Properties

Label 693.4.a.l.1.3
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.522072.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.555307\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.24550 q^{2} +2.53327 q^{4} +16.0955 q^{5} -7.00000 q^{7} -17.7423 q^{8} +52.2379 q^{10} +11.0000 q^{11} +35.3712 q^{13} -22.7185 q^{14} -77.8487 q^{16} -40.4757 q^{17} +118.159 q^{19} +40.7743 q^{20} +35.7005 q^{22} +174.510 q^{23} +134.065 q^{25} +114.797 q^{26} -17.7329 q^{28} +262.725 q^{29} -36.1894 q^{31} -110.720 q^{32} -131.364 q^{34} -112.668 q^{35} +19.0464 q^{37} +383.487 q^{38} -285.571 q^{40} -156.996 q^{41} +287.182 q^{43} +27.8660 q^{44} +566.371 q^{46} -397.244 q^{47} +49.0000 q^{49} +435.108 q^{50} +89.6049 q^{52} -272.483 q^{53} +177.050 q^{55} +124.196 q^{56} +852.674 q^{58} +507.466 q^{59} +35.5608 q^{61} -117.453 q^{62} +263.448 q^{64} +569.317 q^{65} +979.229 q^{67} -102.536 q^{68} -365.666 q^{70} -750.404 q^{71} +395.594 q^{73} +61.8152 q^{74} +299.330 q^{76} -77.0000 q^{77} -736.516 q^{79} -1253.01 q^{80} -509.531 q^{82} -582.975 q^{83} -651.477 q^{85} +932.050 q^{86} -195.165 q^{88} +806.201 q^{89} -247.598 q^{91} +442.081 q^{92} -1289.26 q^{94} +1901.84 q^{95} -957.232 q^{97} +159.030 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 26 q^{4} - 10 q^{5} - 28 q^{7} + 18 q^{8} - 2 q^{10} + 44 q^{11} + 58 q^{13} - 14 q^{14} + 2 q^{16} - 4 q^{17} + 258 q^{19} - 182 q^{20} + 22 q^{22} - 8 q^{23} + 80 q^{25} + 482 q^{26} - 182 q^{28}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.24550 1.14746 0.573729 0.819045i \(-0.305496\pi\)
0.573729 + 0.819045i \(0.305496\pi\)
\(3\) 0 0
\(4\) 2.53327 0.316659
\(5\) 16.0955 1.43962 0.719812 0.694169i \(-0.244228\pi\)
0.719812 + 0.694169i \(0.244228\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) −17.7423 −0.784105
\(9\) 0 0
\(10\) 52.2379 1.65191
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 35.3712 0.754631 0.377316 0.926085i \(-0.376847\pi\)
0.377316 + 0.926085i \(0.376847\pi\)
\(14\) −22.7185 −0.433698
\(15\) 0 0
\(16\) −77.8487 −1.21639
\(17\) −40.4757 −0.577459 −0.288730 0.957411i \(-0.593233\pi\)
−0.288730 + 0.957411i \(0.593233\pi\)
\(18\) 0 0
\(19\) 118.159 1.42672 0.713359 0.700799i \(-0.247173\pi\)
0.713359 + 0.700799i \(0.247173\pi\)
\(20\) 40.7743 0.455870
\(21\) 0 0
\(22\) 35.7005 0.345972
\(23\) 174.510 1.58208 0.791039 0.611766i \(-0.209541\pi\)
0.791039 + 0.611766i \(0.209541\pi\)
\(24\) 0 0
\(25\) 134.065 1.07252
\(26\) 114.797 0.865907
\(27\) 0 0
\(28\) −17.7329 −0.119686
\(29\) 262.725 1.68230 0.841152 0.540799i \(-0.181878\pi\)
0.841152 + 0.540799i \(0.181878\pi\)
\(30\) 0 0
\(31\) −36.1894 −0.209671 −0.104836 0.994490i \(-0.533432\pi\)
−0.104836 + 0.994490i \(0.533432\pi\)
\(32\) −110.720 −0.611647
\(33\) 0 0
\(34\) −131.364 −0.662610
\(35\) −112.668 −0.544127
\(36\) 0 0
\(37\) 19.0464 0.0846274 0.0423137 0.999104i \(-0.486527\pi\)
0.0423137 + 0.999104i \(0.486527\pi\)
\(38\) 383.487 1.63710
\(39\) 0 0
\(40\) −285.571 −1.12882
\(41\) −156.996 −0.598017 −0.299008 0.954250i \(-0.596656\pi\)
−0.299008 + 0.954250i \(0.596656\pi\)
\(42\) 0 0
\(43\) 287.182 1.01849 0.509243 0.860623i \(-0.329926\pi\)
0.509243 + 0.860623i \(0.329926\pi\)
\(44\) 27.8660 0.0954763
\(45\) 0 0
\(46\) 566.371 1.81537
\(47\) −397.244 −1.23285 −0.616425 0.787413i \(-0.711420\pi\)
−0.616425 + 0.787413i \(0.711420\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 435.108 1.23067
\(51\) 0 0
\(52\) 89.6049 0.238961
\(53\) −272.483 −0.706196 −0.353098 0.935586i \(-0.614872\pi\)
−0.353098 + 0.935586i \(0.614872\pi\)
\(54\) 0 0
\(55\) 177.050 0.434063
\(56\) 124.196 0.296364
\(57\) 0 0
\(58\) 852.674 1.93037
\(59\) 507.466 1.11977 0.559885 0.828570i \(-0.310845\pi\)
0.559885 + 0.828570i \(0.310845\pi\)
\(60\) 0 0
\(61\) 35.5608 0.0746409 0.0373205 0.999303i \(-0.488118\pi\)
0.0373205 + 0.999303i \(0.488118\pi\)
\(62\) −117.453 −0.240589
\(63\) 0 0
\(64\) 263.448 0.514547
\(65\) 569.317 1.08639
\(66\) 0 0
\(67\) 979.229 1.78555 0.892775 0.450502i \(-0.148755\pi\)
0.892775 + 0.450502i \(0.148755\pi\)
\(68\) −102.536 −0.182858
\(69\) 0 0
\(70\) −365.666 −0.624363
\(71\) −750.404 −1.25432 −0.627159 0.778891i \(-0.715782\pi\)
−0.627159 + 0.778891i \(0.715782\pi\)
\(72\) 0 0
\(73\) 395.594 0.634257 0.317129 0.948383i \(-0.397281\pi\)
0.317129 + 0.948383i \(0.397281\pi\)
\(74\) 61.8152 0.0971063
\(75\) 0 0
\(76\) 299.330 0.451783
