Properties

Label 693.4.a.l.1.4
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.522072.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.20317\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.89098 q^{2} +15.9217 q^{4} -15.5514 q^{5} -7.00000 q^{7} +38.7449 q^{8} -76.0614 q^{10} +11.0000 q^{11} +74.3459 q^{13} -34.2369 q^{14} +62.1271 q^{16} +94.0836 q^{17} +135.682 q^{19} -247.604 q^{20} +53.8008 q^{22} -81.1793 q^{23} +116.845 q^{25} +363.625 q^{26} -111.452 q^{28} +53.4259 q^{29} -9.50536 q^{31} -6.09673 q^{32} +460.161 q^{34} +108.860 q^{35} -9.14224 q^{37} +663.620 q^{38} -602.536 q^{40} +339.461 q^{41} +433.078 q^{43} +175.139 q^{44} -397.046 q^{46} +54.4784 q^{47} +49.0000 q^{49} +571.486 q^{50} +1183.71 q^{52} -123.830 q^{53} -171.065 q^{55} -271.215 q^{56} +261.305 q^{58} +534.396 q^{59} -358.624 q^{61} -46.4905 q^{62} -526.836 q^{64} -1156.18 q^{65} -694.318 q^{67} +1497.97 q^{68} +532.430 q^{70} +278.330 q^{71} -886.688 q^{73} -44.7145 q^{74} +2160.29 q^{76} -77.0000 q^{77} -185.631 q^{79} -966.162 q^{80} +1660.30 q^{82} +122.624 q^{83} -1463.13 q^{85} +2118.18 q^{86} +426.194 q^{88} +847.086 q^{89} -520.422 q^{91} -1292.51 q^{92} +266.453 q^{94} -2110.04 q^{95} +1002.49 q^{97} +239.658 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 26 q^{4} - 10 q^{5} - 28 q^{7} + 18 q^{8} - 2 q^{10} + 44 q^{11} + 58 q^{13} - 14 q^{14} + 2 q^{16} - 4 q^{17} + 258 q^{19} - 182 q^{20} + 22 q^{22} - 8 q^{23} + 80 q^{25} + 482 q^{26} - 182 q^{28}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.89098 1.72922 0.864612 0.502441i \(-0.167564\pi\)
0.864612 + 0.502441i \(0.167564\pi\)
\(3\) 0 0
\(4\) 15.9217 1.99021
\(5\) −15.5514 −1.39096 −0.695478 0.718547i \(-0.744807\pi\)
−0.695478 + 0.718547i \(0.744807\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 38.7449 1.71230
\(9\) 0 0
\(10\) −76.0614 −2.40527
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 74.3459 1.58614 0.793071 0.609129i \(-0.208481\pi\)
0.793071 + 0.609129i \(0.208481\pi\)
\(14\) −34.2369 −0.653585
\(15\) 0 0
\(16\) 62.1271 0.970737
\(17\) 94.0836 1.34227 0.671136 0.741334i \(-0.265807\pi\)
0.671136 + 0.741334i \(0.265807\pi\)
\(18\) 0 0
\(19\) 135.682 1.63830 0.819149 0.573581i \(-0.194446\pi\)
0.819149 + 0.573581i \(0.194446\pi\)
\(20\) −247.604 −2.76830
\(21\) 0 0
\(22\) 53.8008 0.521380
\(23\) −81.1793 −0.735959 −0.367979 0.929834i \(-0.619950\pi\)
−0.367979 + 0.929834i \(0.619950\pi\)
\(24\) 0 0
\(25\) 116.845 0.934758
\(26\) 363.625 2.74279
\(27\) 0 0
\(28\) −111.452 −0.752230
\(29\) 53.4259 0.342102 0.171051 0.985262i \(-0.445284\pi\)
0.171051 + 0.985262i \(0.445284\pi\)
\(30\) 0 0
\(31\) −9.50536 −0.0550714 −0.0275357 0.999621i \(-0.508766\pi\)
−0.0275357 + 0.999621i \(0.508766\pi\)
\(32\) −6.09673 −0.0336800
\(33\) 0 0
\(34\) 460.161 2.32109
\(35\) 108.860 0.525732
\(36\) 0 0
\(37\) −9.14224 −0.0406209 −0.0203105 0.999794i \(-0.506465\pi\)
−0.0203105 + 0.999794i \(0.506465\pi\)
\(38\) 663.620 2.83298
\(39\) 0 0
\(40\) −602.536 −2.38173
\(41\) 339.461 1.29305 0.646523 0.762894i \(-0.276222\pi\)
0.646523 + 0.762894i \(0.276222\pi\)
\(42\) 0 0
\(43\) 433.078 1.53590 0.767950 0.640509i \(-0.221277\pi\)
0.767950 + 0.640509i \(0.221277\pi\)
\(44\) 175.139 0.600072
\(45\) 0 0
\(46\) −397.046 −1.27264
\(47\) 54.4784 0.169074 0.0845371 0.996420i \(-0.473059\pi\)
0.0845371 + 0.996420i \(0.473059\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 571.486 1.61641
\(51\) 0 0
\(52\) 1183.71 3.15676
\(53\) −123.830 −0.320932 −0.160466 0.987041i \(-0.551300\pi\)
−0.160466 + 0.987041i \(0.551300\pi\)
\(54\) 0 0
\(55\) −171.065 −0.419389
\(56\) −271.215 −0.647189
\(57\) 0 0
\(58\) 261.305 0.591570
\(59\) 534.396 1.17919 0.589596 0.807698i \(-0.299287\pi\)
0.589596 + 0.807698i \(0.299287\pi\)
\(60\) 0 0
\(61\) −358.624 −0.752740 −0.376370 0.926469i \(-0.622828\pi\)
−0.376370 + 0.926469i \(0.622828\pi\)
\(62\) −46.4905 −0.0952307
\(63\) 0 0
\(64\) −526.836 −1.02898
\(65\) −1156.18 −2.20625
\(66\) 0 0
\(67\) −694.318 −1.26604 −0.633019 0.774137i \(-0.718184\pi\)
−0.633019 + 0.774137i \(0.718184\pi\)
\(68\) 1497.97 2.67141
\(69\) 0 0
\(70\) 532.430 0.909108
\(71\) 278.330 0.465236 0.232618 0.972568i \(-0.425271\pi\)
0.232618 + 0.972568i \(0.425271\pi\)
\(72\) 0 0
\(73\) −886.688 −1.42163 −0.710815 0.703379i \(-0.751674\pi\)
−0.710815 + 0.703379i \(0.751674\pi\)
\(74\) −44.7145 −0.0702427
\(75\) 0 0
\(76\) 2160.29 3.26056
