Properties

Label 693.4.a.l.1.2
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.522072.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.79597\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53253 q^{2} -5.65135 q^{4} -8.69995 q^{5} -7.00000 q^{7} +20.9211 q^{8} +13.3330 q^{10} +11.0000 q^{11} -76.3572 q^{13} +10.7277 q^{14} +13.1485 q^{16} -39.7278 q^{17} -27.9876 q^{19} +49.1664 q^{20} -16.8579 q^{22} -87.2055 q^{23} -49.3108 q^{25} +117.020 q^{26} +39.5594 q^{28} +38.3019 q^{29} -186.071 q^{31} -187.519 q^{32} +60.8842 q^{34} +60.8997 q^{35} -218.781 q^{37} +42.8919 q^{38} -182.013 q^{40} -80.1687 q^{41} -35.1155 q^{43} -62.1648 q^{44} +133.645 q^{46} +282.620 q^{47} +49.0000 q^{49} +75.5704 q^{50} +431.521 q^{52} -145.296 q^{53} -95.6995 q^{55} -146.448 q^{56} -58.6989 q^{58} -91.0461 q^{59} +808.142 q^{61} +285.160 q^{62} +182.192 q^{64} +664.304 q^{65} +794.222 q^{67} +224.516 q^{68} -93.3307 q^{70} -946.901 q^{71} +801.324 q^{73} +335.288 q^{74} +158.168 q^{76} -77.0000 q^{77} -890.737 q^{79} -114.391 q^{80} +122.861 q^{82} +559.333 q^{83} +345.630 q^{85} +53.8156 q^{86} +230.132 q^{88} +1523.75 q^{89} +534.501 q^{91} +492.829 q^{92} -433.125 q^{94} +243.491 q^{95} +664.651 q^{97} -75.0941 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 26 q^{4} - 10 q^{5} - 28 q^{7} + 18 q^{8} - 2 q^{10} + 44 q^{11} + 58 q^{13} - 14 q^{14} + 2 q^{16} - 4 q^{17} + 258 q^{19} - 182 q^{20} + 22 q^{22} - 8 q^{23} + 80 q^{25} + 482 q^{26} - 182 q^{28}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.53253 −0.541832 −0.270916 0.962603i \(-0.587327\pi\)
−0.270916 + 0.962603i \(0.587327\pi\)
\(3\) 0 0
\(4\) −5.65135 −0.706418
\(5\) −8.69995 −0.778148 −0.389074 0.921207i \(-0.627205\pi\)
−0.389074 + 0.921207i \(0.627205\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 20.9211 0.924592
\(9\) 0 0
\(10\) 13.3330 0.421625
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −76.3572 −1.62905 −0.814526 0.580127i \(-0.803003\pi\)
−0.814526 + 0.580127i \(0.803003\pi\)
\(14\) 10.7277 0.204793
\(15\) 0 0
\(16\) 13.1485 0.205445
\(17\) −39.7278 −0.566789 −0.283395 0.959003i \(-0.591461\pi\)
−0.283395 + 0.959003i \(0.591461\pi\)
\(18\) 0 0
\(19\) −27.9876 −0.337937 −0.168968 0.985621i \(-0.554044\pi\)
−0.168968 + 0.985621i \(0.554044\pi\)
\(20\) 49.1664 0.549698
\(21\) 0 0
\(22\) −16.8579 −0.163368
\(23\) −87.2055 −0.790592 −0.395296 0.918554i \(-0.629358\pi\)
−0.395296 + 0.918554i \(0.629358\pi\)
\(24\) 0 0
\(25\) −49.3108 −0.394486
\(26\) 117.020 0.882673
\(27\) 0 0
\(28\) 39.5594 0.267001
\(29\) 38.3019 0.245258 0.122629 0.992453i \(-0.460867\pi\)
0.122629 + 0.992453i \(0.460867\pi\)