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −736.516 −1.04892 −0.524459 0.851436i \(-0.675732\pi\)
−0.524459 + 0.851436i \(0.675732\pi\)
\(80\) −1253.01 −1.75114
\(81\) 0 0
\(82\) −509.531 −0.686199
\(83\) −582.975 −0.770962 −0.385481 0.922716i \(-0.625964\pi\)
−0.385481 + 0.922716i \(0.625964\pi\)
\(84\) 0 0
\(85\) −651.477 −0.831325
\(86\) 932.050 1.16867
\(87\) 0 0
\(88\) −195.165 −0.236416
\(89\) 806.201 0.960192 0.480096 0.877216i \(-0.340602\pi\)
0.480096 + 0.877216i \(0.340602\pi\)
\(90\) 0 0
\(91\) −247.598 −0.285224
\(92\) 442.081 0.500979
\(93\) 0 0
\(94\) −1289.26 −1.41464
\(95\) 1901.84 2.05394
\(96\) 0 0
\(97\) −957.232 −1.00198 −0.500991 0.865453i \(-0.667031\pi\)
−0.500991 + 0.865453i \(0.667031\pi\)
\(98\) 159.030 0.163923
\(99\) 0 0
\(100\) 339.623 0.339623
\(101\) 996.143 0.981386 0.490693 0.871333i \(-0.336744\pi\)
0.490693 + 0.871333i \(0.336744\pi\)
\(102\) 0 0
\(103\) 1338.55 1.28050 0.640248 0.768169i \(-0.278832\pi\)
0.640248 + 0.768169i \(0.278832\pi\)
\(104\) −627.565 −0.591710
\(105\) 0 0
\(106\) −884.343 −0.810330
\(107\) −1449.25 −1.30939 −0.654693 0.755895i \(-0.727202\pi\)
−0.654693 + 0.755895i \(0.727202\pi\)
\(108\) 0 0
\(109\) −654.535 −0.575166 −0.287583 0.957756i \(-0.592852\pi\)
−0.287583 + 0.957756i \(0.592852\pi\)
\(110\) 574.617 0.498069
\(111\) 0 0
\(112\) 544.941 0.459751
\(113\) 1160.63 0.966223 0.483111 0.875559i \(-0.339507\pi\)
0.483111 + 0.875559i \(0.339507\pi\)
\(114\) 0 0
\(115\) 2808.82 2.27760
\(116\) 665.554 0.532717
\(117\) 0 0
\(118\) 1646.98 1.28489
\(119\) 283.330 0.218259
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 115.413 0.0856473
\(123\) 0 0
\(124\) −91.6776 −0.0663943
\(125\) 145.906 0.104402
\(126\) 0 0
\(127\) −1055.41 −0.737420 −0.368710 0.929545i \(-0.620200\pi\)
−0.368710 + 0.929545i \(0.620200\pi\)
\(128\) 1740.78 1.20207
\(129\) 0 0
\(130\) 1847.72 1.24658
\(131\) −2657.40 −1.77235 −0.886175 0.463351i \(-0.846647\pi\)
−0.886175 + 0.463351i \(0.846647\pi\)
\(132\) 0 0
\(133\) −827.116 −0.539249
\(134\) 3178.09 2.04884
\(135\) 0 0
\(136\) 718.131 0.452788
\(137\) 147.314 0.0918676 0.0459338 0.998944i \(-0.485374\pi\)
0.0459338 + 0.998944i \(0.485374\pi\)
\(138\) 0 0
\(139\) 902.634 0.550794 0.275397 0.961331i \(-0.411191\pi\)
0.275397 + 0.961331i \(0.411191\pi\)
\(140\) −285.420 −0.172303
\(141\) 0 0
\(142\) −2435.44 −1.43928
\(143\) 389.083 0.227530
\(144\) 0 0
\(145\) 4228.69 2.42189
\(146\) 1283.90 0.727783
\(147\) 0 0
\(148\) 48.2498 0.0267980
\(149\) −1212.63 −0.666727 −0.333363 0.942798i \(-0.608184\pi\)
−0.333363 + 0.942798i \(0.608184\pi\)
\(150\) 0 0
\(151\) 2565.33 1.38254 0.691270 0.722597i \(-0.257052\pi\)
0.691270 + 0.722597i \(0.257052\pi\)
\(152\) −2096.42 −1.11870
\(153\) 0 0
\(154\) −249.904 −0.130765
\(155\) −582.486 −0.301848
\(156\) 0 0
\(157\) 702.237 0.356972 0.178486 0.983942i \(-0.442880\pi\)
0.178486 + 0.983942i \(0.442880\pi\)
\(158\) −2390.36 −1.20359
\(159\) 0 0
\(160\) −1782.09 −0.880542
\(161\) −1221.57 −0.597969
\(162\) 0 0
\(163\) −1146.27 −0.550814 −0.275407 0.961328i \(-0.588813\pi\)
−0.275407 + 0.961328i \(0.588813\pi\)
\(164\) −397.714 −0.189368
\(165\) 0 0
\(166\) −1892.05 −0.884646
\(167\) 3255.04 1.50828 0.754140 0.656714i \(-0.228054\pi\)
0.754140 + 0.656714i \(0.228054\pi\)
\(168\) 0 0
\(169\) −945.879 −0.430532
\(170\) −2114.37 −0.953910
\(171\) 0 0
\(172\) 727.511 0.322513
\(173\) −4024.24 −1.76854 −0.884269 0.466977i \(-0.845343\pi\)
−0.884269 + 0.466977i \(0.845343\pi\)
\(174\) 0 0
\(175\) −938.455 −0.405374
\(176\) −856.336 −0.366754
\(177\) 0 0
\(178\) 2616.52 1.10178
\(179\) −706.090 −0.294836 −0.147418 0.989074i \(-0.547096\pi\)
−0.147418 + 0.989074i \(0.547096\pi\)
\(180\) 0 0
\(181\) −1268.90 −0.521087 −0.260544 0.965462i \(-0.583902\pi\)
−0.260544 + 0.965462i \(0.583902\pi\)
\(182\) −803.581 −0.327282
\(183\) 0 0
\(184\) −3096.20 −1.24051
\(185\) 306.562 0.121832
\(186\) 0 0
\(187\) −445.233 −0.174110
\(188\) −1006.33 −0.390393
\(189\) 0 0
\(190\) 6172.41 2.35681
\(191\) −4864.58 −1.84287 −0.921436 0.388529i \(-0.872983\pi\)
−0.921436 + 0.388529i \(0.872983\pi\)
\(192\) 0 0
\(193\) −2675.49 −0.997855 −0.498928 0.866644i \(-0.666273\pi\)
−0.498928 + 0.866644i \(0.666273\pi\)
\(194\) −3106.70 −1.14973
\(195\) 0 0
\(196\) 124.130 0.0452370
\(197\) −1627.73 −0.588684 −0.294342 0.955700i \(-0.595101\pi\)
−0.294342 + 0.955700i \(0.595101\pi\)
\(198\) 0 0
\(199\) −2254.07 −0.802947 −0.401474 0.915871i \(-0.631502\pi\)
−0.401474 + 0.915871i \(0.631502\pi\)
