\) −1166.78 −1.63062
\(81\) 0 0
\(82\) 1698.42 2.28730
\(83\) 1259.27 1.66534 0.832670 0.553770i \(-0.186811\pi\)
0.832670 + 0.553770i \(0.186811\pi\)
\(84\) 0 0
\(85\) 528.702 0.674656
\(86\) 491.775 0.616621
\(87\) 0 0
\(88\) −75.9631 −0.0920193
\(89\) −788.394 −0.938984 −0.469492 0.882937i \(-0.655563\pi\)
−0.469492 + 0.882937i \(0.655563\pi\)
\(90\) 0 0
\(91\) −343.544 −0.395749
\(92\) −733.075 −0.830743
\(93\) 0 0
\(94\) −663.423 −0.727945
\(95\) −2232.70 −2.41126
\(96\) 0 0
\(97\) 185.039 0.193689 0.0968446 0.995300i \(-0.469125\pi\)
0.0968446 + 0.995300i \(0.469125\pi\)
\(98\) −184.419 −0.190094
\(99\) 0 0
\(100\) 709.119 0.709119
\(101\) −1243.55 −1.22513 −0.612565 0.790420i \(-0.709862\pi\)
−0.612565 + 0.790420i \(0.709862\pi\)
\(102\) 0 0
\(103\) −1555.21 −1.48776 −0.743879 0.668315i \(-0.767016\pi\)
−0.743879 + 0.668315i \(0.767016\pi\)
\(104\) 338.918 0.319554
\(105\) 0 0
\(106\) −2371.06 −2.17262
\(107\) 247.062 0.223218 0.111609 0.993752i \(-0.464400\pi\)
0.111609 + 0.993752i \(0.464400\pi\)
\(108\) 0 0
\(109\) 1160.58 1.01985 0.509923 0.860220i \(-0.329674\pi\)
0.509923 + 0.860220i \(0.329674\pi\)
\(110\) 641.398 0.555953
\(111\) 0 0
\(112\) 527.185 0.444770
\(113\) −1738.50 −1.44729 −0.723646 0.690171i \(-0.757535\pi\)
−0.723646 + 0.690171i \(0.757535\pi\)
\(114\) 0 0
\(115\) −1842.16 −1.49376
\(116\) 392.615 0.314254
\(117\) 0 0
\(118\) −327.182 −0.255250
\(119\) −238.883 −0.184020
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −2424.73 −1.79938
\(123\) 0 0
\(124\) −1312.64 −0.950631
\(125\) −154.609 −0.110629
\(126\) 0 0
\(127\) −1507.65 −1.05340 −0.526701 0.850051i \(-0.676571\pi\)
−0.526701 + 0.850051i \(0.676571\pi\)
\(128\) −860.685 −0.594333
\(129\) 0 0
\(130\) −2861.66 −1.93065
\(131\) −1327.55 −0.885408 −0.442704 0.896668i \(-0.645981\pi\)
−0.442704 + 0.896668i \(0.645981\pi\)
\(132\) 0 0
\(133\) 1008.80 0.657698
\(134\) 1509.13 0.972904
\(135\) 0 0
\(136\) 235.666 0.148590
\(137\) 441.531 0.275347 0.137674 0.990478i \(-0.456038\pi\)
0.137674 + 0.990478i \(0.456038\pi\)
\(138\) 0 0
\(139\) 179.162 0.109326 0.0546631 0.998505i \(-0.482592\pi\)
0.0546631 + 0.998505i \(0.482592\pi\)
\(140\) −668.600 −0.403621
\(141\) 0 0
\(142\) 1910.48 1.12904
\(143\) −539.854 −0.315698
\(144\) 0 0
\(145\) 986.615 0.565061
\(146\) −663.882 −0.376324
\(147\) 0 0
\(148\) −1234.41 −0.685594
\(149\) 1147.07 0.630680 0.315340 0.948979i \(-0.397882\pi\)
0.315340 + 0.948979i \(0.397882\pi\)
\(150\) 0 0
\(151\) 1873.03 1.00944 0.504719 0.863284i \(-0.331596\pi\)
0.504719 + 0.863284i \(0.331596\pi\)
\(152\) −995.214 −0.531069
\(153\) 0 0
\(154\) −289.802 −0.151642
\(155\) −3298.56 −1.70933
\(156\) 0 0
\(157\) −643.927 −0.327331 −0.163665 0.986516i \(-0.552332\pi\)
−0.163665 + 0.986516i \(0.552332\pi\)
\(158\) 2638.79 1.32868
\(159\) 0 0
\(160\) 3535.46 1.74689
\(161\) 832.343 0.407440
\(162\) 0 0
\(163\) −3044.47 −1.46295 −0.731477 0.681866i \(-0.761169\pi\)
−0.731477 + 0.681866i \(0.761169\pi\)
\(164\) −2782.13 −1.32468
\(165\) 0 0
\(166\) −4739.48 −2.21599
\(167\) 337.038 0.156172 0.0780861 0.996947i \(-0.475119\pi\)
0.0780861 + 0.996947i \(0.475119\pi\)
\(168\) 0 0
\(169\) 211.617 0.0963209
\(170\) −1989.86 −0.897735
\(171\) 0 0
\(172\) −805.563 −0.357114
\(173\) 3504.80 1.54026 0.770131 0.637886i \(-0.220191\pi\)
0.770131 + 0.637886i \(0.220191\pi\)
\(174\) 0 0
\(175\) −805.143 −0.347789
\(176\) 828.433 0.354804
\(177\) 0 0
\(178\) 2967.25 1.24946
\(179\) −221.078 −0.0923135 −0.0461568 0.998934i \(-0.514697\pi\)
−0.0461568 + 0.998934i \(0.514697\pi\)
\(180\) 0 0
\(181\) −4561.63 −1.87328 −0.936640 0.350295i \(-0.886081\pi\)
−0.936640 + 0.350295i \(0.886081\pi\)
\(182\) 1292.98 0.526606
\(183\) 0 0
\(184\) −821.135 −0.328994
\(185\) −3101.99 −1.23277
\(186\) 0 0
\(187\) −375.387 −0.146797
\(188\) 1086.74 0.421587
\(189\) 0 0
\(190\) 8403.13 3.20856