\(30\) 0 0
\(31\) −186.071 −1.07804 −0.539021 0.842292i \(-0.681206\pi\)
−0.539021 + 0.842292i \(0.681206\pi\)
\(32\) −187.519 −1.03591
\(33\) 0 0
\(34\) 60.8842 0.307105
\(35\) 60.8997 0.294112
\(36\) 0 0
\(37\) −218.781 −0.972090 −0.486045 0.873934i \(-0.661561\pi\)
−0.486045 + 0.873934i \(0.661561\pi\)
\(38\) 42.8919 0.183105
\(39\) 0 0
\(40\) −182.013 −0.719469
\(41\) −80.1687 −0.305372 −0.152686 0.988275i \(-0.548792\pi\)
−0.152686 + 0.988275i \(0.548792\pi\)
\(42\) 0 0
\(43\) −35.1155 −0.124536 −0.0622681 0.998059i \(-0.519833\pi\)
−0.0622681 + 0.998059i \(0.519833\pi\)
\(44\) −62.1648 −0.212993
\(45\) 0 0
\(46\) 133.645 0.428368
\(47\) 282.620 0.877116 0.438558 0.898703i \(-0.355489\pi\)
0.438558 + 0.898703i \(0.355489\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 75.5704 0.213745
\(51\) 0 0
\(52\) 431.521 1.15079
\(53\) −145.296 −0.376566 −0.188283 0.982115i \(-0.560292\pi\)
−0.188283 + 0.982115i \(0.560292\pi\)
\(54\) 0 0
\(55\) −95.6995 −0.234620
\(56\) −146.448 −0.349463
\(57\) 0 0
\(58\) −58.6989 −0.132889
\(59\) −91.0461 −0.200901 −0.100451 0.994942i \(-0.532028\pi\)
−0.100451 + 0.994942i \(0.532028\pi\)
\(60\) 0 0
\(61\) 808.142 1.69626 0.848131 0.529787i \(-0.177728\pi\)
0.848131 + 0.529787i \(0.177728\pi\)
\(62\) 285.160 0.584118
\(63\) 0 0
\(64\) 182.192 0.355843
\(65\) 664.304 1.26764
\(66\) 0 0
\(67\) 794.222 1.44820 0.724102 0.689693i \(-0.242255\pi\)
0.724102 + 0.689693i \(0.242255\pi\)
\(68\) 224.516 0.400390
\(69\) 0 0
\(70\) −93.3307 −0.159359
\(71\) −946.901 −1.58277 −0.791384 0.611319i \(-0.790639\pi\)
−0.791384 + 0.611319i \(0.790639\pi\)
\(72\) 0 0
\(73\) 801.324 1.28477 0.642383 0.766384i \(-0.277946\pi\)
0.642383 + 0.766384i \(0.277946\pi\)
\(74\) 335.288 0.526709
\(75\) 0 0
\(76\) 158.168 0.238725
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −890.737 −1.26855 −0.634277 0.773106i \(-0.718702\pi\)
−0.634277 + 0.773106i \(0.718702\pi\)
\(80\) −114.391 −0.159866
\(81\) 0 0
\(82\) 122.861 0.165460
\(83\) 559.333 0.739696 0.369848 0.929092i \(-0.379410\pi\)
0.369848 + 0.929092i \(0.379410\pi\)
\(84\) 0 0
\(85\) 345.630 0.441046
\(86\) 53.8156 0.0674777
\(87\) 0 0
\(88\) 230.132 0.278775
\(89\) 1523.75 1.81480 0.907401 0.420265i \(-0.138063\pi\)
0.907401 + 0.420265i \(0.138063\pi\)
\(90\) 0 0
\(91\) 534.501 0.615724
\(92\) 492.829 0.558488
\(93\) 0 0
\(94\) −433.125 −0.475249
\(95\) 243.491 0.262965
\(96\) 0 0
\(97\) 664.651 0.695723 0.347861 0.937546i \(-0.386908\pi\)
0.347861 + 0.937546i \(0.386908\pi\)
\(98\) −75.0941 −0.0774046
\(99\) 0 0
\(100\) 278.672 0.278672
\(101\) −1495.68 −1.47352 −0.736761 0.676153i \(-0.763646\pi\)
−0.736761 + 0.676153i \(0.763646\pi\)