\(200\) −2378.62 −0.840968
\(201\) 0 0
\(202\) 3232.98 1.12610
\(203\) −1839.08 −0.635851
\(204\) 0 0
\(205\) −2526.93 −0.860920
\(206\) 4344.26 1.46931
\(207\) 0 0
\(208\) −2753.60 −0.917923
\(209\) 1299.75 0.430172
\(210\) 0 0
\(211\) 3112.07 1.01537 0.507687 0.861542i \(-0.330501\pi\)
0.507687 + 0.861542i \(0.330501\pi\)
\(212\) −690.273 −0.223623
\(213\) 0 0
\(214\) −4703.54 −1.50247
\(215\) 4622.34 1.46624
\(216\) 0 0
\(217\) 253.326 0.0792482
\(218\) −2124.30 −0.659979
\(219\) 0 0
\(220\) 448.517 0.137450
\(221\) −1431.67 −0.435769
\(222\) 0 0
\(223\) −3558.38 −1.06855 −0.534275 0.845311i \(-0.679415\pi\)
−0.534275 + 0.845311i \(0.679415\pi\)
\(224\) 775.039 0.231181
\(225\) 0 0
\(226\) 3766.84 1.10870
\(227\) 2330.51 0.681416 0.340708 0.940169i \(-0.389333\pi\)
0.340708 + 0.940169i \(0.389333\pi\)
\(228\) 0 0
\(229\) 676.106 0.195102 0.0975509 0.995231i \(-0.468899\pi\)
0.0975509 + 0.995231i \(0.468899\pi\)
\(230\) 9116.02 2.61345
\(231\) 0 0
\(232\) −4661.34 −1.31910
\(233\) −1620.20 −0.455548 −0.227774 0.973714i \(-0.573145\pi\)
−0.227774 + 0.973714i \(0.573145\pi\)
\(234\) 0 0
\(235\) −6393.84 −1.77484
\(236\) 1285.55 0.354586
\(237\) 0 0
\(238\) 919.548 0.250443
\(239\) 2001.39 0.541669 0.270835 0.962626i \(-0.412700\pi\)
0.270835 + 0.962626i \(0.412700\pi\)
\(240\) 0 0
\(241\) −1586.39 −0.424018 −0.212009 0.977268i \(-0.568001\pi\)
−0.212009 + 0.977268i \(0.568001\pi\)
\(242\) 392.706 0.104314
\(243\) 0 0
\(244\) 90.0853 0.0236357
\(245\) 788.679 0.205661
\(246\) 0 0
\(247\) 4179.44 1.07665
\(248\) 642.081 0.164404
\(249\) 0 0
\(250\) 473.537 0.119796
\(251\) −2612.23 −0.656902 −0.328451 0.944521i \(-0.606527\pi\)
−0.328451 + 0.944521i \(0.606527\pi\)
\(252\) 0 0
\(253\) 1919.61 0.477014
\(254\) −3425.33 −0.846158
\(255\) 0 0
\(256\) 3542.12 0.864775
\(257\) −4198.23 −1.01898 −0.509491 0.860476i \(-0.670166\pi\)
−0.509491 + 0.860476i \(0.670166\pi\)
\(258\) 0 0
\(259\) −133.325 −0.0319861
\(260\) 1442.24 0.344014
\(261\) 0 0
\(262\) −8624.58 −2.03370
\(263\) 5170.31 1.21222 0.606112 0.795380i \(-0.292728\pi\)
0.606112 + 0.795380i \(0.292728\pi\)
\(264\) 0 0
\(265\) −4385.74 −1.01666
\(266\) −2684.41 −0.618765
\(267\) 0 0
\(268\) 2480.66 0.565411
\(269\) −1648.20 −0.373578 −0.186789 0.982400i \(-0.559808\pi\)
−0.186789 + 0.982400i \(0.559808\pi\)
\(270\) 0 0
\(271\) 2562.79 0.574459 0.287230 0.957862i \(-0.407266\pi\)
0.287230 + 0.957862i \(0.407266\pi\)
\(272\) 3150.98 0.702413
\(273\) 0 0
\(274\) 478.107 0.105414
\(275\) 1474.72 0.323377
\(276\) 0 0
\(277\) 2762.94 0.599310 0.299655 0.954048i \(-0.403128\pi\)
0.299655 + 0.954048i \(0.403128\pi\)
\(278\) 2929.50 0.632013
\(279\) 0 0
\(280\) 1998.99 0.426653
\(281\) −6453.68 −1.37009 −0.685044 0.728502i \(-0.740217\pi\)
−0.685044 + 0.728502i \(0.740217\pi\)
\(282\) 0 0
\(283\) 4540.78 0.953787 0.476893 0.878961i \(-0.341763\pi\)
0.476893 + 0.878961i \(0.341763\pi\)
\(284\) −1900.98 −0.397191
\(285\) 0 0
\(286\) 1262.77 0.261081
\(287\) 1098.97 0.226029
\(288\) 0 0
\(289\) −3274.72 −0.666541
\(290\) 13724.2 2.77901
\(291\) 0 0
\(292\) 1002.15 0.200843
\(293\) −1916.34 −0.382094 −0.191047 0.981581i \(-0.561188\pi\)
−0.191047 + 0.981581i \(0.561188\pi\)
\(294\) 0 0
\(295\) 8167.92 1.61205
\(296\) −337.927 −0.0663567
\(297\) 0 0
\(298\) −3935.58 −0.765040
\(299\) 6172.61 1.19388
\(300\) 0 0
\(301\) −2010.28 −0.384951
\(302\) 8325.78 1.58641
\(303\) 0 0
\(304\) −9198.56 −1.73544
\(305\) 572.369 0.107455
\(306\) 0 0
\(307\) 6876.30 1.27834 0.639171 0.769064i \(-0.279278\pi\)
0.639171 + 0.769064i \(0.279278\pi\)
\(308\) −195.062 −0.0360867
\(309\) 0 0
\(310\) −1890.46 −0.346357
\(311\) −8469.32 −1.54422 −0.772108 0.635492i \(-0.780797\pi\)
−0.772108 + 0.635492i \(0.780797\pi\)
\(312\) 0 0
\(313\) −2882.28 −0.520498 −0.260249 0.965542i \(-0.583805\pi\)
−0.260249 + 0.965542i \(0.583805\pi\)
\(314\) 2279.11 0.409610
\(315\) 0 0
\(316\) −1865.80 −0.332150
\(317\) −9795.31 −1.73552 −0.867759 0.496985i \(-0.834440\pi\)
−0.867759 + 0.496985i \(0.834440\pi\)
\(318\) 0 0
\(319\) 2889.98 0.507234
\(320\) 4240.33 0.740755
\(321\) 0 0
\(322\) −3964.60 −0.686144
\(323\) −4782.59 −0.823871
\(324\) 0 0
\(325\) 4742.04 0.809357
\(326\) −3720.22 −0.632036
\(327\) 0 0
\(328\) 2785.47 0.468908
\(329\) 2780.71 0.465974
\(330\) 0 0
\(331\) 1813.70 0.301178 0.150589 0.988596i \(-0.451883\pi\)
0.150589 + 0.988596i \(0.451883\pi\)
\(332\) −1476.84 −0.244132
\(333\) 0 0
\(334\) 10564.2 1.73069