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −185.631 −0.264369 −0.132184 0.991225i \(-0.542199\pi\)
−0.132184 + 0.991225i \(0.542199\pi\)
\(80\) −966.162 −1.35025
\(81\) 0 0
\(82\) 1660.30 2.23597
\(83\) 122.624 0.162166 0.0810830 0.996707i \(-0.474162\pi\)
0.0810830 + 0.996707i \(0.474162\pi\)
\(84\) 0 0
\(85\) −1463.13 −1.86704
\(86\) 2118.18 2.65592
\(87\) 0 0
\(88\) 426.194 0.516278
\(89\) 847.086 1.00889 0.504443 0.863445i \(-0.331698\pi\)
0.504443 + 0.863445i \(0.331698\pi\)
\(90\) 0 0
\(91\) −520.422 −0.599506
\(92\) −1292.51 −1.46471
\(93\) 0 0
\(94\) 266.453 0.292367
\(95\) −2110.04 −2.27880
\(96\) 0 0
\(97\) 1002.49 1.04935 0.524676 0.851302i \(-0.324186\pi\)
0.524676 + 0.851302i \(0.324186\pi\)
\(98\) 239.658 0.247032
\(99\) 0 0
\(100\) 1860.37 1.86037
\(101\) −1124.79 −1.10812 −0.554062 0.832476i \(-0.686923\pi\)
−0.554062 + 0.832476i \(0.686923\pi\)
\(102\) 0 0
\(103\) 966.118 0.924218 0.462109 0.886823i \(-0.347093\pi\)
0.462109 + 0.886823i \(0.347093\pi\)
\(104\) 2880.53 2.71595
\(105\) 0 0
\(106\) −605.652 −0.554963
\(107\) 144.202 0.130286 0.0651428 0.997876i \(-0.479250\pi\)
0.0651428 + 0.997876i \(0.479250\pi\)
\(108\) 0 0
\(109\) −1875.32 −1.64792 −0.823961 0.566647i \(-0.808240\pi\)
−0.823961 + 0.566647i \(0.808240\pi\)
\(110\) −836.676 −0.725217
\(111\) 0 0
\(112\) −434.890 −0.366904
\(113\) −1207.46 −1.00521 −0.502603 0.864517i \(-0.667624\pi\)
−0.502603 + 0.864517i \(0.667624\pi\)
\(114\) 0 0
\(115\) 1262.45 1.02369
\(116\) 850.632 0.680855
\(117\) 0 0
\(118\) 2613.72 2.03909
\(119\) −658.585 −0.507331
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −1754.03 −1.30166
\(123\) 0 0
\(124\) −151.342 −0.109604
\(125\) 126.825 0.0907483
\(126\) 0 0
\(127\) 1143.56 0.799009 0.399504 0.916731i \(-0.369182\pi\)
0.399504 + 0.916731i \(0.369182\pi\)
\(128\) −2527.97 −1.74565
\(129\) 0 0
\(130\) −5654.86 −3.81511
\(131\) −2478.40 −1.65297 −0.826484 0.562961i \(-0.809662\pi\)
−0.826484 + 0.562961i \(0.809662\pi\)
\(132\) 0 0
\(133\) −949.776 −0.619218
\(134\) −3395.90 −2.18926
\(135\) 0 0
\(136\) 3645.26 2.29837
\(137\) 835.661 0.521134 0.260567 0.965456i \(-0.416091\pi\)
0.260567 + 0.965456i \(0.416091\pi\)
\(138\) 0 0
\(139\) −1726.99 −1.05382 −0.526912 0.849920i \(-0.676650\pi\)
−0.526912 + 0.849920i \(0.676650\pi\)
\(140\) 1733.23 1.04632
\(141\) 0 0
\(142\) 1361.31 0.804497
\(143\) 817.805 0.478240
\(144\) 0 0
\(145\) −830.846 −0.475848
\(146\) −4336.78 −2.45832
\(147\) 0 0
\(148\) −145.560 −0.0808443
\(149\) 3454.95 1.89960 0.949799 0.312859i \(-0.101287\pi\)
0.949799 + 0.312859i \(0.101287\pi\)
\(150\) 0 0
\(151\) −2468.17 −1.33018 −0.665089 0.746764i \(-0.731606\pi\)
−0.665089 + 0.746764i \(0.731606\pi\)
\(152\) 5257.00 2.80526
\(153\) 0 0
\(154\) −376.606 −0.197063
\(155\) 147.821 0.0766018
\(156\) 0 0
\(157\) −1561.27 −0.793649 −0.396824 0.917895i \(-0.629888\pi\)
−0.396824 + 0.917895i \(0.629888\pi\)
\(158\) −907.919 −0.457153
\(159\) 0 0
\(160\) 94.8125 0.0468474
\(161\) 568.255 0.278166
\(162\) 0 0
\(163\) 3458.59 1.66195 0.830973 0.556312i \(-0.187784\pi\)
0.830973 + 0.556312i \(0.187784\pi\)
\(164\) 5404.80 2.57344
\(165\) 0 0
\(166\) 599.754 0.280421
\(167\) 972.527 0.450637 0.225319 0.974285i \(-0.427658\pi\)
0.225319 + 0.974285i \(0.427658\pi\)
\(168\) 0 0
\(169\) 3330.32 1.51585
\(170\) −7156.13 −3.22853
\(171\) 0 0
\(172\) 6895.34 3.05677
\(173\) 1154.18 0.507230 0.253615 0.967305i \(-0.418380\pi\)
0.253615 + 0.967305i \(0.418380\pi\)
\(174\) 0 0
\(175\) −817.914 −0.353305
\(176\) 683.399 0.292688
\(177\) 0 0
\(178\) 4143.08 1.74459
\(179\) −259.234 −0.108246 −0.0541231 0.998534i \(-0.517236\pi\)
−0.0541231 + 0.998534i \(0.517236\pi\)
\(180\) 0 0
\(181\) −2121.49 −0.871209 −0.435604 0.900138i \(-0.643465\pi\)
−0.435604 + 0.900138i \(0.643465\pi\)
\(182\) −2545.37 −1.03668
\(183\) 0 0
\(184\) −3145.29 −1.26018
\(185\) 142.174 0.0565019
\(186\) 0 0
\(187\) 1034.92 0.404710
\(188\) 867.389 0.336494
\(189\) 0 0
\(190\) −10320.2 −3.94055
\(191\) −2918.27 −1.10554 −0.552772 0.833332i \(-0.686430\pi\)
−0.552772 + 0.833332i \(0.686430\pi\)
\(192\) 0 0
\(193\) 3757.48 1.40139 0.700697 0.713459i \(-0.252872\pi\)
0.700697 + 0.713459i \(0.252872\pi\)
\(194\) 4903.15 1.81456
\(195\) 0 0
\(196\) 780.164 0.284316
\(197\) −1608.39 −0.581689 −0.290845 0.956770i \(-0.593936\pi\)
−0.290845 + 0.956770i \(0.593936\pi\)
\(198\) 0 0
\(199\) 2865.53 1.02076 0.510382 0.859948i \(-0.329504\pi\)
0.510382 + 0.859948i \(0.329504\pi\)