\(191\) −4180.40 −1.58368 −0.791841 0.610727i \(-0.790877\pi\)
−0.791841 + 0.610727i \(0.790877\pi\)
\(192\) 0 0
\(193\) −1942.59 −0.724510 −0.362255 0.932079i \(-0.617993\pi\)
−0.362255 + 0.932079i \(0.617993\pi\)
\(194\) −696.424 −0.257734
\(195\) 0 0
\(196\) 302.093 0.110092
\(197\) −3775.15 −1.36532 −0.682660 0.730736i \(-0.739177\pi\)
−0.682660 + 0.730736i \(0.739177\pi\)
\(198\) 0 0
\(199\) −993.760 −0.353999 −0.176999 0.984211i \(-0.556639\pi\)
−0.176999 + 0.984211i \(0.556639\pi\)
\(200\) 794.302 0.280828
\(201\) 0 0
\(202\) 4680.31 1.63023
\(203\) −445.781 −0.154127
\(204\) 0 0
\(205\) −6991.29 −2.38192
\(206\) 5853.27 1.97969
\(207\) 0 0
\(208\) −3696.14 −1.23212
\(209\) 1585.25 0.524662
\(210\) 0 0
\(211\) −2912.24 −0.950176 −0.475088 0.879938i \(-0.657584\pi\)
−0.475088 + 0.879938i \(0.657584\pi\)
\(212\) 3883.97 1.25827
\(213\) 0 0
\(214\) −929.856 −0.297026
\(215\) −2024.32 −0.642128
\(216\) 0 0
\(217\) 1490.39 0.466239
\(218\) −4368.02 −1.35706
\(219\) 0 0
\(220\) −1050.66 −0.321978
\(221\) 1674.83 0.509780
\(222\) 0 0
\(223\) 5069.26 1.52225 0.761127 0.648603i \(-0.224647\pi\)
0.761127 + 0.648603i \(0.224647\pi\)
\(224\) −1597.42 −0.476484
\(225\) 0 0
\(226\) 6543.12 1.92585
\(227\) 5653.25 1.65295 0.826475 0.562974i \(-0.190343\pi\)
0.826475 + 0.562974i \(0.190343\pi\)
\(228\) 0 0
\(229\) −5141.63 −1.48371 −0.741853 0.670563i \(-0.766053\pi\)
−0.741853 + 0.670563i \(0.766053\pi\)
\(230\) 6933.29 1.98768
\(231\) 0 0
\(232\) 439.778 0.124452
\(233\) −312.296 −0.0878077 −0.0439039 0.999036i \(-0.513980\pi\)
−0.0439039 + 0.999036i \(0.513980\pi\)
\(234\) 0 0
\(235\) 2730.89 0.758057
\(236\) 535.948 0.147827
\(237\) 0 0
\(238\) 899.074 0.244867
\(239\) 4012.12 1.08587 0.542935 0.839775i \(-0.317313\pi\)
0.542935 + 0.839775i \(0.317313\pi\)
\(240\) 0 0
\(241\) 499.662 0.133552 0.0667761 0.997768i \(-0.478729\pi\)
0.0667761 + 0.997768i \(0.478729\pi\)
\(242\) −455.403 −0.120969
\(243\) 0 0
\(244\) 3971.89 1.04211
\(245\) 759.137 0.197957
\(246\) 0 0
\(247\) −7072.78 −1.82198
\(248\) −1470.32 −0.376472
\(249\) 0 0
\(250\) 581.895 0.147209
\(251\) 6112.34 1.53708 0.768541 0.639801i \(-0.220983\pi\)
0.768541 + 0.639801i \(0.220983\pi\)
\(252\) 0 0
\(253\) 1307.97 0.325025
\(254\) 5674.28 1.40172
\(255\) 0 0
\(256\) 5290.40 1.29160
\(257\) 1910.22 0.463642 0.231821 0.972758i \(-0.425532\pi\)
0.231821 + 0.972758i \(0.425532\pi\)
\(258\) 0 0
\(259\) 1401.57 0.336252
\(260\) 4687.62 1.11813
\(261\) 0 0
\(262\) 4996.44 1.17817
\(263\) −1749.49 −0.410184 −0.205092 0.978743i \(-0.565749\pi\)
−0.205092 + 0.978743i \(0.565749\pi\)
\(264\) 0 0
\(265\) 9760.14 2.26249
\(266\) −3796.77 −0.875170
\(267\) 0 0
\(268\) −2472.07 −0.563454
\(269\) 2884.89 0.653883 0.326942 0.945045i \(-0.393982\pi\)
0.326942 + 0.945045i \(0.393982\pi\)
\(270\) 0 0
\(271\) 6065.04 1.35950 0.679751 0.733443i \(-0.262088\pi\)
0.679751 + 0.733443i \(0.262088\pi\)
\(272\) −2570.11 −0.572926
\(273\) 0 0
\(274\) −1661.77 −0.366392
\(275\) −1265.23 −0.277440
\(276\) 0 0
\(277\) −3331.31 −0.722595 −0.361297 0.932451i \(-0.617666\pi\)
−0.361297 + 0.932451i \(0.617666\pi\)
\(278\) −674.307 −0.145476
\(279\) 0 0
\(280\) −748.915 −0.159844
\(281\) 384.608 0.0816505 0.0408252 0.999166i \(-0.487001\pi\)
0.0408252 + 0.999166i \(0.487001\pi\)
\(282\) 0 0
\(283\) 1768.02 0.371371 0.185685 0.982609i \(-0.440549\pi\)
0.185685 + 0.982609i \(0.440549\pi\)
\(284\) −3129.50 −0.653879
\(285\) 0 0
\(286\) 2031.83 0.420086
\(287\) 3158.87 0.649693
\(288\) 0 0
\(289\) −3748.41 −0.762957
\(290\) −3713.28 −0.751902
\(291\) 0 0
\(292\) 1087.49 0.217946
\(293\) −3801.87 −0.758047 −0.379023 0.925387i \(-0.623740\pi\)
−0.379023 + 0.925387i \(0.623740\pi\)
\(294\) 0 0
\(295\) 1346.80 0.265809
\(296\) −1382.69 −0.271512
\(297\) 0 0
\(298\) −4317.17 −0.839217
\(299\) −5835.64 −1.12871
\(300\) 0 0
\(301\) 914.647 0.175147
\(302\) −7049.46 −1.34321