\(335\) 15761.2 2.57052
\(336\) 0 0
\(337\) −11964.2 −1.93393 −0.966964 0.254913i \(-0.917953\pi\)
−0.966964 + 0.254913i \(0.917953\pi\)
\(338\) −3069.85 −0.494017
\(339\) 0 0
\(340\) −1650.37 −0.263247
\(341\) −398.083 −0.0632182
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −5095.26 −0.798599
\(345\) 0 0
\(346\) −13060.7 −2.02932
\(347\) 2283.89 0.353330 0.176665 0.984271i \(-0.443469\pi\)
0.176665 + 0.984271i \(0.443469\pi\)
\(348\) 0 0
\(349\) −2472.48 −0.379223 −0.189612 0.981859i \(-0.560723\pi\)
−0.189612 + 0.981859i \(0.560723\pi\)
\(350\) −3045.76 −0.465150
\(351\) 0 0
\(352\) −1217.92 −0.184418
\(353\) −10190.0 −1.53642 −0.768211 0.640197i \(-0.778853\pi\)
−0.768211 + 0.640197i \(0.778853\pi\)
\(354\) 0 0
\(355\) −12078.1 −1.80575
\(356\) 2042.33 0.304054
\(357\) 0 0
\(358\) −2291.62 −0.338312
\(359\) 43.4294 0.00638473 0.00319236 0.999995i \(-0.498984\pi\)
0.00319236 + 0.999995i \(0.498984\pi\)
\(360\) 0 0
\(361\) 7102.66 1.03552
\(362\) −4118.23 −0.597926
\(363\) 0 0
\(364\) −627.234 −0.0903187
\(365\) 6367.28 0.913093
\(366\) 0 0
\(367\) 8775.78 1.24821 0.624104 0.781342i \(-0.285464\pi\)
0.624104 + 0.781342i \(0.285464\pi\)
\(368\) −13585.4 −1.92442
\(369\) 0 0
\(370\) 994.946 0.139797
\(371\) 1907.38 0.266917
\(372\) 0 0
\(373\) −2751.89 −0.382004 −0.191002 0.981590i \(-0.561174\pi\)
−0.191002 + 0.981590i \(0.561174\pi\)
\(374\) −1445.00 −0.199784
\(375\) 0 0
\(376\) 7048.01 0.966684
\(377\) 9292.90 1.26952
\(378\) 0 0
\(379\) 2605.59 0.353141 0.176570 0.984288i \(-0.443500\pi\)
0.176570 + 0.984288i \(0.443500\pi\)
\(380\) 4817.87 0.650399
\(381\) 0 0
\(382\) −15788.0 −2.11462
\(383\) 14360.5 1.91590 0.957949 0.286940i \(-0.0926380\pi\)
0.957949 + 0.286940i \(0.0926380\pi\)
\(384\) 0 0
\(385\) −1239.35 −0.164060
\(386\) −8683.31 −1.14500
\(387\) 0 0
\(388\) −2424.93 −0.317287
\(389\) 10607.9 1.38262 0.691311 0.722557i \(-0.257033\pi\)
0.691311 + 0.722557i \(0.257033\pi\)
\(390\) 0 0
\(391\) −7063.40 −0.913585
\(392\) −869.371 −0.112015
\(393\) 0 0
\(394\) −5282.79 −0.675490
\(395\) −11854.6 −1.51005
\(396\) 0 0
\(397\) 7362.35 0.930745 0.465373 0.885115i \(-0.345920\pi\)
0.465373 + 0.885115i \(0.345920\pi\)
\(398\) −7315.57 −0.921348
\(399\) 0 0
\(400\) −10436.8 −1.30460
\(401\) 264.514 0.0329406 0.0164703 0.999864i \(-0.494757\pi\)
0.0164703 + 0.999864i \(0.494757\pi\)
\(402\) 0 0
\(403\) −1280.06 −0.158224
\(404\) 2523.50 0.310765
\(405\) 0 0
\(406\) −5968.72 −0.729612
\(407\) 209.511 0.0255161
\(408\) 0 0
\(409\) −1244.03 −0.150400 −0.0751999 0.997168i \(-0.523959\pi\)
−0.0751999 + 0.997168i \(0.523959\pi\)
\(410\) −8201.16 −0.987869
\(411\) 0 0
\(412\) 3390.91 0.405481
\(413\) −3552.26 −0.423233
\(414\) 0 0
\(415\) −9383.27 −1.10990
\(416\) −3916.30 −0.461568
\(417\) 0 0
\(418\) 4218.35 0.493604
\(419\) −3974.76 −0.463436 −0.231718 0.972783i \(-0.574435\pi\)
−0.231718 + 0.972783i \(0.574435\pi\)
\(420\) 0 0
\(421\) −14910.2 −1.72608 −0.863041 0.505134i \(-0.831443\pi\)
−0.863041 + 0.505134i \(0.831443\pi\)
\(422\) 10100.2 1.16510
\(423\) 0 0
\(424\) 4834.46 0.553731
\(425\) −5426.38 −0.619336
\(426\) 0 0
\(427\) −248.926 −0.0282116
\(428\) −3671.35 −0.414629
\(429\) 0 0
\(430\) 15001.8 1.68244
\(431\) 10622.4 1.18715 0.593574 0.804779i \(-0.297716\pi\)
0.593574 + 0.804779i \(0.297716\pi\)
\(432\) 0 0
\(433\) 17440.5 1.93565 0.967823 0.251630i \(-0.0809667\pi\)
0.967823 + 0.251630i \(0.0809667\pi\)
\(434\) 822.168 0.0909340
\(435\) 0 0
\(436\) −1658.12 −0.182132
\(437\) 20620.0 2.25718
\(438\) 0 0
\(439\) 13627.1 1.48151 0.740756 0.671774i \(-0.234467\pi\)
0.740756 + 0.671774i \(0.234467\pi\)
\(440\) −3141.28 −0.340351
\(441\) 0 0
\(442\) −4646.50 −0.500026
\(443\) −2135.29 −0.229008 −0.114504 0.993423i \(-0.536528\pi\)
−0.114504 + 0.993423i \(0.536528\pi\)
\(444\) 0 0
\(445\) 12976.2 1.38232
\(446\) −11548.7 −1.22612
\(447\) 0 0
\(448\) −1844.14 −0.194481
\(449\) −17780.8 −1.86889 −0.934443 0.356113i \(-0.884102\pi\)
−0.934443 + 0.356113i \(0.884102\pi\)
\(450\) 0 0
\(451\) −1726.96 −0.180309
\(452\) 2940.20 0.305963
\(453\) 0 0
\(454\) 7563.67 0.781896
\(455\) −3985.22 −0.410615
\(456\) 0 0
\(457\) 10357.0 1.06013 0.530064 0.847957i \(-0.322168\pi\)
0.530064 + 0.847957i \(0.322168\pi\)
\(458\) 2194.30 0.223871
\(459\) 0 0
\(460\) 7115.51 0.721222
\(461\) 19679.5 1.98821 0.994106 0.108410i \(-0.0345760\pi\)
0.994106 + 0.108410i \(0.0345760\pi\)
\(462\) 0 0
\(463\) −7171.43 −0.719838 −0.359919 0.932984i \(-0.617196\pi\)