\(102\) 0 0
\(103\) 874.379 0.836457 0.418229 0.908342i \(-0.362651\pi\)
0.418229 + 0.908342i \(0.362651\pi\)
\(104\) −1597.48 −1.50621
\(105\) 0 0
\(106\) 222.671 0.204035
\(107\) −783.854 −0.708205 −0.354103 0.935207i \(-0.615214\pi\)
−0.354103 + 0.935207i \(0.615214\pi\)
\(108\) 0 0
\(109\) −1351.08 −1.18725 −0.593623 0.804743i \(-0.702303\pi\)
−0.593623 + 0.804743i \(0.702303\pi\)
\(110\) 146.663 0.127125
\(111\) 0 0
\(112\) −92.0393 −0.0776508
\(113\) 188.362 0.156811 0.0784055 0.996922i \(-0.475017\pi\)
0.0784055 + 0.996922i \(0.475017\pi\)
\(114\) 0 0
\(115\) 758.684 0.615197
\(116\) −216.457 −0.173255
\(117\) 0 0
\(118\) 139.531 0.108855
\(119\) 278.095 0.214226
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −1238.50 −0.919089
\(123\) 0 0
\(124\) 1051.55 0.761549
\(125\) 1516.50 1.08512
\(126\) 0 0
\(127\) 586.957 0.410110 0.205055 0.978750i \(-0.434263\pi\)
0.205055 + 0.978750i \(0.434263\pi\)
\(128\) 1220.94 0.843101
\(129\) 0 0
\(130\) −1018.07 −0.686850
\(131\) −623.054 −0.415546 −0.207773 0.978177i \(-0.566621\pi\)
−0.207773 + 0.978177i \(0.566621\pi\)
\(132\) 0 0
\(133\) 195.913 0.127728
\(134\) −1217.17 −0.784683
\(135\) 0 0
\(136\) −831.151 −0.524049
\(137\) 954.859 0.595468 0.297734 0.954649i \(-0.403769\pi\)
0.297734 + 0.954649i \(0.403769\pi\)
\(138\) 0 0
\(139\) 1590.62 0.970610 0.485305 0.874345i \(-0.338709\pi\)
0.485305 + 0.874345i \(0.338709\pi\)
\(140\) −344.165 −0.207766
\(141\) 0 0
\(142\) 1451.16 0.857594
\(143\) −839.929 −0.491178
\(144\) 0 0
\(145\) −333.225 −0.190847
\(146\) −1228.05 −0.696127
\(147\) 0 0
\(148\) 1236.41 0.686702
\(149\) 1415.84 0.778459 0.389229 0.921141i \(-0.372741\pi\)
0.389229 + 0.921141i \(0.372741\pi\)
\(150\) 0 0
\(151\) 411.564 0.221806 0.110903 0.993831i \(-0.464626\pi\)
0.110903 + 0.993831i \(0.464626\pi\)
\(152\) −585.532 −0.312454
\(153\) 0 0
\(154\) 118.005 0.0617475
\(155\) 1618.81 0.838876
\(156\) 0 0
\(157\) −1417.29 −0.720460 −0.360230 0.932864i \(-0.617302\pi\)
−0.360230 + 0.932864i \(0.617302\pi\)
\(158\) 1365.08 0.687343
\(159\) 0 0
\(160\) 1631.41 0.806090
\(161\) 610.439 0.298816
\(162\) 0 0
\(163\) −441.401 −0.212105 −0.106053 0.994361i \(-0.533821\pi\)
−0.106053 + 0.994361i \(0.533821\pi\)
\(164\) 453.061 0.215720
\(165\) 0 0
\(166\) −857.196 −0.400791
\(167\) 1486.39 0.688742 0.344371 0.938834i \(-0.388092\pi\)
0.344371 + 0.938834i \(0.388092\pi\)
\(168\) 0 0
\(169\) 3633.43 1.65381
\(170\) −529.690 −0.238973
\(171\) 0 0
\(172\) 198.450 0.0879747
\(173\) 2957.39 1.29969 0.649844 0.760068i \(-0.274834\pi\)
0.649844 + 0.760068i \(0.274834\pi\)
\(174\) 0 0
\(175\) 345.176 0.149102
\(176\) 144.633 0.0619439