\(200\) 4527.14 1.60059
\(201\) 0 0
\(202\) −5501.31 −1.91619
\(203\) −373.981 −0.129302
\(204\) 0 0
\(205\) −5279.08 −1.79857
\(206\) 4725.27 1.59818
\(207\) 0 0
\(208\) 4618.90 1.53973
\(209\) 1492.50 0.493965
\(210\) 0 0
\(211\) 821.996 0.268192 0.134096 0.990968i \(-0.457187\pi\)
0.134096 + 0.990968i \(0.457187\pi\)
\(212\) −1971.59 −0.638723
\(213\) 0 0
\(214\) 705.290 0.225293
\(215\) −6734.95 −2.13637
\(216\) 0 0
\(217\) 66.5375 0.0208150
\(218\) −9172.18 −2.84963
\(219\) 0 0
\(220\) −2723.65 −0.834674
\(221\) 6994.73 2.12903
\(222\) 0 0
\(223\) 109.532 0.0328916 0.0164458 0.999865i \(-0.494765\pi\)
0.0164458 + 0.999865i \(0.494765\pi\)
\(224\) 42.6771 0.0127298
\(225\) 0 0
\(226\) −5905.67 −1.73823
\(227\) −3023.03 −0.883900 −0.441950 0.897040i \(-0.645713\pi\)
−0.441950 + 0.897040i \(0.645713\pi\)
\(228\) 0 0
\(229\) −2278.75 −0.657571 −0.328786 0.944405i \(-0.606639\pi\)
−0.328786 + 0.944405i \(0.606639\pi\)
\(230\) 6174.61 1.77018
\(231\) 0 0
\(232\) 2069.98 0.585781
\(233\) 1864.08 0.524121 0.262061 0.965051i \(-0.415598\pi\)
0.262061 + 0.965051i \(0.415598\pi\)
\(234\) 0 0
\(235\) −847.213 −0.235175
\(236\) 8508.49 2.34685
\(237\) 0 0
\(238\) −3221.13 −0.877289
\(239\) −1404.69 −0.380174 −0.190087 0.981767i \(-0.560877\pi\)
−0.190087 + 0.981767i \(0.560877\pi\)
\(240\) 0 0
\(241\) 3879.32 1.03688 0.518442 0.855113i \(-0.326512\pi\)
0.518442 + 0.855113i \(0.326512\pi\)
\(242\) 591.809 0.157202
\(243\) 0 0
\(244\) −5709.91 −1.49811
\(245\) −762.017 −0.198708
\(246\) 0 0
\(247\) 10087.4 2.59857
\(248\) −368.284 −0.0942987
\(249\) 0 0
\(250\) 620.297 0.156924
\(251\) 2143.54 0.539040 0.269520 0.962995i \(-0.413135\pi\)
0.269520 + 0.962995i \(0.413135\pi\)
\(252\) 0 0
\(253\) −892.972 −0.221900
\(254\) 5593.11 1.38166
\(255\) 0 0
\(256\) −8149.58 −1.98964
\(257\) −7288.62 −1.76907 −0.884537 0.466471i \(-0.845525\pi\)
−0.884537 + 0.466471i \(0.845525\pi\)
\(258\) 0 0
\(259\) 63.9957 0.0153533
\(260\) −18408.4 −4.39092
\(261\) 0 0
\(262\) −12121.8 −2.85835
\(263\) −2670.52 −0.626127 −0.313064 0.949732i \(-0.601355\pi\)
−0.313064 + 0.949732i \(0.601355\pi\)
\(264\) 0 0
\(265\) 1925.73 0.446402
\(266\) −4645.34 −1.07077
\(267\) 0 0
\(268\) −11054.7 −2.51968
\(269\) −1073.80 −0.243387 −0.121693 0.992568i \(-0.538832\pi\)
−0.121693 + 0.992568i \(0.538832\pi\)
\(270\) 0 0
\(271\) 3624.88 0.812530 0.406265 0.913755i \(-0.366831\pi\)
0.406265 + 0.913755i \(0.366831\pi\)
\(272\) 5845.14 1.30299
\(273\) 0 0
\(274\) 4087.20 0.901157
\(275\) 1285.29 0.281840
\(276\) 0 0
\(277\) −4905.35 −1.06402 −0.532010 0.846738i \(-0.678563\pi\)
−0.532010 + 0.846738i \(0.678563\pi\)
\(278\) −8446.68 −1.82230
\(279\) 0 0
\(280\) 4217.76 0.900211
\(281\) 2661.90 0.565109 0.282555 0.959251i \(-0.408818\pi\)
0.282555 + 0.959251i \(0.408818\pi\)
\(282\) 0 0
\(283\) −4367.36 −0.917359 −0.458680 0.888602i \(-0.651677\pi\)
−0.458680 + 0.888602i \(0.651677\pi\)
\(284\) 4431.50 0.925919
\(285\) 0 0
\(286\) 3999.87 0.826984
\(287\) −2376.23 −0.488726
\(288\) 0 0
\(289\) 3938.72 0.801693
\(290\) −4063.65 −0.822848
\(291\) 0 0
\(292\) −14117.6 −2.82935
\(293\) −1992.30 −0.397240 −0.198620 0.980077i \(-0.563646\pi\)
−0.198620 + 0.980077i \(0.563646\pi\)
\(294\) 0 0
\(295\) −8310.58 −1.64021
\(296\) −354.215 −0.0695553
\(297\) 0 0
\(298\) 16898.1 3.28483
\(299\) −6035.35 −1.16734
\(300\) 0 0
\(301\) −3031.54 −0.580516
\(302\) −12071.8 −2.30018
\(303\) 0 0
\(304\) 8429.55 1.59036
\(305\) 5577.10 1.04703
\(306\) 0 0
\(307\) 7633.53 1.41912 0.709558 0.704647i \(-0.248895\pi\)
0.709558 + 0.704647i \(0.248895\pi\)
\(308\) −1225.97 −0.226806
\(309\) 0 0
\(310\) 722.991 0.132462
\(311\) −1453.52 −0.265020 −0.132510 0.991182i \(-0.542304\pi\)
−0.132510 + 0.991182i \(0.542304\pi\)
\(312\) 0 0
\(313\) 1936.27 0.349663 0.174831 0.984598i \(-0.444062\pi\)
0.174831 + 0.984598i \(0.444062\pi\)
\(314\) −7636.14 −1.37240
\(315\) 0 0
\(316\) −2955.56 −0.526150
\(317\) 1534.36 0.271856 0.135928 0.990719i \(-0.456598\pi\)
0.135928 + 0.990719i \(0.456598\pi\)
\(318\) 0 0
\(319\) 587.685 0.103148
\(320\) 8193.02 1.43126
\(321\) 0 0
\(322\) 2779.32 0.481012
\(323\) 12765.5 2.19904
\(324\) 0 0
\(325\) 8686.94 1.48266
\(326\) 16915.9 2.87388
\(327\) 0 0
\(328\) 13152.4 2.21408
\(329\) −381.349 −0.0639041
\(330\) 0 0
\(331\) 3807.42 0.632251 0.316125 0.948717i \(-0.397618\pi\)
0.316125 + 0.948717i \(0.397618\pi\)
\(332\) 1952.39 0.322745
\(333\) 0 0
\(334\) 4756.61 0.779252