\(303\) 0 0
\(304\) 10853.5 2.04767
\(305\) 9981.07 1.87382
\(306\) 0 0
\(307\) −687.619 −0.127832 −0.0639161 0.997955i \(-0.520359\pi\)
−0.0639161 + 0.997955i \(0.520359\pi\)
\(308\) 474.717 0.0878231
\(309\) 0 0
\(310\) 12414.7 2.27454
\(311\) 2517.73 0.459059 0.229530 0.973302i \(-0.426281\pi\)
0.229530 + 0.973302i \(0.426281\pi\)
\(312\) 0 0
\(313\) −4725.03 −0.853274 −0.426637 0.904423i \(-0.640302\pi\)
−0.426637 + 0.904423i \(0.640302\pi\)
\(314\) 2423.52 0.435565
\(315\) 0 0
\(316\) −4322.53 −0.769497
\(317\) −2870.09 −0.508519 −0.254259 0.967136i \(-0.581832\pi\)
−0.254259 + 0.967136i \(0.581832\pi\)
\(318\) 0 0
\(319\) −700.513 −0.122950
\(320\) −3972.05 −0.693888
\(321\) 0 0
\(322\) −3132.66 −0.542162
\(323\) −4918.05 −0.847207
\(324\) 0 0
\(325\) 5644.94 0.963461
\(326\) 11458.4 1.94669
\(327\) 0 0
\(328\) −3116.33 −0.524605
\(329\) −1233.89 −0.206768
\(330\) 0 0
\(331\) 365.467 0.0606885 0.0303443 0.999540i \(-0.490340\pi\)
0.0303443 + 0.999540i \(0.490340\pi\)
\(332\) 7763.61 1.28338
\(333\) 0 0
\(334\) −1268.50 −0.207811
\(335\) −6212.13 −1.01315
\(336\) 0 0
\(337\) −4292.33 −0.693822 −0.346911 0.937898i \(-0.612769\pi\)
−0.346911 + 0.937898i \(0.612769\pi\)
\(338\) −796.455 −0.128170
\(339\) 0 0
\(340\) 3259.53 0.519920
\(341\) 2342.03 0.371930
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −902.330 −0.141426
\(345\) 0 0
\(346\) −13190.9 −2.04956
\(347\) 6090.40 0.942218 0.471109 0.882075i \(-0.343854\pi\)
0.471109 + 0.882075i \(0.343854\pi\)
\(348\) 0 0
\(349\) 6338.89 0.972244 0.486122 0.873891i \(-0.338411\pi\)
0.486122 + 0.873891i \(0.338411\pi\)
\(350\) 3030.29 0.462788
\(351\) 0 0
\(352\) −2510.24 −0.380103
\(353\) −5754.44 −0.867643 −0.433821 0.900999i \(-0.642835\pi\)
−0.433821 + 0.900999i \(0.642835\pi\)
\(354\) 0 0
\(355\) −7864.21 −1.17574
\(356\) −4860.57 −0.723622
\(357\) 0 0
\(358\) 832.062 0.122838
\(359\) −7396.98 −1.08746 −0.543729 0.839261i \(-0.682988\pi\)
−0.543729 + 0.839261i \(0.682988\pi\)
\(360\) 0 0
\(361\) 13909.8 2.02797
\(362\) 17168.4 2.49269
\(363\) 0 0
\(364\) −2118.00 −0.304982
\(365\) 2732.78 0.391891
\(366\) 0 0
\(367\) −4613.59 −0.656205 −0.328102 0.944642i \(-0.606409\pi\)
−0.328102 + 0.944642i \(0.606409\pi\)
\(368\) 8955.07 1.26852
\(369\) 0 0
\(370\) 11674.8 1.64039
\(371\) −4409.91 −0.617119
\(372\) 0 0
\(373\) 4603.15 0.638986 0.319493 0.947589i \(-0.396487\pi\)
0.319493 + 0.947589i \(0.396487\pi\)
\(374\) 1412.83 0.195336
\(375\) 0 0
\(376\) 1217.28 0.166958
\(377\) 3125.41 0.426968
\(378\) 0 0
\(379\) 6982.50 0.946350 0.473175 0.880968i \(-0.343108\pi\)
0.473175 + 0.880968i \(0.343108\pi\)
\(380\) −13764.9 −1.85823
\(381\) 0 0
\(382\) 15733.6 2.10734
\(383\) −12743.5 −1.70016 −0.850079 0.526655i \(-0.823446\pi\)
−0.850079 + 0.526655i \(0.823446\pi\)
\(384\) 0 0
\(385\) 1192.93 0.157915
\(386\) 7311.24 0.964073
\(387\) 0 0
\(388\) 1140.79 0.149265
\(389\) −1568.76 −0.204471 −0.102235 0.994760i \(-0.532600\pi\)
−0.102235 + 0.994760i \(0.532600\pi\)
\(390\) 0 0
\(391\) −4057.81 −0.524839
\(392\) 338.381 0.0435991
\(393\) 0 0
\(394\) 14208.4 1.81677
\(395\) −10862.2 −1.38364
\(396\) 0 0
\(397\) 9841.87 1.24420 0.622102 0.782936i \(-0.286279\pi\)
0.622102 + 0.782936i \(0.286279\pi\)
\(398\) 3740.18 0.471050
\(399\) 0 0
\(400\) −8662.43 −1.08280
\(401\) −5128.60 −0.638679 −0.319339 0.947640i \(-0.603461\pi\)
−0.319339 + 0.947640i \(0.603461\pi\)
\(402\) 0 0
\(403\) −10449.2 −1.29160
\(404\) −7666.69 −0.944139
\(405\) 0 0
\(406\) 1677.77 0.205089
\(407\) 2202.46 0.268236
\(408\) 0 0
\(409\) −87.6006 −0.0105906 −0.00529532 0.999986i \(-0.501686\pi\)
−0.00529532 + 0.999986i \(0.501686\pi\)
\(410\) 26312.9 3.16951
\(411\) 0 0
\(412\) −9588.08 −1.14653
\(413\) −608.523 −0.0725023
\(414\) 0 0
\(415\) 19509.4 2.30766
\(416\) 11199.7 1.31998
\(417\) 0 0
\(418\) −5966.36 −0.698144
\(419\) 7130.86 0.831420 0.415710 0.909497i \(-0.363533\pi\)