−0.359919 + 0.932984i \(0.617196\pi\)
\(464\) −20452.8 −2.04633
\(465\) 0 0
\(466\) −5258.36 −0.522722
\(467\) 12192.8 1.20817 0.604085 0.796920i \(-0.293539\pi\)
0.604085 + 0.796920i \(0.293539\pi\)
\(468\) 0 0
\(469\) −6854.61 −0.674875
\(470\) −20751.2 −2.03656
\(471\) 0 0
\(472\) −9003.60 −0.878017
\(473\) 3159.00 0.307085
\(474\) 0 0
\(475\) 15841.1 1.53018
\(476\) 717.752 0.0691137
\(477\) 0 0
\(478\) 6495.50 0.621542
\(479\) −8475.11 −0.808429 −0.404215 0.914664i \(-0.632455\pi\)
−0.404215 + 0.914664i \(0.632455\pi\)
\(480\) 0 0
\(481\) 673.695 0.0638624
\(482\) −5148.63 −0.486543
\(483\) 0 0
\(484\) 306.526 0.0287872
\(485\) −15407.1 −1.44248
\(486\) 0 0
\(487\) 2735.29 0.254513 0.127257 0.991870i \(-0.459383\pi\)
0.127257 + 0.991870i \(0.459383\pi\)
\(488\) −630.929 −0.0585263
\(489\) 0 0
\(490\) 2559.66 0.235987
\(491\) 2233.82 0.205317 0.102659 0.994717i \(-0.467265\pi\)
0.102659 + 0.994717i \(0.467265\pi\)
\(492\) 0 0
\(493\) −10634.0 −0.971462
\(494\) 13564.4 1.23541
\(495\) 0 0
\(496\) 2817.30 0.255041
\(497\) 5252.83 0.474088
\(498\) 0 0
\(499\) −18100.3 −1.62381 −0.811904 0.583791i \(-0.801569\pi\)
−0.811904 + 0.583791i \(0.801569\pi\)
\(500\) 369.619 0.0330597
\(501\) 0 0
\(502\) −8477.99 −0.753768
\(503\) −6149.06 −0.545076 −0.272538 0.962145i \(-0.587863\pi\)
−0.272538 + 0.962145i \(0.587863\pi\)
\(504\) 0 0
\(505\) 16033.4 1.41283
\(506\) 6230.08 0.547354
\(507\) 0 0
\(508\) −2673.64 −0.233511
\(509\) −14193.9 −1.23602 −0.618008 0.786172i \(-0.712060\pi\)
−0.618008 + 0.786172i \(0.712060\pi\)
\(510\) 0 0
\(511\) −2769.16 −0.239727
\(512\) −2430.30 −0.209775
\(513\) 0 0
\(514\) −13625.4 −1.16924
\(515\) 21544.6 1.84343
\(516\) 0 0
\(517\) −4369.68 −0.371718
\(518\) −432.706 −0.0367027
\(519\) 0 0
\(520\) −10101.0 −0.851840
\(521\) −10371.8 −0.872163 −0.436082 0.899907i \(-0.643634\pi\)
−0.436082 + 0.899907i \(0.643634\pi\)
\(522\) 0 0
\(523\) −11369.4 −0.950569 −0.475285 0.879832i \(-0.657655\pi\)
−0.475285 + 0.879832i \(0.657655\pi\)
\(524\) −6731.91 −0.561231
\(525\) 0 0
\(526\) 16780.2 1.39098
\(527\) 1464.79 0.121076
\(528\) 0 0
\(529\) 18286.6 1.50297
\(530\) −14233.9 −1.16657
\(531\) 0 0
\(532\) −2095.31 −0.170758
\(533\) −5553.14 −0.451282
\(534\) 0 0
\(535\) −23326.4 −1.88503
\(536\) −17373.7 −1.40006
\(537\) 0 0
\(538\) −5349.24 −0.428665
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 5386.88 0.428096 0.214048 0.976823i \(-0.431335\pi\)
0.214048 + 0.976823i \(0.431335\pi\)
\(542\) 8317.54 0.659167
\(543\) 0 0
\(544\) 4481.47 0.353201
\(545\) −10535.1 −0.828024
\(546\) 0 0
\(547\) 13890.8 1.08579 0.542894 0.839801i \(-0.317328\pi\)
0.542894 + 0.839801i \(0.317328\pi\)
\(548\) 373.186 0.0290907
\(549\) 0 0
\(550\) 4786.19 0.371061
\(551\) 31043.5 2.40017
\(552\) 0 0
\(553\) 5155.61 0.396454
\(554\) 8967.12 0.687683
\(555\) 0 0
\(556\) 2286.62 0.174414
\(557\) −17498.3 −1.33111 −0.665553 0.746351i \(-0.731804\pi\)
−0.665553 + 0.746351i \(0.731804\pi\)
\(558\) 0 0
\(559\) 10158.0 0.768581
\(560\) 8771.10 0.661869
\(561\) 0 0
\(562\) −20945.4 −1.57212
\(563\) −147.373 −0.0110320 −0.00551600 0.999985i \(-0.501756\pi\)
−0.00551600 + 0.999985i \(0.501756\pi\)
\(564\) 0 0
\(565\) 18681.0 1.39100
\(566\) 14737.1 1.09443
\(567\) 0 0
\(568\) 13313.9 0.983517
\(569\) 14155.3 1.04292 0.521459 0.853276i \(-0.325388\pi\)
0.521459 + 0.853276i \(0.325388\pi\)
\(570\) 0 0
\(571\) −248.361 −0.0182025 −0.00910123 0.999959i \(-0.502897\pi\)
−0.00910123 + 0.999959i \(0.502897\pi\)
\(572\) 985.654 0.0720494
\(573\) 0 0
\(574\) 3566.72 0.259359
\(575\) 23395.6 1.69681
\(576\) 0 0
\(577\) 19364.6 1.39715 0.698576 0.715536i \(-0.253817\pi\)
0.698576 + 0.715536i \(0.253817\pi\)
\(578\) −10628.1 −0.764828
\(579\) 0 0
\(580\) 10712.4 0.766913
\(581\) 4080.83 0.291396
\(582\) 0 0
\(583\) −2997.31 −0.212926
\(584\) −7018.73 −0.497324
\(585\) 0 0
\(586\) −6219.47 −0.438437
\(587\) 9135.18 0.642332 0.321166 0.947023i \(-0.395925\pi\)
0.321166 + 0.947023i \(0.395925\pi\)
\(588\) 0 0
\(589\) −4276.12 −0.299141
\(590\) 26509.0 1.84976
\(591\) 0 0
\(592\) −1482.74 −0.102940
\(593\) 12287.6 0.850916 0.425458 0.904978i \(-0.360113\pi\)
0.425458 + 0.904978i \(0.360113\pi\)
\(594\) 0 0
\(595\) 4560.34 0.314211
\(596\) −3071.91 −0.211125
\(597\) 0 0
\(598\) 20033.2 1.36993
\(599\) −12351.9 −0.842549 −0.421275 0.906933i \(-0.638417\pi\)
−0.421275 + 0.906933i \(0.638417\pi\)
\(600\) 0 0
\(601\) 21624.2 1.46767 0.733836 0.679327i \(-0.237728\pi\)