\(335\) 10797.6 1.76100
\(336\) 0 0
\(337\) −4724.09 −0.763614 −0.381807 0.924242i \(-0.624698\pi\)
−0.381807 + 0.924242i \(0.624698\pi\)
\(338\) 16288.5 2.62124
\(339\) 0 0
\(340\) −23295.5 −3.71581
\(341\) −104.559 −0.0166046
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 16779.6 2.62992
\(345\) 0 0
\(346\) 5645.08 0.877113
\(347\) −6122.41 −0.947171 −0.473586 0.880748i \(-0.657041\pi\)
−0.473586 + 0.880748i \(0.657041\pi\)
\(348\) 0 0
\(349\) 6778.93 1.03974 0.519868 0.854247i \(-0.325981\pi\)
0.519868 + 0.854247i \(0.325981\pi\)
\(350\) −4000.40 −0.610944
\(351\) 0 0
\(352\) −67.0640 −0.0101549
\(353\) 3486.98 0.525760 0.262880 0.964829i \(-0.415328\pi\)
0.262880 + 0.964829i \(0.415328\pi\)
\(354\) 0 0
\(355\) −4328.42 −0.647123
\(356\) 13487.1 2.00790
\(357\) 0 0
\(358\) −1267.91 −0.187182
\(359\) −3230.16 −0.474878 −0.237439 0.971402i \(-0.576308\pi\)
−0.237439 + 0.971402i \(0.576308\pi\)
\(360\) 0 0
\(361\) 11550.7 1.68402
\(362\) −10376.2 −1.50651
\(363\) 0 0
\(364\) −8286.00 −1.19314
\(365\) 13789.2 1.97742
\(366\) 0 0
\(367\) −8190.16 −1.16491 −0.582456 0.812862i \(-0.697908\pi\)
−0.582456 + 0.812862i \(0.697908\pi\)
\(368\) −5043.44 −0.714422
\(369\) 0 0
\(370\) 695.372 0.0977045
\(371\) 866.812 0.121301
\(372\) 0 0
\(373\) 5008.53 0.695260 0.347630 0.937632i \(-0.386987\pi\)
0.347630 + 0.937632i \(0.386987\pi\)
\(374\) 5061.77 0.699834
\(375\) 0 0
\(376\) 2110.76 0.289506
\(377\) 3972.00 0.542622
\(378\) 0 0
\(379\) 1522.26 0.206314 0.103157 0.994665i \(-0.467106\pi\)
0.103157 + 0.994665i \(0.467106\pi\)
\(380\) −33595.5 −4.53530
\(381\) 0 0
\(382\) −14273.2 −1.91173
\(383\) −8520.08 −1.13670 −0.568349 0.822787i \(-0.692418\pi\)
−0.568349 + 0.822787i \(0.692418\pi\)
\(384\) 0 0
\(385\) 1197.45 0.158514
\(386\) 18377.8 2.42332
\(387\) 0 0
\(388\) 15961.3 2.08844
\(389\) −1588.83 −0.207088 −0.103544 0.994625i \(-0.533018\pi\)
−0.103544 + 0.994625i \(0.533018\pi\)
\(390\) 0 0
\(391\) −7637.64 −0.987856
\(392\) 1898.50 0.244614
\(393\) 0 0
\(394\) −7866.59 −1.00587
\(395\) 2886.82 0.367725
\(396\) 0 0
\(397\) −1483.46 −0.187539 −0.0937694 0.995594i \(-0.529892\pi\)
−0.0937694 + 0.995594i \(0.529892\pi\)
\(398\) 14015.3 1.76513
\(399\) 0 0
\(400\) 7259.23 0.907404
\(401\) −10189.5 −1.26892 −0.634460 0.772956i \(-0.718778\pi\)
−0.634460 + 0.772956i \(0.718778\pi\)
\(402\) 0 0
\(403\) −706.685 −0.0873510
\(404\) −17908.5 −2.20540
\(405\) 0 0
\(406\) −1829.14 −0.223592
\(407\) −100.565 −0.0122477
\(408\) 0 0
\(409\) 3465.96 0.419024 0.209512 0.977806i \(-0.432812\pi\)
0.209512 + 0.977806i \(0.432812\pi\)
\(410\) −25819.9 −3.11013
\(411\) 0 0
\(412\) 15382.2 1.83939
\(413\) −3740.77 −0.445693
\(414\) 0 0
\(415\) −1906.98 −0.225566
\(416\) −453.267 −0.0534213
\(417\) 0 0
\(418\) 7299.81 0.854176
\(419\) −2754.83 −0.321199 −0.160599 0.987020i \(-0.551343\pi\)
−0.160599 + 0.987020i \(0.551343\pi\)
\(420\) 0 0
\(421\) −3140.19 −0.363524 −0.181762 0.983343i \(-0.558180\pi\)
−0.181762 + 0.983343i \(0.558180\pi\)
\(422\) 4020.37 0.463764
\(423\) 0 0
\(424\) −4797.80 −0.549532
\(425\) 10993.2 1.25470
\(426\) 0 0
\(427\) 2510.37 0.284509
\(428\) 2295.94 0.259296
\(429\) 0 0
\(430\) −32940.5 −3.69426
\(431\) 4476.22 0.500260 0.250130 0.968212i \(-0.419527\pi\)
0.250130 + 0.968212i \(0.419527\pi\)
\(432\) 0 0
\(433\) 1646.00 0.182683 0.0913416 0.995820i \(-0.470884\pi\)
0.0913416 + 0.995820i \(0.470884\pi\)
\(434\) 325.434 0.0359938
\(435\) 0 0
\(436\) −29858.4 −3.27972
\(437\) −11014.6 −1.20572
\(438\) 0 0
\(439\) −7241.05 −0.787236 −0.393618 0.919274i \(-0.628777\pi\)
−0.393618 + 0.919274i \(0.628777\pi\)
\(440\) −6627.90 −0.718120
\(441\) 0 0
\(442\) 34211.1 3.68158
\(443\) −5887.27 −0.631405 −0.315703 0.948858i \(-0.602240\pi\)
−0.315703 + 0.948858i \(0.602240\pi\)
\(444\) 0 0
\(445\) −13173.3 −1.40332
\(446\) 535.721 0.0568770
\(447\) 0 0
\(448\) 3687.85 0.388917
\(449\) −6378.42 −0.670415 −0.335207 0.942144i \(-0.608806\pi\)
−0.335207 + 0.942144i \(0.608806\pi\)
\(450\) 0 0
\(451\) 3734.07 0.389868
\(452\) −19224.8 −2.00058
\(453\) 0 0
\(454\) −14785.6 −1.52846
\(455\) 8093.26 0.833886
\(456\) 0 0
\(457\) −18368.0 −1.88013 −0.940064 0.340998i \(-0.889235\pi\)
−0.940064 + 0.340998i \(0.889235\pi\)
\(458\) −11145.3 −1.13709
\(459\) 0 0
\(460\) 20100.3 2.03735
\(461\) −17510.6 −1.76909 −0.884546 0.466453i \(-0.845532\pi\)
−0.884546 + 0.466453i \(0.845532\pi\)
\(462\) 0 0
\(463\) −12732.5 −1.27803 −0.639016 0.769193i \(-0.720658\pi\)