0.415710 + 0.909497i \(0.363533\pi\)
\(420\) 0 0
\(421\) 6159.77 0.713085 0.356543 0.934279i \(-0.383955\pi\)
0.356543 + 0.934279i \(0.383955\pi\)
\(422\) 10960.7 1.26436
\(423\) 0 0
\(424\) 4350.53 0.498303
\(425\) 3925.20 0.448001
\(426\) 0 0
\(427\) −4509.74 −0.511104
\(428\) 1523.17 0.172022
\(429\) 0 0
\(430\) 7618.86 0.854452
\(431\) −12044.1 −1.34604 −0.673019 0.739625i \(-0.735003\pi\)
−0.673019 + 0.739625i \(0.735003\pi\)
\(432\) 0 0
\(433\) −9609.67 −1.06654 −0.533270 0.845945i \(-0.679037\pi\)
−0.533270 + 0.845945i \(0.679037\pi\)
\(434\) −5609.31 −0.620404
\(435\) 0 0
\(436\) 7155.14 0.785938
\(437\) 17136.0 1.87581
\(438\) 0 0
\(439\) −3122.62 −0.339486 −0.169743 0.985488i \(-0.554294\pi\)
−0.169743 + 0.985488i \(0.554294\pi\)
\(440\) −1176.87 −0.127511
\(441\) 0 0
\(442\) −6303.50 −0.678341
\(443\) −9381.76 −1.00619 −0.503093 0.864232i \(-0.667805\pi\)
−0.503093 + 0.864232i \(0.667805\pi\)
\(444\) 0 0
\(445\) −12214.3 −1.30115
\(446\) −19079.0 −2.02559
\(447\) 0 0
\(448\) 1794.69 0.189266
\(449\) −3407.36 −0.358136 −0.179068 0.983837i \(-0.557308\pi\)
−0.179068 + 0.983837i \(0.557308\pi\)
\(450\) 0 0
\(451\) 4963.93 0.518276
\(452\) −10718.1 −1.11535
\(453\) 0 0
\(454\) −21276.9 −2.19951
\(455\) −5322.38 −0.548389
\(456\) 0 0
\(457\) −13714.0 −1.40375 −0.701876 0.712299i \(-0.747654\pi\)
−0.701876 + 0.712299i \(0.747654\pi\)
\(458\) 19351.4 1.97430
\(459\) 0 0
\(460\) −11357.2 −1.15116
\(461\) 8864.54 0.895581 0.447790 0.894139i \(-0.352211\pi\)
0.447790 + 0.894139i \(0.352211\pi\)
\(462\) 0 0
\(463\) −14753.3 −1.48087 −0.740437 0.672126i \(-0.765381\pi\)
−0.740437 + 0.672126i \(0.765381\pi\)
\(464\) −4796.10 −0.479856
\(465\) 0 0
\(466\) 1175.38 0.116842
\(467\) −488.428 −0.0483977 −0.0241989 0.999707i \(-0.507703\pi\)
−0.0241989 + 0.999707i \(0.507703\pi\)
\(468\) 0 0
\(469\) 2806.82 0.276347
\(470\) −10278.1 −1.00871
\(471\) 0 0
\(472\) 600.329 0.0585431
\(473\) 1437.30 0.139719
\(474\) 0 0
\(475\) −16576.1 −1.60118
\(476\) −1472.75 −0.141814
\(477\) 0 0
\(478\) −15100.3 −1.44492
\(479\) 1233.56 0.117668 0.0588338 0.998268i \(-0.481262\pi\)
0.0588338 + 0.998268i \(0.481262\pi\)
\(480\) 0 0
\(481\) −9826.52 −0.931499
\(482\) −1880.56 −0.177712
\(483\) 0 0
\(484\) 745.984 0.0700586
\(485\) 2866.73 0.268395
\(486\) 0 0
\(487\) 16700.6 1.55395 0.776977 0.629529i \(-0.216752\pi\)
0.776977 + 0.629529i \(0.216752\pi\)
\(488\) 4449.01 0.412699
\(489\) 0 0
\(490\) −2857.14 −0.263413
\(491\) 2127.96 0.195587 0.0977937 0.995207i \(-0.468821\pi\)
0.0977937 + 0.995207i \(0.468821\pi\)
\(492\) 0 0
\(493\) 2173.25 0.198536
\(494\) 26619.5 2.42443
\(495\) 0 0
\(496\) 16034.9 1.45159
\(497\) 3553.28 0.320697
\(498\) 0 0
\(499\) 12341.5 1.10718 0.553590 0.832789i \(-0.313258\pi\)
0.553590 + 0.832789i \(0.313258\pi\)
\(500\) −953.186 −0.0852556
\(501\) 0 0
\(502\) −23004.8 −2.04533
\(503\) 3433.67 0.304374 0.152187 0.988352i \(-0.451368\pi\)
0.152187 + 0.988352i \(0.451368\pi\)
\(504\) 0 0
\(505\) −19265.9 −1.69766
\(506\) −4922.75 −0.432496
\(507\) 0 0
\(508\) −9294.88 −0.811798
\(509\) 1842.48 0.160445 0.0802223 0.996777i \(-0.474437\pi\)
0.0802223 + 0.996777i \(0.474437\pi\)
\(510\) 0 0
\(511\) −1234.75 −0.106892
\(512\) −13025.8 −1.12434
\(513\) 0 0
\(514\) −7189.41 −0.616948
\(515\) −24094.2 −2.06158
\(516\) 0 0
\(517\) −1938.98 −0.164944
\(518\) −5275.03 −0.447435
\(519\) 0 0
\(520\) 5250.71 0.442806
\(521\) −3532.65 −0.297060 −0.148530 0.988908i \(-0.547454\pi\)
−0.148530 + 0.988908i \(0.547454\pi\)
\(522\) 0 0
\(523\) −4497.20 −0.376001 −0.188001 0.982169i \(-0.560201\pi\)
−0.188001 + 0.982169i \(0.560201\pi\)
\(524\) −8184.54 −0.682335
\(525\) 0 0
\(526\) 6584.50 0.545814
\(527\) −7265.87 −0.600581
\(528\) 0 0
\(529\) 1971.67 0.162050
\(530\) −36733.9 −3.01060
\(531\) 0 0
\(532\) 6219.39 0.506851
\(533\) −22147.1 −1.79981
\(534\) 0 0
\(535\) 3827.62 0.309313