0.733836 + 0.679327i \(0.237728\pi\)
\(602\) −6524.35 −0.441715
\(603\) 0 0
\(604\) 6498.68 0.437794
\(605\) 1947.56 0.130875
\(606\) 0 0
\(607\) −2086.03 −0.139488 −0.0697442 0.997565i \(-0.522218\pi\)
−0.0697442 + 0.997565i \(0.522218\pi\)
\(608\) −13082.6 −0.872648
\(609\) 0 0
\(610\) 1857.62 0.123300
\(611\) −14051.0 −0.930347
\(612\) 0 0
\(613\) −8338.46 −0.549408 −0.274704 0.961529i \(-0.588580\pi\)
−0.274704 + 0.961529i \(0.588580\pi\)
\(614\) 22317.0 1.46684
\(615\) 0 0
\(616\) 1366.15 0.0893570
\(617\) 4771.20 0.311315 0.155657 0.987811i \(-0.450250\pi\)
0.155657 + 0.987811i \(0.450250\pi\)
\(618\) 0 0
\(619\) −16609.4 −1.07850 −0.539248 0.842147i \(-0.681292\pi\)
−0.539248 + 0.842147i \(0.681292\pi\)
\(620\) −1475.60 −0.0955828
\(621\) 0 0
\(622\) −27487.2 −1.77192
\(623\) −5643.40 −0.362919
\(624\) 0 0
\(625\) −14409.7 −0.922221
\(626\) −9354.43 −0.597250
\(627\) 0 0
\(628\) 1778.96 0.113038
\(629\) −770.918 −0.0488688
\(630\) 0 0
\(631\) 17254.9 1.08860 0.544299 0.838891i \(-0.316796\pi\)
0.544299 + 0.838891i \(0.316796\pi\)
\(632\) 13067.5 0.822462
\(633\) 0 0
\(634\) −31790.7 −1.99143
\(635\) −16987.3 −1.06161
\(636\) 0 0
\(637\) 1733.19 0.107804
\(638\) 9379.42 0.582029
\(639\) 0 0
\(640\) 28018.7 1.73053
\(641\) 7350.77 0.452945 0.226473 0.974018i \(-0.427281\pi\)
0.226473 + 0.974018i \(0.427281\pi\)
\(642\) 0 0
\(643\) 10117.8 0.620542 0.310271 0.950648i \(-0.399580\pi\)
0.310271 + 0.950648i \(0.399580\pi\)
\(644\) −3094.56 −0.189352
\(645\) 0 0
\(646\) −15521.9 −0.945358
\(647\) 24590.9 1.49423 0.747116 0.664693i \(-0.231438\pi\)
0.747116 + 0.664693i \(0.231438\pi\)
\(648\) 0 0
\(649\) 5582.13 0.337624
\(650\) 15390.3 0.928703
\(651\) 0 0
\(652\) −2903.81 −0.174420
\(653\) −2339.03 −0.140173 −0.0700867 0.997541i \(-0.522328\pi\)
−0.0700867 + 0.997541i \(0.522328\pi\)
\(654\) 0 0
\(655\) −42772.1 −2.55152
\(656\) 12222.0 0.727420
\(657\) 0 0
\(658\) 9024.79 0.534685
\(659\) 15735.7 0.930162 0.465081 0.885268i \(-0.346025\pi\)
0.465081 + 0.885268i \(0.346025\pi\)
\(660\) 0 0
\(661\) 4846.75 0.285199 0.142600 0.989780i \(-0.454454\pi\)
0.142600 + 0.989780i \(0.454454\pi\)
\(662\) 5886.36 0.345589
\(663\) 0 0
\(664\) 10343.3 0.604515
\(665\) −13312.8 −0.776316
\(666\) 0 0
\(667\) 45848.1 2.66154
\(668\) 8245.91 0.477611
\(669\) 0 0
\(670\) 51152.9 2.94957
\(671\) 391.169 0.0225051
\(672\) 0 0
\(673\) 15716.8 0.900205 0.450103 0.892977i \(-0.351387\pi\)
0.450103 + 0.892977i \(0.351387\pi\)
\(674\) −38830.0 −2.21910
\(675\) 0 0
\(676\) −2396.17 −0.136332
\(677\) 856.968 0.0486499 0.0243249 0.999704i \(-0.492256\pi\)
0.0243249 + 0.999704i \(0.492256\pi\)
\(678\) 0 0
\(679\) 6700.63 0.378713
\(680\) 11558.7 0.651846
\(681\) 0 0
\(682\) −1291.98 −0.0725402
\(683\) −24804.0 −1.38960 −0.694801 0.719202i \(-0.744508\pi\)
−0.694801 + 0.719202i \(0.744508\pi\)
\(684\) 0 0
\(685\) 2371.09 0.132255
\(686\) −1113.21 −0.0619569
\(687\) 0 0
\(688\) −22356.8 −1.23887
\(689\) −9638.04 −0.532917
\(690\) 0 0
\(691\) 3475.97 0.191364 0.0956818 0.995412i \(-0.469497\pi\)
0.0956818 + 0.995412i \(0.469497\pi\)
\(692\) −10194.5 −0.560024
\(693\) 0 0
\(694\) 7412.36 0.405431
\(695\) 14528.3 0.792937
\(696\) 0 0
\(697\) 6354.54 0.345330
\(698\) −8024.44 −0.435143
\(699\) 0 0
\(700\) −2377.36 −0.128366
\(701\) −17461.0 −0.940790 −0.470395 0.882456i \(-0.655889\pi\)
−0.470395 + 0.882456i \(0.655889\pi\)
\(702\) 0 0
\(703\) 2250.52 0.120739
\(704\) 2897.93 0.155142
\(705\) 0 0
\(706\) −33071.5 −1.76298
\(707\) −6973.00 −0.370929
\(708\) 0 0
\(709\) −18405.7 −0.974950 −0.487475 0.873137i \(-0.662082\pi\)
−0.487475 + 0.873137i \(0.662082\pi\)
\(710\) −39199.6 −2.07202
\(711\) 0 0
\(712\) −14303.8 −0.752891
\(713\) −6315.39 −0.331716
\(714\) 0 0
\(715\) 6262.49 0.327558
\(716\) −1788.72 −0.0933626
\(717\) 0 0
\(718\) 140.950 0.00732621
\(719\) 892.380 0.0462867 0.0231434 0.999732i \(-0.492633\pi\)
0.0231434 + 0.999732i \(0.492633\pi\)
\(720\) 0 0
\(721\) −9369.83 −0.483982
\(722\) 23051.7 1.18822
\(723\) 0 0
\(724\) −3214.48 −0.165007
\(725\) 35222.2 1.80431
\(726\) 0 0
\(727\) 27919.2 1.42430 0.712149 0.702028i \(-0.247722\pi\)
0.712149 + 0.702028i \(0.247722\pi\)
\(728\) 4392.96 0.223645
\(729\) 0 0
\(730\) 20665.0 1.04774
\(731\) −11623.9 −0.588134
\(732\) 0 0
\(733\) −4769.38 −0.240329 −0.120164 0.992754i \(-0.538342\pi\)
−0.120164 + 0.992754i \(0.538342\pi\)
\(734\) 28481.8 1.43227
\(735\) 0 0
\(736\) −19321.7 −0.967673
\(737\) 10771.5 0.538364