−0.639016 + 0.769193i \(0.720658\pi\)
\(464\) 3319.20 0.332091
\(465\) 0 0
\(466\) 9117.20 0.906323
\(467\) 4997.23 0.495170 0.247585 0.968866i \(-0.420363\pi\)
0.247585 + 0.968866i \(0.420363\pi\)
\(468\) 0 0
\(469\) 4860.23 0.478517
\(470\) −4143.70 −0.406670
\(471\) 0 0
\(472\) 20705.1 2.01913
\(473\) 4763.85 0.463091
\(474\) 0 0
\(475\) 15853.8 1.53141
\(476\) −10485.8 −1.00970
\(477\) 0 0
\(478\) −6870.30 −0.657406
\(479\) 9075.53 0.865703 0.432851 0.901465i \(-0.357507\pi\)
0.432851 + 0.901465i \(0.357507\pi\)
\(480\) 0 0
\(481\) −679.688 −0.0644306
\(482\) 18973.7 1.79300
\(483\) 0 0
\(484\) 1926.53 0.180929
\(485\) −15590.0 −1.45960
\(486\) 0 0
\(487\) −3867.63 −0.359875 −0.179937 0.983678i \(-0.557590\pi\)
−0.179937 + 0.983678i \(0.557590\pi\)
\(488\) −13894.9 −1.28892
\(489\) 0 0
\(490\) −3727.01 −0.343611
\(491\) −7334.24 −0.674113 −0.337057 0.941484i \(-0.609431\pi\)
−0.337057 + 0.941484i \(0.609431\pi\)
\(492\) 0 0
\(493\) 5026.50 0.459193
\(494\) 49337.4 4.49351
\(495\) 0 0
\(496\) −590.541 −0.0534598
\(497\) −1948.31 −0.175843
\(498\) 0 0
\(499\) −4365.93 −0.391675 −0.195838 0.980636i \(-0.562743\pi\)
−0.195838 + 0.980636i \(0.562743\pi\)
\(500\) 2019.26 0.180609
\(501\) 0 0
\(502\) 10484.0 0.932120
\(503\) 16352.6 1.44956 0.724779 0.688981i \(-0.241942\pi\)
0.724779 + 0.688981i \(0.241942\pi\)
\(504\) 0 0
\(505\) 17492.0 1.54135
\(506\) −4367.51 −0.383714
\(507\) 0 0
\(508\) 18207.4 1.59020
\(509\) 12108.2 1.05440 0.527199 0.849742i \(-0.323242\pi\)
0.527199 + 0.849742i \(0.323242\pi\)
\(510\) 0 0
\(511\) 6206.82 0.537326
\(512\) −19635.7 −1.69489
\(513\) 0 0
\(514\) −35648.5 −3.05912
\(515\) −15024.4 −1.28555
\(516\) 0 0
\(517\) 599.262 0.0509778
\(518\) 313.002 0.0265492
\(519\) 0 0
\(520\) −44796.1 −3.77777
\(521\) 5625.67 0.473062 0.236531 0.971624i \(-0.423990\pi\)
0.236531 + 0.971624i \(0.423990\pi\)
\(522\) 0 0
\(523\) −3280.32 −0.274261 −0.137130 0.990553i \(-0.543788\pi\)
−0.137130 + 0.990553i \(0.543788\pi\)
\(524\) −39460.3 −3.28976
\(525\) 0 0
\(526\) −13061.5 −1.08271
\(527\) −894.298 −0.0739207
\(528\) 0 0
\(529\) −5576.93 −0.458365
\(530\) 9418.70 0.771929
\(531\) 0 0
\(532\) −15122.1 −1.23238
\(533\) 25237.6 2.05096
\(534\) 0 0
\(535\) −2242.54 −0.181221
\(536\) −26901.3 −2.16784
\(537\) 0 0
\(538\) −5251.96 −0.420870
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −7772.10 −0.617650 −0.308825 0.951119i \(-0.599936\pi\)
−0.308825 + 0.951119i \(0.599936\pi\)
\(542\) 17729.2 1.40505
\(543\) 0 0
\(544\) −573.602 −0.0452077
\(545\) 29163.8 2.29219
\(546\) 0 0
\(547\) 10022.2 0.783398 0.391699 0.920094i \(-0.371888\pi\)
0.391699 + 0.920094i \(0.371888\pi\)
\(548\) 13305.1 1.03717
\(549\) 0 0
\(550\) 6286.34 0.487365
\(551\) 7248.95 0.560464
\(552\) 0 0
\(553\) 1299.42 0.0999220
\(554\) −23992.0 −1.83993
\(555\) 0 0
\(556\) −27496.7 −2.09733
\(557\) 10849.3 0.825310 0.412655 0.910887i \(-0.364601\pi\)
0.412655 + 0.910887i \(0.364601\pi\)
\(558\) 0 0
\(559\) 32197.6 2.43616
\(560\) 6763.13 0.510347
\(561\) 0 0
\(562\) 13019.3 0.977200
\(563\) −22019.9 −1.64836 −0.824180 0.566328i \(-0.808363\pi\)
−0.824180 + 0.566328i \(0.808363\pi\)
\(564\) 0 0
\(565\) 18777.7 1.39820
\(566\) −21360.7 −1.58632
\(567\) 0 0
\(568\) 10783.9 0.796624
\(569\) −13742.9 −1.01253 −0.506267 0.862377i \(-0.668975\pi\)
−0.506267 + 0.862377i \(0.668975\pi\)
\(570\) 0 0
\(571\) 19382.4 1.42054 0.710269 0.703931i \(-0.248573\pi\)
0.710269 + 0.703931i \(0.248573\pi\)
\(572\) 13020.9 0.951800
\(573\) 0 0
\(574\) −11622.1 −0.845116
\(575\) −9485.37 −0.687943
\(576\) 0 0
\(577\) −565.348 −0.0407899 −0.0203949 0.999792i \(-0.506492\pi\)
−0.0203949 + 0.999792i \(0.506492\pi\)
\(578\) 19264.2 1.38631
\(579\) 0 0
\(580\) −13228.5 −0.947040
\(581\) −858.371 −0.0612930
\(582\) 0 0
\(583\) −1362.13 −0.0967646
\(584\) −34354.7 −2.43426
\(585\) 0 0
\(586\) −9744.30 −0.686917
\(587\) 20727.4 1.45743 0.728714 0.684818i \(-0.240118\pi\)
0.728714 + 0.684818i \(0.240118\pi\)
\(588\) 0 0
\(589\) −1289.71 −0.0902233
\(590\) −40646.9 −2.83628
\(591\) 0 0
\(592\) −567.981 −0.0394322
\(593\) 2787.10 0.193006 0.0965030 0.995333i \(-0.469234\pi\)
0.0965030 + 0.995333i \(0.469234\pi\)
\(594\) 0 0
\(595\) 10241.9 0.705675
\(596\) 55008.7 3.78061
\(597\) 0 0
\(598\) −29518.8 −2.01858
\(599\) −18935.5 −1.29162 −0.645812 0.763497i \(-0.723481\pi\)
−0.645812 + 0.763497i \(0.723481\pi\)
\(600\) 0 0