\(177\) 0 0
\(178\) −2335.20 −0.983318
\(179\) 24.4424 0.0102062 0.00510310 0.999987i \(-0.498376\pi\)
0.00510310 + 0.999987i \(0.498376\pi\)
\(180\) 0 0
\(181\) −120.126 −0.0493308 −0.0246654 0.999696i \(-0.507852\pi\)
−0.0246654 + 0.999696i \(0.507852\pi\)
\(182\) −819.139 −0.333619
\(183\) 0 0
\(184\) −1824.44 −0.730975
\(185\) 1903.38 0.756429
\(186\) 0 0
\(187\) −437.006 −0.170893
\(188\) −1597.19 −0.619610
\(189\) 0 0
\(190\) −373.158 −0.142483
\(191\) 2059.27 0.780123 0.390061 0.920789i \(-0.372454\pi\)
0.390061 + 0.920789i \(0.372454\pi\)
\(192\) 0 0
\(193\) −4371.31 −1.63033 −0.815165 0.579229i \(-0.803354\pi\)
−0.815165 + 0.579229i \(0.803354\pi\)
\(194\) −1018.60 −0.376965
\(195\) 0 0
\(196\) −276.916 −0.100917
\(197\) 2185.70 0.790479 0.395240 0.918578i \(-0.370662\pi\)
0.395240 + 0.918578i \(0.370662\pi\)
\(198\) 0 0
\(199\) −2420.84 −0.862356 −0.431178 0.902267i \(-0.641902\pi\)
−0.431178 + 0.902267i \(0.641902\pi\)
\(200\) −1031.64 −0.364739
\(201\) 0 0
\(202\) 2292.18 0.798401
\(203\) −268.113 −0.0926988
\(204\) 0 0
\(205\) 697.464 0.237624
\(206\) −1340.01 −0.453219
\(207\) 0 0
\(208\) −1003.98 −0.334680
\(209\) −307.864 −0.101892
\(210\) 0 0
\(211\) −3888.39 −1.26866 −0.634331 0.773062i \(-0.718724\pi\)
−0.634331 + 0.773062i \(0.718724\pi\)
\(212\) 821.120 0.266013
\(213\) 0 0
\(214\) 1201.28 0.383728
\(215\) 305.503 0.0969076
\(216\) 0 0
\(217\) 1302.50 0.407462
\(218\) 2070.57 0.643288
\(219\) 0 0
\(220\) 540.831 0.165740
\(221\) 3033.51 0.923330
\(222\) 0 0
\(223\) 641.467 0.192627 0.0963135 0.995351i \(-0.469295\pi\)
0.0963135 + 0.995351i \(0.469295\pi\)
\(224\) 1312.64 0.391537
\(225\) 0 0
\(226\) −288.672 −0.0849652
\(227\) −3619.11 −1.05819 −0.529094 0.848563i \(-0.677468\pi\)
−0.529094 + 0.848563i \(0.677468\pi\)
\(228\) 0 0
\(229\) 2518.14 0.726652 0.363326 0.931662i \(-0.381641\pi\)
0.363326 + 0.931662i \(0.381641\pi\)
\(230\) −1162.71 −0.333333
\(231\) 0 0
\(232\) 801.318 0.226763
\(233\) 4187.89 1.17750 0.588751 0.808315i \(-0.299620\pi\)
0.588751 + 0.808315i \(0.299620\pi\)
\(234\) 0 0
\(235\) −2458.79 −0.682525
\(236\) 514.533 0.141920
\(237\) 0 0
\(238\) −426.189 −0.116075
\(239\) −2582.63 −0.698981 −0.349490 0.936940i \(-0.613645\pi\)
−0.349490 + 0.936940i \(0.613645\pi\)
\(240\) 0 0
\(241\) 1522.09 0.406832 0.203416 0.979092i \(-0.434796\pi\)
0.203416 + 0.979092i \(0.434796\pi\)
\(242\) −185.436 −0.0492574
\(243\) 0 0
\(244\) −4567.09 −1.19827
\(245\) −426.298 −0.111164
\(246\) 0 0
\(247\) 2137.06 0.550517
\(248\) −3892.81 −0.996750
\(249\) 0 0
\(250\) −2324.08 −0.587951
\(251\) −1463.19 −0.367952 −0.183976 0.982931i \(-0.558897\pi\)
−0.183976 + 0.982931i \(0.558897\pi\)