\(536\) −2769.02 −0.223141
\(537\) 0 0
\(538\) −10857.7 −0.870093
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −11426.0 −0.908023 −0.454011 0.890996i \(-0.650007\pi\)
−0.454011 + 0.890996i \(0.650007\pi\)
\(542\) −22826.8 −1.80903
\(543\) 0 0
\(544\) 7787.70 0.613777
\(545\) 17980.4 1.41320
\(546\) 0 0
\(547\) 17875.3 1.39725 0.698623 0.715490i \(-0.253796\pi\)
0.698623 + 0.715490i \(0.253796\pi\)
\(548\) 2722.11 0.212195
\(549\) 0 0
\(550\) 4761.88 0.369177
\(551\) −9177.61 −0.709581
\(552\) 0 0
\(553\) 4907.86 0.377402
\(554\) 12537.9 0.961525
\(555\) 0 0
\(556\) 1104.56 0.0842517
\(557\) −25343.4 −1.92789 −0.963946 0.266097i \(-0.914266\pi\)
−0.963946 + 0.266097i \(0.914266\pi\)
\(558\) 0 0
\(559\) −6412.68 −0.485201
\(560\) 8167.46 0.616318
\(561\) 0 0
\(562\) −1447.53 −0.108649
\(563\) 1597.92 0.119617 0.0598084 0.998210i \(-0.480951\pi\)
0.0598084 + 0.998210i \(0.480951\pi\)
\(564\) 0 0
\(565\) −26933.8 −2.00551
\(566\) −6654.23 −0.494166
\(567\) 0 0
\(568\) −3505.43 −0.258952
\(569\) 11487.7 0.846377 0.423188 0.906042i \(-0.360911\pi\)
0.423188 + 0.906042i \(0.360911\pi\)
\(570\) 0 0
\(571\) 17027.0 1.24791 0.623957 0.781459i \(-0.285524\pi\)
0.623957 + 0.781459i \(0.285524\pi\)
\(572\) −3328.28 −0.243291
\(573\) 0 0
\(574\) −11888.9 −0.864518
\(575\) −13676.6 −0.991922
\(576\) 0 0
\(577\) 19368.0 1.39740 0.698701 0.715414i \(-0.253762\pi\)
0.698701 + 0.715414i \(0.253762\pi\)
\(578\) 14107.7 1.01523
\(579\) 0 0
\(580\) 6082.63 0.435461
\(581\) −8814.91 −0.629439
\(582\) 0 0
\(583\) −6929.86 −0.492291
\(584\) 1218.12 0.0863120
\(585\) 0 0
\(586\) 14309.0 1.00870
\(587\) 27035.0 1.90094 0.950472 0.310809i \(-0.100600\pi\)
0.950472 + 0.310809i \(0.100600\pi\)
\(588\) 0 0
\(589\) 30683.6 2.14651
\(590\) −5068.90 −0.353700
\(591\) 0 0
\(592\) 15079.3 1.04688
\(593\) 9717.62 0.672943 0.336471 0.941694i \(-0.390766\pi\)
0.336471 + 0.941694i \(0.390766\pi\)
\(594\) 0 0
\(595\) −3700.92 −0.254996
\(596\) 7071.83 0.486030
\(597\) 0 0
\(598\) 21963.4 1.50192
\(599\) 18386.6 1.25418 0.627092 0.778945i \(-0.284245\pi\)
0.627092 + 0.778945i \(0.284245\pi\)
\(600\) 0 0
\(601\) −3288.31 −0.223183 −0.111591 0.993754i \(-0.535595\pi\)
−0.111591 + 0.993754i \(0.535595\pi\)
\(602\) −3442.42 −0.233061
\(603\) 0 0
\(604\) 11547.5 0.777918
\(605\) 1874.60 0.125973
\(606\) 0 0
\(607\) −27356.2 −1.82925 −0.914623 0.404307i \(-0.867513\pi\)
−0.914623 + 0.404307i \(0.867513\pi\)
\(608\) −32887.3 −2.19368
\(609\) 0 0
\(610\) −37565.4 −2.49341
\(611\) 8650.95 0.572798
\(612\) 0 0
\(613\) −9573.59 −0.630789 −0.315395 0.948961i \(-0.602137\pi\)
−0.315395 + 0.948961i \(0.602137\pi\)
\(614\) 2587.97 0.170101
\(615\) 0 0
\(616\) 531.742 0.0347800
\(617\) 7506.76 0.489807 0.244903 0.969547i \(-0.421244\pi\)
0.244903 + 0.969547i \(0.421244\pi\)
\(618\) 0 0
\(619\) −9294.64 −0.603527 −0.301763 0.953383i \(-0.597575\pi\)
−0.301763 + 0.953383i \(0.597575\pi\)
\(620\) −20336.1 −1.31729
\(621\) 0 0
\(622\) −9475.89 −0.610850
\(623\) 5518.75 0.354902
\(624\) 0 0
\(625\) −16772.8 −1.07346
\(626\) 17783.4 1.13541
\(627\) 0 0
\(628\) −3969.91 −0.252256
\(629\) −6832.87 −0.433139
\(630\) 0 0
\(631\) 4254.20 0.268395 0.134197 0.990955i \(-0.457154\pi\)
0.134197 + 0.990955i \(0.457154\pi\)
\(632\) −4841.77 −0.304739
\(633\) 0 0
\(634\) 10802.1 0.676663
\(635\) −23357.4 −1.45970
\(636\) 0 0
\(637\) 2404.81 0.149579
\(638\) 2636.49 0.163605
\(639\) 0 0
\(640\) −13334.3 −0.823566
\(641\) −5112.91 −0.315051 −0.157526 0.987515i \(-0.550352\pi\)
−0.157526 + 0.987515i \(0.550352\pi\)
\(642\) 0 0
\(643\) 7296.68 0.447516 0.223758 0.974645i \(-0.428167\pi\)
0.223758 + 0.974645i \(0.428167\pi\)
\(644\) 5131.52 0.313991
\(645\) 0 0
\(646\) 18509.9 1.12734
\(647\) −15612.1 −0.948649 −0.474324 0.880350i \(-0.657308\pi\)
−0.474324 + 0.880350i \(0.657308\pi\)
\(648\) 0 0
\(649\) −956.250 −0.0578368