\(601\) 15821.3 1.07382 0.536908 0.843641i \(-0.319592\pi\)
0.536908 + 0.843641i \(0.319592\pi\)
\(602\) −14827.2 −1.00384
\(603\) 0 0
\(604\) −39297.5 −2.64734
\(605\) −1881.71 −0.126451
\(606\) 0 0
\(607\) −2084.63 −0.139394 −0.0696972 0.997568i \(-0.522203\pi\)
−0.0696972 + 0.997568i \(0.522203\pi\)
\(608\) −827.218 −0.0551778
\(609\) 0 0
\(610\) 27277.5 1.81055
\(611\) 4050.25 0.268176
\(612\) 0 0
\(613\) −4395.15 −0.289590 −0.144795 0.989462i \(-0.546252\pi\)
−0.144795 + 0.989462i \(0.546252\pi\)
\(614\) 37335.5 2.45397
\(615\) 0 0
\(616\) −2983.36 −0.195135
\(617\) 98.5856 0.00643259 0.00321629 0.999995i \(-0.498976\pi\)
0.00321629 + 0.999995i \(0.498976\pi\)
\(618\) 0 0
\(619\) −16533.9 −1.07359 −0.536796 0.843712i \(-0.680366\pi\)
−0.536796 + 0.843712i \(0.680366\pi\)
\(620\) 2353.57 0.152454
\(621\) 0 0
\(622\) −7109.12 −0.458280
\(623\) −5929.60 −0.381323
\(624\) 0 0
\(625\) −16577.9 −1.06099
\(626\) 9470.27 0.604645
\(627\) 0 0
\(628\) −24858.1 −1.57953
\(629\) −860.135 −0.0545243
\(630\) 0 0
\(631\) 22032.9 1.39004 0.695022 0.718989i \(-0.255395\pi\)
0.695022 + 0.718989i \(0.255395\pi\)
\(632\) −7192.27 −0.452679
\(633\) 0 0
\(634\) 7504.54 0.470100
\(635\) −17783.8 −1.11139
\(636\) 0 0
\(637\) 3642.95 0.226592
\(638\) 2874.36 0.178365
\(639\) 0 0
\(640\) 39313.4 2.42812
\(641\) −434.281 −0.0267598 −0.0133799 0.999910i \(-0.504259\pi\)
−0.0133799 + 0.999910i \(0.504259\pi\)
\(642\) 0 0
\(643\) 10963.1 0.672381 0.336190 0.941794i \(-0.390861\pi\)
0.336190 + 0.941794i \(0.390861\pi\)
\(644\) 9047.59 0.553610
\(645\) 0 0
\(646\) 62435.7 3.80263
\(647\) 452.083 0.0274702 0.0137351 0.999906i \(-0.495628\pi\)
0.0137351 + 0.999906i \(0.495628\pi\)
\(648\) 0 0
\(649\) 5878.35 0.355540
\(650\) 42487.6 2.56385
\(651\) 0 0
\(652\) 55066.6 3.30763
\(653\) 10438.7 0.625572 0.312786 0.949824i \(-0.398738\pi\)
0.312786 + 0.949824i \(0.398738\pi\)
\(654\) 0 0
\(655\) 38542.5 2.29920
\(656\) 21089.8 1.25521
\(657\) 0 0
\(658\) −1865.17 −0.110504
\(659\) 8738.79 0.516563 0.258281 0.966070i \(-0.416844\pi\)
0.258281 + 0.966070i \(0.416844\pi\)
\(660\) 0 0
\(661\) 12849.4 0.756102 0.378051 0.925785i \(-0.376594\pi\)
0.378051 + 0.925785i \(0.376594\pi\)
\(662\) 18622.0 1.09330
\(663\) 0 0
\(664\) 4751.08 0.277677
\(665\) 14770.3 0.861305
\(666\) 0 0
\(667\) −4337.08 −0.251773
\(668\) 15484.3 0.896864
\(669\) 0 0
\(670\) 52810.8 3.04517
\(671\) −3944.87 −0.226960
\(672\) 0 0
\(673\) −22926.5 −1.31315 −0.656577 0.754259i \(-0.727996\pi\)
−0.656577 + 0.754259i \(0.727996\pi\)
\(674\) −23105.5 −1.32046
\(675\) 0 0
\(676\) 53024.4 3.01686
\(677\) −13633.4 −0.773965 −0.386983 0.922087i \(-0.626483\pi\)
−0.386983 + 0.922087i \(0.626483\pi\)
\(678\) 0 0
\(679\) −7017.41 −0.396618
\(680\) −56688.8 −3.19694
\(681\) 0 0
\(682\) −511.396 −0.0287131
\(683\) −33307.5 −1.86600 −0.932998 0.359882i \(-0.882817\pi\)
−0.932998 + 0.359882i \(0.882817\pi\)
\(684\) 0 0
\(685\) −12995.7 −0.724874
\(686\) −1677.61 −0.0933693
\(687\) 0 0
\(688\) 26905.9 1.49096
\(689\) −9206.28 −0.509044
\(690\) 0 0
\(691\) −10077.3 −0.554786 −0.277393 0.960757i \(-0.589470\pi\)
−0.277393 + 0.960757i \(0.589470\pi\)
\(692\) 18376.5 1.00950
\(693\) 0 0
\(694\) −29944.6 −1.63787
\(695\) 26857.1 1.46582
\(696\) 0 0
\(697\) 31937.7 1.73562
\(698\) 33155.6 1.79794
\(699\) 0 0
\(700\) −13022.6 −0.703153
\(701\) 4621.74 0.249017 0.124508 0.992219i \(-0.460265\pi\)
0.124508 + 0.992219i \(0.460265\pi\)
\(702\) 0 0
\(703\) −1240.44 −0.0665492
\(704\) −5795.20 −0.310248
\(705\) 0 0
\(706\) 17054.8 0.909157
\(707\) 7873.51 0.418831
\(708\) 0 0
\(709\) 17746.6 0.940038 0.470019 0.882656i \(-0.344247\pi\)
0.470019 + 0.882656i \(0.344247\pi\)
\(710\) −21170.2 −1.11902
\(711\) 0 0
\(712\) 32820.3 1.72752
\(713\) 771.638 0.0405302
\(714\) 0 0
\(715\) −12718.0 −0.665211
\(716\) −4127.45 −0.215433
\(717\) 0 0
\(718\) −15798.6 −0.821170
\(719\) 31652.1 1.64176 0.820879 0.571103i \(-0.193484\pi\)
0.820879 + 0.571103i \(0.193484\pi\)
\(720\) 0 0
\(721\) −6762.83 −0.349322
\(722\) 56494.1 2.91204
\(723\) 0 0
\(724\) −33777.7 −1.73389
\(725\) 6242.54 0.319782
\(726\) 0 0
\(727\) 21610.8 1.10248 0.551239 0.834348i \(-0.314155\pi\)
0.551239 + 0.834348i \(0.314155\pi\)
\(728\) −20163.7 −1.02653
\(729\) 0 0
\(730\) 67442.8 3.41941
\(731\) 40745.5 2.06160
\(732\) 0 0
\(733\) −7665.43 −0.386261 −0.193130 0.981173i \(-0.561864\pi\)
−0.193130 + 0.981173i \(0.561864\pi\)
\(734\) −40057.9 −2.01439
\(735\) 0 0
\(736\) 494.928 0.0247871