\(738\) 0 0
\(739\) −5170.63 −0.257381 −0.128691 0.991685i \(-0.541077\pi\)
−0.128691 + 0.991685i \(0.541077\pi\)
\(740\) 776.604 0.0385791
\(741\) 0 0
\(742\) 6190.40 0.306276
\(743\) 29407.9 1.45205 0.726024 0.687669i \(-0.241366\pi\)
0.726024 + 0.687669i \(0.241366\pi\)
\(744\) 0 0
\(745\) −19517.8 −0.959836
\(746\) −8931.26 −0.438333
\(747\) 0 0
\(748\) −1127.90 −0.0551337
\(749\) 10144.8 0.494902
\(750\) 0 0
\(751\) −16956.5 −0.823905 −0.411952 0.911205i \(-0.635153\pi\)
−0.411952 + 0.911205i \(0.635153\pi\)
\(752\) 30924.9 1.49962
\(753\) 0 0
\(754\) 30160.1 1.45672
\(755\) 41290.3 1.99034
\(756\) 0 0
\(757\) −21322.0 −1.02373 −0.511864 0.859067i \(-0.671045\pi\)
−0.511864 + 0.859067i \(0.671045\pi\)
\(758\) 8456.45 0.405214
\(759\) 0 0
\(760\) −33742.9 −1.61050
\(761\) 23548.0 1.12170 0.560851 0.827917i \(-0.310474\pi\)
0.560851 + 0.827917i \(0.310474\pi\)
\(762\) 0 0
\(763\) 4581.75 0.217392
\(764\) −12323.3 −0.583563
\(765\) 0 0
\(766\) 46607.1 2.19841
\(767\) 17949.7 0.845014
\(768\) 0 0
\(769\) −17230.9 −0.808015 −0.404007 0.914756i \(-0.632383\pi\)
−0.404007 + 0.914756i \(0.632383\pi\)
\(770\) −4022.32 −0.188252
\(771\) 0 0
\(772\) −6777.75 −0.315980
\(773\) −12285.8 −0.571655 −0.285828 0.958281i \(-0.592268\pi\)
−0.285828 + 0.958281i \(0.592268\pi\)
\(774\) 0 0
\(775\) −4851.73 −0.224876
\(776\) 16983.5 0.785658
\(777\) 0 0
\(778\) 34427.8 1.58650
\(779\) −18550.6 −0.853202
\(780\) 0 0
\(781\) −8254.45 −0.378191
\(782\) −22924.3 −1.04830
\(783\) 0 0
\(784\) −3814.59 −0.173769
\(785\) 11302.8 0.513906
\(786\) 0 0
\(787\) 663.152 0.0300366 0.0150183 0.999887i \(-0.495219\pi\)
0.0150183 + 0.999887i \(0.495219\pi\)
\(788\) −4123.48 −0.186412
\(789\) 0 0
\(790\) −38474.1 −1.73272
\(791\) −8124.43 −0.365198
\(792\) 0 0
\(793\) 1257.83 0.0563264
\(794\) 23894.5 1.06799
\(795\) 0 0
\(796\) −5710.17 −0.254261
\(797\) −19216.3 −0.854050 −0.427025 0.904240i \(-0.640438\pi\)
−0.427025 + 0.904240i \(0.640438\pi\)
\(798\) 0 0
\(799\) 16078.7 0.711921
\(800\) −14843.7 −0.656004
\(801\) 0 0
\(802\) 858.480 0.0377980
\(803\) 4351.53 0.191236
\(804\) 0 0
\(805\) −19661.7 −0.860851
\(806\) −4154.44 −0.181556
\(807\) 0 0
\(808\) −17673.8 −0.769509
\(809\) 42881.8 1.86359 0.931794 0.362989i \(-0.118244\pi\)
0.931794 + 0.362989i \(0.118244\pi\)
\(810\) 0 0
\(811\) −1205.73 −0.0522058 −0.0261029 0.999659i \(-0.508310\pi\)
−0.0261029 + 0.999659i \(0.508310\pi\)
\(812\) −4658.88 −0.201348
\(813\) 0 0
\(814\) 679.967 0.0292787
\(815\) −18449.8 −0.792966
\(816\) 0 0
\(817\) 33933.3 1.45309
\(818\) −4037.51 −0.172577
\(819\) 0 0
\(820\) −6401.41 −0.272618
\(821\) 28577.6 1.21482 0.607408 0.794390i \(-0.292209\pi\)
0.607408 + 0.794390i \(0.292209\pi\)
\(822\) 0 0
\(823\) 42524.8 1.80112 0.900561 0.434730i \(-0.143156\pi\)
0.900561 + 0.434730i \(0.143156\pi\)
\(824\) −23748.9 −1.00404
\(825\) 0 0
\(826\) −11528.9 −0.485643
\(827\) −30768.7 −1.29375 −0.646876 0.762595i \(-0.723925\pi\)
−0.646876 + 0.762595i \(0.723925\pi\)
\(828\) 0 0
\(829\) −17583.3 −0.736661 −0.368330 0.929695i \(-0.620070\pi\)
−0.368330 + 0.929695i \(0.620070\pi\)
\(830\) −30453.4 −1.27356
\(831\) 0 0
\(832\) 9318.48 0.388293
\(833\) −1983.31 −0.0824942
\(834\) 0 0
\(835\) 52391.5 2.17136
\(836\) 3292.63 0.136218
\(837\) 0 0
\(838\) −12900.1 −0.531773
\(839\) −19552.8 −0.804573 −0.402287 0.915514i \(-0.631784\pi\)
−0.402287 + 0.915514i \(0.631784\pi\)
\(840\) 0 0
\(841\) 44635.5 1.83015
\(842\) −48391.2 −1.98061
\(843\) 0 0
\(844\) 7883.72 0.321527
\(845\) −15224.4 −0.619805
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 21212.4 0.859007
\(849\) 0 0
\(850\) −17611.3 −0.710662
\(851\) 3323.78 0.133887
\(852\) 0 0
\(853\) −18524.1 −0.743557 −0.371779 0.928321i \(-0.621252\pi\)
−0.371779 + 0.928321i \(0.621252\pi\)
\(854\) −807.889 −0.0323716
\(855\) 0 0
\(856\) 25713.0 1.02670
\(857\) −24439.0 −0.974118 −0.487059 0.873369i \(-0.661930\pi\)
−0.487059 + 0.873369i \(0.661930\pi\)
\(858\) 0 0
\(859\) 11301.4 0.448893 0.224447 0.974486i \(-0.427943\pi\)
0.224447 + 0.974486i \(0.427943\pi\)
\(860\) 11709.6 0.464297
\(861\) 0 0
\(862\) 34474.9 1.36220
\(863\) 26377.3 1.04043 0.520217 0.854034i \(-0.325851\pi\)
0.520217 + 0.854034i \(0.325851\pi\)
\(864\) 0 0
\(865\) −64772.1 −2.54603
\(866\) 56603.0 2.22107
\(867\) 0 0
\(868\) 641.743 0.0250947
\(869\) −8101.68 −0.316261
\(870\) 0 0
\(871\) 34636.5 1.34743
\(872\) 11612.9 0.450991
\(873\) 0 0
\(874\) 66922.1 2.59002