\(650\) −21245.6 −1.28203
\(651\) 0 0
\(652\) −18769.6 −1.12742
\(653\) 23160.6 1.38797 0.693986 0.719988i \(-0.255853\pi\)
0.693986 + 0.719988i \(0.255853\pi\)
\(654\) 0 0
\(655\) −20567.2 −1.22691
\(656\) 33985.8 2.02275
\(657\) 0 0
\(658\) 4643.96 0.275137
\(659\) 5707.65 0.337388 0.168694 0.985668i \(-0.446045\pi\)
0.168694 + 0.985668i \(0.446045\pi\)
\(660\) 0 0
\(661\) −16202.5 −0.953411 −0.476706 0.879063i \(-0.658169\pi\)
−0.476706 + 0.879063i \(0.658169\pi\)
\(662\) −1375.50 −0.0807555
\(663\) 0 0
\(664\) 8696.21 0.508251
\(665\) 15628.9 0.911372
\(666\) 0 0
\(667\) −7572.30 −0.439581
\(668\) 2077.89 0.120353
\(669\) 0 0
\(670\) 23380.4 1.34815
\(671\) −7086.73 −0.407720
\(672\) 0 0
\(673\) −16956.2 −0.971192 −0.485596 0.874183i \(-0.661397\pi\)
−0.485596 + 0.874183i \(0.661397\pi\)
\(674\) 16154.9 0.923239
\(675\) 0 0
\(676\) 1304.65 0.0742292
\(677\) −21259.0 −1.20687 −0.603433 0.797414i \(-0.706201\pi\)
−0.603433 + 0.797414i \(0.706201\pi\)
\(678\) 0 0
\(679\) −1295.27 −0.0732076
\(680\) 3651.08 0.205901
\(681\) 0 0
\(682\) −8814.62 −0.494911
\(683\) −5867.98 −0.328744 −0.164372 0.986398i \(-0.552560\pi\)
−0.164372 + 0.986398i \(0.552560\pi\)
\(684\) 0 0
\(685\) 6840.46 0.381548
\(686\) 1290.94 0.0718486
\(687\) 0 0
\(688\) 9840.57 0.545303
\(689\) 30918.3 1.70957
\(690\) 0 0
\(691\) 15583.0 0.857892 0.428946 0.903330i \(-0.358885\pi\)
0.428946 + 0.903330i \(0.358885\pi\)
\(692\) 21607.7 1.18699
\(693\) 0 0
\(694\) −22922.2 −1.25377
\(695\) 2775.69 0.151493
\(696\) 0 0
\(697\) −15400.0 −0.836895
\(698\) −23857.4 −1.29372
\(699\) 0 0
\(700\) −4963.83 −0.268022
\(701\) 19210.5 1.03505 0.517525 0.855668i \(-0.326853\pi\)
0.517525 + 0.855668i \(0.326853\pi\)
\(702\) 0 0
\(703\) 28855.1 1.54806
\(704\) 2820.22 0.150982
\(705\) 0 0
\(706\) 21657.8 1.15453
\(707\) 8704.87 0.463055
\(708\) 0 0
\(709\) −1760.77 −0.0932683 −0.0466342 0.998912i \(-0.514850\pi\)
−0.0466342 + 0.998912i \(0.514850\pi\)
\(710\) 29598.2 1.56451
\(711\) 0 0
\(712\) −5444.44 −0.286572
\(713\) 25316.6 1.32975
\(714\) 0 0
\(715\) −8363.74 −0.437463
\(716\) −1362.98 −0.0711409
\(717\) 0 0
\(718\) 27839.7 1.44703
\(719\) −10517.7 −0.545541 −0.272770 0.962079i \(-0.587940\pi\)
−0.272770 + 0.962079i \(0.587940\pi\)
\(720\) 0 0
\(721\) 10886.4 0.562319
\(722\) −52352.0 −2.69853
\(723\) 0 0
\(724\) −28123.2 −1.44363
\(725\) 7324.85 0.375225
\(726\) 0 0
\(727\) −10483.4 −0.534814 −0.267407 0.963584i \(-0.586167\pi\)
−0.267407 + 0.963584i \(0.586167\pi\)
\(728\) −2372.42 −0.120780
\(729\) 0 0
\(730\) −10285.2 −0.521471
\(731\) −4459.05 −0.225614
\(732\) 0 0
\(733\) −8568.83 −0.431783 −0.215892 0.976417i \(-0.569266\pi\)
−0.215892 + 0.976417i \(0.569266\pi\)
\(734\) 17364.0 0.873183
\(735\) 0 0
\(736\) −27134.8 −1.35897
\(737\) 4410.72 0.220449
\(738\) 0 0
\(739\) −3089.07 −0.153766 −0.0768832 0.997040i \(-0.524497\pi\)
−0.0768832 + 0.997040i \(0.524497\pi\)
\(740\) −19124.2 −0.950028
\(741\) 0 0
\(742\) 16597.4 0.821173
\(743\) 28558.8 1.41012 0.705060 0.709148i \(-0.250920\pi\)
0.705060 + 0.709148i \(0.250920\pi\)
\(744\) 0 0
\(745\) 17771.0 0.873933
\(746\) −17324.7 −0.850270
\(747\) 0 0
\(748\) −2314.32 −0.113128
\(749\) −1729.43 −0.0843685
\(750\) 0 0
\(751\) −2062.51 −0.100216 −0.0501078 0.998744i \(-0.515956\pi\)
−0.0501078 + 0.998744i \(0.515956\pi\)
\(752\) −13275.3 −0.643751
\(753\) 0 0
\(754\) −11763.0 −0.568147
\(755\) 29018.1 1.39878
\(756\) 0 0
\(757\) 39089.1 1.87678 0.938388 0.345584i \(-0.112319\pi\)
0.938388 + 0.345584i \(0.112319\pi\)
\(758\) −26279.8 −1.25927
\(759\) 0 0
\(760\) −15418.4 −0.735902
\(761\) 13820.5 0.658337 0.329169 0.944271i \(-0.393232\pi\)
0.329169 + 0.944271i \(0.393232\pi\)
\(762\) 0 0
\(763\) −8124.04 −0.385465
\(764\) −25772.8 −1.22046
\(765\) 0 0
\(766\) 47962.1 2.26233
\(767\) 4266.41 0.200849
\(768\) 0 0
\(769\) −28495.1 −1.33623 −0.668115 0.744058i \(-0.732899\pi\)