\(737\) −7637.50 −0.381725
\(738\) 0 0
\(739\) −13841.5 −0.688996 −0.344498 0.938787i \(-0.611951\pi\)
−0.344498 + 0.938787i \(0.611951\pi\)
\(740\) 2263.66 0.112451
\(741\) 0 0
\(742\) 4239.56 0.209756
\(743\) 12136.3 0.599243 0.299621 0.954058i \(-0.403140\pi\)
0.299621 + 0.954058i \(0.403140\pi\)
\(744\) 0 0
\(745\) −53729.1 −2.64226
\(746\) 24496.6 1.20226
\(747\) 0 0
\(748\) 16477.7 0.805460
\(749\) −1009.42 −0.0492433
\(750\) 0 0
\(751\) 28866.7 1.40261 0.701305 0.712861i \(-0.252601\pi\)
0.701305 + 0.712861i \(0.252601\pi\)
\(752\) 3384.59 0.164127
\(753\) 0 0
\(754\) 19427.0 0.938314
\(755\) 38383.4 1.85022
\(756\) 0 0
\(757\) 8370.48 0.401889 0.200945 0.979603i \(-0.435599\pi\)
0.200945 + 0.979603i \(0.435599\pi\)
\(758\) 7445.33 0.356763
\(759\) 0 0
\(760\) −81753.5 −3.90199
\(761\) −30458.1 −1.45086 −0.725430 0.688296i \(-0.758359\pi\)
−0.725430 + 0.688296i \(0.758359\pi\)
\(762\) 0 0
\(763\) 13127.3 0.622856
\(764\) −46463.9 −2.20027
\(765\) 0 0
\(766\) −41671.5 −1.96561
\(767\) 39730.1 1.87037
\(768\) 0 0
\(769\) −32239.5 −1.51182 −0.755908 0.654678i \(-0.772804\pi\)
−0.755908 + 0.654678i \(0.772804\pi\)
\(770\) 5856.73 0.274106
\(771\) 0 0
\(772\) 59825.5 2.78907
\(773\) 7524.47 0.350112 0.175056 0.984559i \(-0.443989\pi\)
0.175056 + 0.984559i \(0.443989\pi\)
\(774\) 0 0
\(775\) −1110.65 −0.0514784
\(776\) 38841.3 1.79681
\(777\) 0 0
\(778\) −7770.96 −0.358101
\(779\) 46058.8 2.11839
\(780\) 0 0
\(781\) 3061.63 0.140274
\(782\) −37355.5 −1.70822
\(783\) 0 0
\(784\) 3044.23 0.138677
\(785\) 24279.9 1.10393
\(786\) 0 0
\(787\) 33196.6 1.50360 0.751798 0.659394i \(-0.229187\pi\)
0.751798 + 0.659394i \(0.229187\pi\)
\(788\) −25608.3 −1.15769
\(789\) 0 0
\(790\) 14119.4 0.635879
\(791\) 8452.23 0.379932
\(792\) 0 0
\(793\) −26662.3 −1.19395
\(794\) −7255.59 −0.324296
\(795\) 0 0
\(796\) 45624.1 2.03154
\(797\) −8817.06 −0.391865 −0.195932 0.980617i \(-0.562773\pi\)
−0.195932 + 0.980617i \(0.562773\pi\)
\(798\) 0 0
\(799\) 5125.52 0.226944
\(800\) −712.371 −0.0314827
\(801\) 0 0
\(802\) −49836.4 −2.19425
\(803\) −9753.57 −0.428638
\(804\) 0 0
\(805\) −8837.14 −0.386917
\(806\) −3456.38 −0.151049
\(807\) 0 0
\(808\) −43579.8 −1.89744
\(809\) 28930.3 1.25727 0.628637 0.777699i \(-0.283613\pi\)
0.628637 + 0.777699i \(0.283613\pi\)
\(810\) 0 0
\(811\) −45923.3 −1.98839 −0.994195 0.107594i \(-0.965685\pi\)
−0.994195 + 0.107594i \(0.965685\pi\)
\(812\) −5954.42 −0.257339
\(813\) 0 0
\(814\) −491.860 −0.0211790
\(815\) −53785.7 −2.31169
\(816\) 0 0
\(817\) 58761.0 2.51626
\(818\) 16952.0 0.724586
\(819\) 0 0
\(820\) −84052.0 −3.57954
\(821\) −16382.8 −0.696423 −0.348211 0.937416i \(-0.613211\pi\)
−0.348211 + 0.937416i \(0.613211\pi\)
\(822\) 0 0
\(823\) −32395.3 −1.37209 −0.686045 0.727559i \(-0.740655\pi\)
−0.686045 + 0.727559i \(0.740655\pi\)
\(824\) 37432.2 1.58254
\(825\) 0 0
\(826\) −18296.0 −0.770703
\(827\) 14329.2 0.602508 0.301254 0.953544i \(-0.402595\pi\)
0.301254 + 0.953544i \(0.402595\pi\)
\(828\) 0 0
\(829\) 16445.8 0.689005 0.344503 0.938785i \(-0.388048\pi\)
0.344503 + 0.938785i \(0.388048\pi\)
\(830\) −9326.99 −0.390054
\(831\) 0 0
\(832\) −39168.1 −1.63210
\(833\) 4610.10 0.191753
\(834\) 0 0
\(835\) −15124.1 −0.626816
\(836\) 23763.2 0.983096
\(837\) 0 0
\(838\) −13473.8 −0.555424
\(839\) −40514.7 −1.66713 −0.833565 0.552422i \(-0.813704\pi\)
−0.833565 + 0.552422i \(0.813704\pi\)
\(840\) 0 0
\(841\) −21534.7 −0.882967
\(842\) −15358.6 −0.628614
\(843\) 0 0
\(844\) 13087.6 0.533760
\(845\) −51791.0 −2.10848
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −7693.22 −0.311540
\(849\) 0 0
\(850\) 53767.4 2.16966
\(851\) 742.160 0.0298953
\(852\) 0 0
\(853\) −27962.7 −1.12242 −0.561211 0.827673i \(-0.689664\pi\)
−0.561211 + 0.827673i \(0.689664\pi\)
\(854\) 12278.2 0.491980
\(855\) 0 0
\(856\) 5587.10 0.223088
\(857\) 4639.52 0.184928 0.0924639 0.995716i \(-0.470526\pi\)
0.0924639 + 0.995716i \(0.470526\pi\)
\(858\) 0 0
\(859\) 18521.2 0.735663 0.367831 0.929892i \(-0.380100\pi\)
0.367831 + 0.929892i \(0.380100\pi\)
\(860\) −107232. −4.25183
\(861\) 0 0
\(862\) 21893.1 0.865061
\(863\) −40491.4 −1.59715 −0.798577 0.601893i \(-0.794413\pi\)
−0.798577 + 0.601893i \(0.794413\pi\)
\(864\) 0 0
\(865\) −17949.1 −0.705534
\(866\) 8050.57 0.315900
\(867\) 0 0
\(868\) 1059.39 0.0414263
\(869\) −2041.94 −0.0797102
\(870\) 0 0
\(871\) −51619.8 −2.00812
\(872\) −72659.3 −2.82174
\(873\) 0 0