\(875\) −1021.34 −0.0394601
\(876\) 0 0
\(877\) −28425.0 −1.09446 −0.547232 0.836981i \(-0.684319\pi\)
−0.547232 + 0.836981i \(0.684319\pi\)
\(878\) 44226.6 1.69997
\(879\) 0 0
\(880\) −13783.2 −0.527989
\(881\) −16897.1 −0.646171 −0.323086 0.946370i \(-0.604720\pi\)
−0.323086 + 0.946370i \(0.604720\pi\)
\(882\) 0 0
\(883\) −25538.9 −0.973331 −0.486665 0.873588i \(-0.661787\pi\)
−0.486665 + 0.873588i \(0.661787\pi\)
\(884\) −3626.82 −0.137990
\(885\) 0 0
\(886\) −6930.07 −0.262777
\(887\) −6478.48 −0.245238 −0.122619 0.992454i \(-0.539129\pi\)
−0.122619 + 0.992454i \(0.539129\pi\)
\(888\) 0 0
\(889\) 7387.85 0.278718
\(890\) 42114.3 1.58615
\(891\) 0 0
\(892\) −9014.35 −0.338366
\(893\) −46938.1 −1.75893
\(894\) 0 0
\(895\) −11364.9 −0.424453
\(896\) −12185.5 −0.454339
\(897\) 0 0
\(898\) −57707.7 −2.14447
\(899\) −9507.86 −0.352731
\(900\) 0 0
\(901\) 11028.9 0.407799
\(902\) −5604.85 −0.206897
\(903\) 0 0
\(904\) −20592.3 −0.757620
\(905\) −20423.6 −0.750171
\(906\) 0 0
\(907\) −9356.17 −0.342521 −0.171260 0.985226i \(-0.554784\pi\)
−0.171260 + 0.985226i \(0.554784\pi\)
\(908\) 5903.82 0.215777
\(909\) 0 0
\(910\) −12934.0 −0.471164
\(911\) 16574.0 0.602768 0.301384 0.953503i \(-0.402551\pi\)
0.301384 + 0.953503i \(0.402551\pi\)
\(912\) 0 0
\(913\) −6412.73 −0.232454
\(914\) 33613.6 1.21645
\(915\) 0 0
\(916\) 1712.76 0.0617808
\(917\) 18601.8 0.669885
\(918\) 0 0
\(919\) 8214.92 0.294870 0.147435 0.989072i \(-0.452898\pi\)
0.147435 + 0.989072i \(0.452898\pi\)
\(920\) −49834.8 −1.78588
\(921\) 0 0
\(922\) 63869.8 2.28139
\(923\) −26542.7 −0.946548
\(924\) 0 0
\(925\) 2553.46 0.0907646
\(926\) −23274.9 −0.825983
\(927\) 0 0
\(928\) −29088.9 −1.02898
\(929\) −42653.9 −1.50638 −0.753192 0.657801i \(-0.771487\pi\)
−0.753192 + 0.657801i \(0.771487\pi\)
\(930\) 0 0
\(931\) 5789.81 0.203817
\(932\) −4104.41 −0.144254
\(933\) 0 0
\(934\) 39571.7 1.38632
\(935\) −7166.25 −0.250654
\(936\) 0 0
\(937\) −18484.8 −0.644473 −0.322237 0.946659i \(-0.604435\pi\)
−0.322237 + 0.946659i \(0.604435\pi\)
\(938\) −22246.6 −0.774390
\(939\) 0 0
\(940\) −16197.3 −0.562020
\(941\) 7183.03 0.248842 0.124421 0.992230i \(-0.460293\pi\)
0.124421 + 0.992230i \(0.460293\pi\)
\(942\) 0 0
\(943\) −27397.4 −0.946109
\(944\) −39505.6 −1.36207
\(945\) 0 0
\(946\) 10252.5 0.352367
\(947\) −41443.3 −1.42210 −0.711049 0.703143i \(-0.751779\pi\)
−0.711049 + 0.703143i \(0.751779\pi\)
\(948\) 0 0
\(949\) 13992.6 0.478630
\(950\) 51412.1 1.75582
\(951\) 0 0
\(952\) −5026.92 −0.171138
\(953\) −7981.30 −0.271290 −0.135645 0.990757i \(-0.543311\pi\)
−0.135645 + 0.990757i \(0.543311\pi\)
\(954\) 0 0
\(955\) −78297.8 −2.65305
\(956\) 5070.06 0.171524
\(957\) 0 0
\(958\) −27506.0 −0.927638
\(959\) −1031.20 −0.0347227
\(960\) 0 0
\(961\) −28481.3 −0.956038
\(962\) 2186.48 0.0732795
\(963\) 0 0
\(964\) −4018.76 −0.134269
\(965\) −43063.3 −1.43654
\(966\) 0 0
\(967\) −18745.7 −0.623394 −0.311697 0.950182i \(-0.600897\pi\)
−0.311697 + 0.950182i \(0.600897\pi\)
\(968\) −2146.81 −0.0712822
\(969\) 0 0
\(970\) −50003.8 −1.65518
\(971\) −3096.87 −0.102351 −0.0511757 0.998690i \(-0.516297\pi\)
−0.0511757 + 0.998690i \(0.516297\pi\)
\(972\) 0 0
\(973\) −6318.44 −0.208181
\(974\) 8877.40 0.292043
\(975\) 0 0
\(976\) −2768.36 −0.0907922
\(977\) −19960.2 −0.653618 −0.326809 0.945090i \(-0.605973\pi\)
−0.326809 + 0.945090i \(0.605973\pi\)
\(978\) 0 0
\(979\) 8868.21 0.289509
\(980\) 1997.94 0.0651243
\(981\) 0 0
\(982\) 7249.85 0.235593
\(983\) 33434.5 1.08484 0.542419 0.840108i \(-0.317509\pi\)
0.542419 + 0.840108i \(0.317509\pi\)
\(984\) 0 0
\(985\) −26199.1 −0.847485
\(986\) −34512.6 −1.11471
\(987\) 0 0
\(988\) 10587.7 0.340930
\(989\) 50116.1 1.61132
\(990\) 0 0
\(991\) 24855.2 0.796722 0.398361 0.917229i \(-0.369579\pi\)
0.398361 + 0.917229i \(0.369579\pi\)
\(992\) 4006.88 0.128245
\(993\) 0 0
\(994\) 17048.1 0.543996
\(995\) −36280.3 −1.15594
\(996\) 0 0
\(997\) −7810.38 −0.248102 −0.124051 0.992276i \(-0.539589\pi\)
−0.124051 + 0.992276i \(0.539589\pi\)
\(998\) −58744.5 −1.86325
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.l.1.3 4
3.2 odd 2 77.4.a.d.1.2 4
12.11 even 2 1232.4.a.s.1.4 4
15.14 odd 2 1925.4.a.p.1.3 4
21.20 even 2 539.4.a.g.1.2 4
33.32 even 2 847.4.a.d.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.d.1.2 4 3.2 odd 2
539.4.a.g.1.2 4 21.20 even 2
693.4.a.l.1.3 4 1.1 even 1 trivial
847.4.a.d.1.3 4 33.32 even 2
1232.4.a.s.1.4 4 12.11 even 2
1925.4.a.p.1.3 4 15.14 odd 2