−0.668115 + 0.744058i \(0.732899\pi\)
\(770\) −4489.78 −0.210131
\(771\) 0 0
\(772\) −11976.3 −0.558339
\(773\) −1874.14 −0.0872032 −0.0436016 0.999049i \(-0.513883\pi\)
−0.0436016 + 0.999049i \(0.513883\pi\)
\(774\) 0 0
\(775\) −24489.3 −1.13507
\(776\) 1277.83 0.0591127
\(777\) 0 0
\(778\) 5904.28 0.272080
\(779\) 65033.8 2.99112
\(780\) 0 0
\(781\) 5583.72 0.255828
\(782\) 15272.2 0.698380
\(783\) 0 0
\(784\) −3690.29 −0.168107
\(785\) −9976.10 −0.453582
\(786\) 0 0
\(787\) 16614.9 0.752551 0.376275 0.926508i \(-0.377205\pi\)
0.376275 + 0.926508i \(0.377205\pi\)
\(788\) −23274.4 −1.05218
\(789\) 0 0
\(790\) 40881.7 1.84114
\(791\) 12169.5 0.547025
\(792\) 0 0
\(793\) 31618.2 1.41588
\(794\) −37041.5 −1.65561
\(795\) 0 0
\(796\) −6126.68 −0.272807
\(797\) −19323.7 −0.858823 −0.429411 0.903109i \(-0.641279\pi\)
−0.429411 + 0.903109i \(0.641279\pi\)
\(798\) 0 0
\(799\) 6015.43 0.266346
\(800\) 26248.1 1.16001
\(801\) 0 0
\(802\) 19302.3 0.849861
\(803\) −1940.32 −0.0852706
\(804\) 0 0
\(805\) 12895.2 0.564589
\(806\) 39327.4 1.71867
\(807\) 0 0
\(808\) −8587.65 −0.373902
\(809\) 15363.0 0.667657 0.333829 0.942634i \(-0.391659\pi\)
0.333829 + 0.942634i \(0.391659\pi\)
\(810\) 0 0
\(811\) 11404.0 0.493771 0.246886 0.969045i \(-0.420593\pi\)
0.246886 + 0.969045i \(0.420593\pi\)
\(812\) −2748.31 −0.118777
\(813\) 0 0
\(814\) −8289.33 −0.356930
\(815\) −47166.8 −2.02722
\(816\) 0 0
\(817\) 18830.5 0.806359
\(818\) 329.699 0.0140925
\(819\) 0 0
\(820\) −43102.4 −1.83561
\(821\) −5529.00 −0.235035 −0.117517 0.993071i \(-0.537494\pi\)
−0.117517 + 0.993071i \(0.537494\pi\)
\(822\) 0 0
\(823\) −12216.1 −0.517407 −0.258704 0.965957i \(-0.583295\pi\)
−0.258704 + 0.965957i \(0.583295\pi\)
\(824\) −10739.8 −0.454054
\(825\) 0 0
\(826\) 2290.27 0.0964756
\(827\) 29123.0 1.22455 0.612277 0.790643i \(-0.290254\pi\)
0.612277 + 0.790643i \(0.290254\pi\)
\(828\) 0 0
\(829\) 25679.6 1.07586 0.537930 0.842990i \(-0.319207\pi\)
0.537930 + 0.842990i \(0.319207\pi\)
\(830\) −73426.8 −3.07070
\(831\) 0 0
\(832\) −12582.7 −0.524312
\(833\) 1672.18 0.0695529
\(834\) 0 0
\(835\) 5221.59 0.216408
\(836\) 9773.33 0.404328
\(837\) 0 0
\(838\) −26838.1 −1.10633
\(839\) 7009.97 0.288452 0.144226 0.989545i \(-0.453931\pi\)
0.144226 + 0.989545i \(0.453931\pi\)
\(840\) 0 0
\(841\) −20333.5 −0.833715
\(842\) −23183.3 −0.948871
\(843\) 0 0
\(844\) −17954.4 −0.732247
\(845\) 3278.50 0.133472
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −47445.7 −1.92133
\(849\) 0 0
\(850\) −14773.1 −0.596135
\(851\) 23807.9 0.959016
\(852\) 0 0
\(853\) 7430.54 0.298261 0.149131 0.988818i \(-0.452353\pi\)
0.149131 + 0.988818i \(0.452353\pi\)
\(854\) 16973.1 0.680103
\(855\) 0 0
\(856\) 1706.14 0.0681247
\(857\) 16112.3 0.642225 0.321113 0.947041i \(-0.395943\pi\)
0.321113 + 0.947041i \(0.395943\pi\)
\(858\) 0 0
\(859\) 46836.9 1.86037 0.930183 0.367097i \(-0.119648\pi\)
0.930183 + 0.367097i \(0.119648\pi\)
\(860\) −12480.3 −0.494853
\(861\) 0 0
\(862\) 45329.8 1.79111
\(863\) 2453.00 0.0967568 0.0483784 0.998829i \(-0.484595\pi\)
0.0483784 + 0.998829i \(0.484595\pi\)
\(864\) 0 0
\(865\) 54298.5 2.13434
\(866\) 36167.6 1.41920
\(867\) 0 0
\(868\) 9188.45 0.359305
\(869\) 7712.34 0.301063
\(870\) 0 0
\(871\) −19678.9 −0.765549
\(872\) 8014.65 0.311250
\(873\) 0 0
\(874\) −64494.3 −2.49605
\(875\) 1082.26 0.0418138
\(876\) 0 0
\(877\) 23733.6 0.913829 0.456914 0.889511i \(-0.348955\pi\)
0.456914 + 0.889511i \(0.348955\pi\)
\(878\) 11752.5 0.451740
\(879\) 0 0
\(880\) 12834.6 0.491652
\(881\) −10868.6 −0.415634 −0.207817 0.978168i \(-0.566636\pi\)
−0.207817 + 0.978168i \(0.566636\pi\)
\(882\) 0 0
\(883\) −43075.4 −1.64168 −0.820840 0.571158i \(-0.806495\pi\)
−0.820840 + 0.571158i \(0.806495\pi\)
\(884\) 10325.6 0.392859
\(885\) 0 0
\(886\) 35309.8 1.33889
\(887\) 16224.0 0.614149 0.307075 0.951685i \(-0.400650\pi\)