\(874\) −53872.1 −2.08496
\(875\) −887.772 −0.0342996
\(876\) 0 0
\(877\) −48530.3 −1.86859 −0.934295 0.356502i \(-0.883969\pi\)
−0.934295 + 0.356502i \(0.883969\pi\)
\(878\) −35415.9 −1.36131
\(879\) 0 0
\(880\) −10627.8 −0.407116
\(881\) 11590.0 0.443219 0.221609 0.975135i \(-0.428869\pi\)
0.221609 + 0.975135i \(0.428869\pi\)
\(882\) 0 0
\(883\) 41900.7 1.59691 0.798455 0.602054i \(-0.205651\pi\)
0.798455 + 0.602054i \(0.205651\pi\)
\(884\) 111368. 4.23723
\(885\) 0 0
\(886\) −28794.5 −1.09184
\(887\) 17136.8 0.648700 0.324350 0.945937i \(-0.394854\pi\)
0.324350 + 0.945937i \(0.394854\pi\)
\(888\) 0 0
\(889\) −8004.89 −0.301997
\(890\) −64430.6 −2.42665
\(891\) 0 0
\(892\) 1743.94 0.0654614
\(893\) 7391.75 0.276994
\(894\) 0 0
\(895\) 4031.44 0.150566
\(896\) 17695.8 0.659794
\(897\) 0 0
\(898\) −31196.7 −1.15930
\(899\) −507.832 −0.0188400
\(900\) 0 0
\(901\) −11650.4 −0.430778
\(902\) 18263.3 0.674169
\(903\) 0 0
\(904\) −46783.0 −1.72122
\(905\) 32992.0 1.21181
\(906\) 0 0
\(907\) 40350.7 1.47720 0.738601 0.674143i \(-0.235487\pi\)
0.738601 + 0.674143i \(0.235487\pi\)
\(908\) −48131.8 −1.75915
\(909\) 0 0
\(910\) 39584.0 1.44197
\(911\) 32322.7 1.17552 0.587760 0.809035i \(-0.300010\pi\)
0.587760 + 0.809035i \(0.300010\pi\)
\(912\) 0 0
\(913\) 1348.87 0.0488949
\(914\) −89837.5 −3.25116
\(915\) 0 0
\(916\) −36281.5 −1.30871
\(917\) 17348.8 0.624763
\(918\) 0 0
\(919\) 2431.28 0.0872694 0.0436347 0.999048i \(-0.486106\pi\)
0.0436347 + 0.999048i \(0.486106\pi\)
\(920\) 48913.5 1.75286
\(921\) 0 0
\(922\) −85644.2 −3.05916
\(923\) 20692.7 0.737930
\(924\) 0 0
\(925\) −1068.22 −0.0379708
\(926\) −62274.4 −2.21000
\(927\) 0 0
\(928\) −325.724 −0.0115220
\(929\) −40221.0 −1.42046 −0.710230 0.703970i \(-0.751409\pi\)
−0.710230 + 0.703970i \(0.751409\pi\)
\(930\) 0 0
\(931\) 6648.43 0.234042
\(932\) 29679.4 1.04311
\(933\) 0 0
\(934\) 24441.4 0.856260
\(935\) −16094.4 −0.562934
\(936\) 0 0
\(937\) 41503.4 1.44702 0.723510 0.690314i \(-0.242528\pi\)
0.723510 + 0.690314i \(0.242528\pi\)
\(938\) 23771.3 0.827463
\(939\) 0 0
\(940\) −13489.1 −0.468048
\(941\) 9032.78 0.312923 0.156461 0.987684i \(-0.449991\pi\)
0.156461 + 0.987684i \(0.449991\pi\)
\(942\) 0 0
\(943\) −27557.2 −0.951629
\(944\) 33200.5 1.14469
\(945\) 0 0
\(946\) 23299.9 0.800789
\(947\) −5565.96 −0.190992 −0.0954960 0.995430i \(-0.530444\pi\)
−0.0954960 + 0.995430i \(0.530444\pi\)
\(948\) 0 0
\(949\) −65921.7 −2.25491
\(950\) 77540.5 2.64815
\(951\) 0 0
\(952\) −25516.8 −0.868703
\(953\) −32657.4 −1.11005 −0.555024 0.831834i \(-0.687291\pi\)
−0.555024 + 0.831834i \(0.687291\pi\)
\(954\) 0 0
\(955\) 45383.1 1.53776
\(956\) −22365.0 −0.756628
\(957\) 0 0
\(958\) 44388.3 1.49699
\(959\) −5849.63 −0.196970
\(960\) 0 0
\(961\) −29700.6 −0.996967
\(962\) −3324.34 −0.111415
\(963\) 0 0
\(964\) 61765.4 2.06362
\(965\) −58433.9 −1.94928
\(966\) 0 0
\(967\) −610.079 −0.0202883 −0.0101442 0.999949i \(-0.503229\pi\)
−0.0101442 + 0.999949i \(0.503229\pi\)
\(968\) 4688.14 0.155664
\(969\) 0 0
\(970\) −76250.6 −2.52398
\(971\) 45371.4 1.49952 0.749762 0.661708i \(-0.230168\pi\)
0.749762 + 0.661708i \(0.230168\pi\)
\(972\) 0 0
\(973\) 12088.9 0.398308
\(974\) −18916.5 −0.622304
\(975\) 0 0
\(976\) −22280.3 −0.730713
\(977\) −27229.0 −0.891639 −0.445820 0.895123i \(-0.647088\pi\)
−0.445820 + 0.895123i \(0.647088\pi\)
\(978\) 0 0
\(979\) 9317.94 0.304191
\(980\) −12132.6 −0.395471
\(981\) 0 0
\(982\) −35871.6 −1.16569
\(983\) −7458.49 −0.242003 −0.121002 0.992652i \(-0.538611\pi\)
−0.121002 + 0.992652i \(0.538611\pi\)
\(984\) 0 0
\(985\) 25012.6 0.809104
\(986\) 24584.5 0.794048
\(987\) 0 0
\(988\) 160609. 5.17171
\(989\) −35156.9 −1.13036
\(990\) 0 0
\(991\) −24357.8 −0.780778 −0.390389 0.920650i \(-0.627660\pi\)
−0.390389 + 0.920650i \(0.627660\pi\)
\(992\) 57.9516 0.00185480
\(993\) 0 0
\(994\) −9529.17 −0.304071
\(995\) −44562.9 −1.41984
\(996\) 0 0
\(997\) 19954.3 0.633862 0.316931 0.948449i \(-0.397348\pi\)
0.316931 + 0.948449i \(0.397348\pi\)
\(998\) −21353.7 −0.677294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.l.1.4 4
3.2 odd 2 77.4.a.d.1.1 4
12.11 even 2 1232.4.a.s.1.2 4
15.14 odd 2 1925.4.a.p.1.4 4
21.20 even 2 539.4.a.g.1.1 4
33.32 even 2 847.4.a.d.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.d.1.1 4 3.2 odd 2
539.4.a.g.1.1 4 21.20 even 2
693.4.a.l.1.4 4 1.1 even 1 trivial
847.4.a.d.1.4 4 33.32 even 2
1232.4.a.s.1.2 4 12.11 even 2
1925.4.a.p.1.4 4 15.14 odd 2