0.307075 + 0.951685i \(0.400650\pi\)
\(888\) 0 0
\(889\) 10553.5 0.398149
\(890\) 45970.4 1.73138
\(891\) 0 0
\(892\) 31252.7 1.17312
\(893\) −25403.1 −0.951938
\(894\) 0 0
\(895\) −3425.07 −0.127919
\(896\) 6024.80 0.224637
\(897\) 0 0
\(898\) 12824.1 0.476556
\(899\) −13558.9 −0.503019
\(900\) 0 0
\(901\) 21499.0 0.794935
\(902\) −18682.6 −0.689647
\(903\) 0 0
\(904\) −12005.6 −0.441704
\(905\) −70671.5 −2.59580
\(906\) 0 0
\(907\) 39985.6 1.46384 0.731918 0.681392i \(-0.238625\pi\)
0.731918 + 0.681392i \(0.238625\pi\)
\(908\) 34853.2 1.27384
\(909\) 0 0
\(910\) 20031.7 0.729717
\(911\) −20330.9 −0.739398 −0.369699 0.929152i \(-0.620539\pi\)
−0.369699 + 0.929152i \(0.620539\pi\)
\(912\) 0 0
\(913\) −13852.0 −0.502119
\(914\) 51614.9 1.86791
\(915\) 0 0
\(916\) −31699.0 −1.14341
\(917\) 9292.84 0.334653
\(918\) 0 0
\(919\) −3734.71 −0.134055 −0.0670275 0.997751i \(-0.521352\pi\)
−0.0670275 + 0.997751i \(0.521352\pi\)
\(920\) −12721.5 −0.455887
\(921\) 0 0
\(922\) −33363.1 −1.19171
\(923\) −24912.4 −0.888408
\(924\) 0 0
\(925\) −23029.9 −0.818613
\(926\) 55526.5 1.97053
\(927\) 0 0
\(928\) 14532.7 0.514072
\(929\) −30122.2 −1.06381 −0.531904 0.846805i \(-0.678523\pi\)
−0.531904 + 0.846805i \(0.678523\pi\)
\(930\) 0 0
\(931\) −7061.59 −0.248587
\(932\) −1925.35 −0.0676685
\(933\) 0 0
\(934\) 1838.28 0.0644007
\(935\) −5815.72 −0.203417
\(936\) 0 0
\(937\) −33701.9 −1.17502 −0.587509 0.809217i \(-0.699891\pi\)
−0.587509 + 0.809217i \(0.699891\pi\)
\(938\) −10563.9 −0.367723
\(939\) 0 0
\(940\) 16836.3 0.584193
\(941\) −20897.3 −0.723944 −0.361972 0.932189i \(-0.617896\pi\)
−0.361972 + 0.932189i \(0.617896\pi\)
\(942\) 0 0
\(943\) 53658.4 1.85298
\(944\) −6547.02 −0.225728
\(945\) 0 0
\(946\) −5409.52 −0.185918
\(947\) 43378.9 1.48852 0.744258 0.667892i \(-0.232803\pi\)
0.744258 + 0.667892i \(0.232803\pi\)
\(948\) 0 0
\(949\) 8656.93 0.296118
\(950\) 62386.7 2.13062
\(951\) 0 0
\(952\) −1649.66 −0.0561616
\(953\) 36362.5 1.23599 0.617994 0.786183i \(-0.287946\pi\)
0.617994 + 0.786183i \(0.287946\pi\)
\(954\) 0 0
\(955\) −64765.3 −2.19451
\(956\) 24735.4 0.836819
\(957\) 0 0
\(958\) −4642.70 −0.156575
\(959\) −3090.72 −0.104071
\(960\) 0 0
\(961\) 15540.6 0.521654
\(962\) 36983.7 1.23950
\(963\) 0 0
\(964\) 3080.49 0.102921
\(965\) −30095.7 −1.00395
\(966\) 0 0
\(967\) 23769.2 0.790451 0.395225 0.918584i \(-0.370667\pi\)
0.395225 + 0.918584i \(0.370667\pi\)
\(968\) 835.595 0.0277449
\(969\) 0 0
\(970\) −10789.4 −0.357141
\(971\) 27125.4 0.896494 0.448247 0.893910i \(-0.352048\pi\)
0.448247 + 0.893910i \(0.352048\pi\)
\(972\) 0 0
\(973\) −1254.14 −0.0413214
\(974\) −62855.3 −2.06778
\(975\) 0 0
\(976\) −48519.7 −1.59127
\(977\) 30145.5 0.987146 0.493573 0.869704i \(-0.335691\pi\)
0.493573 + 0.869704i \(0.335691\pi\)
\(978\) 0 0
\(979\) 8672.33 0.283114
\(980\) 4680.20 0.152555
\(981\) 0 0
\(982\) −8008.92 −0.260259
\(983\) −23037.5 −0.747489 −0.373745 0.927532i \(-0.621926\pi\)
−0.373745 + 0.927532i \(0.621926\pi\)
\(984\) 0 0
\(985\) −58486.8 −1.89192
\(986\) −8179.39 −0.264183
\(987\) 0 0
\(988\) −43604.8 −1.40410
\(989\) 15536.7 0.499534
\(990\) 0 0
\(991\) 13580.1 0.435303 0.217651 0.976027i \(-0.430160\pi\)
0.217651 + 0.976027i \(0.430160\pi\)
\(992\) −48587.3 −1.55509
\(993\) 0 0
\(994\) −13373.3 −0.426737
\(995\) −15395.9 −0.490536
\(996\) 0 0
\(997\) −26627.3 −0.845832 −0.422916 0.906169i \(-0.638993\pi\)
−0.422916 + 0.906169i \(0.638993\pi\)
\(998\) −46449.3 −1.47327
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.m.1.1 4
3.2 odd 2 77.4.a.c.1.4 4
12.11 even 2 1232.4.a.w.1.3 4
15.14 odd 2 1925.4.a.q.1.1 4
21.20 even 2 539.4.a.f.1.4 4
33.32 even 2 847.4.a.e.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.c.1.4 4 3.2 odd 2
539.4.a.f.1.4 4 21.20 even 2
693.4.a.m.1.1 4 1.1 even 1 trivial
847.4.a.e.1.1 4 33.32 even 2
1232.4.a.w.1.3 4 12.11 even 2
1925.4.a.q.1.1 4 15.14 odd 2