\(252\) 0 0
\(253\) −959.261 −0.238372
\(254\) −899.531 −0.222211
\(255\) 0 0
\(256\) −3328.67 −0.812662
\(257\) 1183.89 0.287350 0.143675 0.989625i \(-0.454108\pi\)
0.143675 + 0.989625i \(0.454108\pi\)
\(258\) 0 0
\(259\) 1531.46 0.367415
\(260\) −3754.21 −0.895486
\(261\) 0 0
\(262\) 954.850 0.225156
\(263\) −151.973 −0.0356315 −0.0178158 0.999841i \(-0.505671\pi\)
−0.0178158 + 0.999841i \(0.505671\pi\)
\(264\) 0 0
\(265\) 1264.07 0.293024
\(266\) −300.243 −0.0692072
\(267\) 0 0
\(268\) −4488.42 −1.02304
\(269\) 255.543 0.0579209 0.0289604 0.999581i \(-0.490780\pi\)
0.0289604 + 0.999581i \(0.490780\pi\)
\(270\) 0 0
\(271\) 2589.73 0.580497 0.290248 0.956951i \(-0.406262\pi\)
0.290248 + 0.956951i \(0.406262\pi\)
\(272\) −522.360 −0.116444
\(273\) 0 0
\(274\) −1463.35 −0.322644
\(275\) −542.419 −0.118942
\(276\) 0 0
\(277\) −4441.49 −0.963404 −0.481702 0.876335i \(-0.659981\pi\)
−0.481702 + 0.876335i \(0.659981\pi\)
\(278\) −2437.68 −0.525907
\(279\) 0 0
\(280\) 1274.09 0.271934
\(281\) −1577.34 −0.334861 −0.167431 0.985884i \(-0.553547\pi\)
−0.167431 + 0.985884i \(0.553547\pi\)
\(282\) 0 0
\(283\) 3429.29 0.720317 0.360159 0.932891i \(-0.382723\pi\)
0.360159 + 0.932891i \(0.382723\pi\)
\(284\) 5351.27 1.11810
\(285\) 0 0
\(286\) 1287.22 0.266136
\(287\) 561.181 0.115420
\(288\) 0 0
\(289\) −3334.70 −0.678750
\(290\) 510.677 0.103407
\(291\) 0 0
\(292\) −4528.56 −0.907581
\(293\) −4601.37 −0.917458 −0.458729 0.888576i \(-0.651695\pi\)
−0.458729 + 0.888576i \(0.651695\pi\)
\(294\) 0 0
\(295\) 792.096 0.156331
\(296\) −4577.14 −0.898786
\(297\) 0 0
\(298\) −2169.82 −0.421794
\(299\) 6658.77 1.28792
\(300\) 0 0
\(301\) 245.808 0.0470703
\(302\) −630.736 −0.120181
\(303\) 0 0
\(304\) −367.994 −0.0694274
\(305\) −7030.80 −1.31994
\(306\) 0 0
\(307\) 4990.18 0.927702 0.463851 0.885913i \(-0.346467\pi\)
0.463851 + 0.885913i \(0.346467\pi\)
\(308\) 435.154 0.0805038
\(309\) 0 0
\(310\) −2480.88 −0.454530
\(311\) −3139.78 −0.572478 −0.286239 0.958158i \(-0.592405\pi\)
−0.286239 + 0.958158i \(0.592405\pi\)
\(312\) 0 0
\(313\) −4723.12 −0.852929 −0.426464 0.904504i \(-0.640241\pi\)
−0.426464 + 0.904504i \(0.640241\pi\)
\(314\) 2172.04 0.390368
\(315\) 0 0
\(316\) 5033.86 0.896130
\(317\) −5935.83 −1.05170 −0.525851 0.850577i \(-0.676253\pi\)
−0.525851 + 0.850577i \(0.676253\pi\)
\(318\) 0 0
\(319\) 421.321 0.0739481
\(320\) −1585.06 −0.276899
\(321\) 0 0
\(322\) −935.517 −0.161908
\(323\) 1111.89 0.191539
\(324\) 0 0
\(325\) 3765.24 0.642639
\(326\) 676.461 0.114925
\(327\) 0 0
\(328\) −1677.22 −0.282344
\(329\) −1978.34 −0.331519
\(330\) 0 0
\(331\) −6390.75 −1.06123 −0.530615 0.847613i \(-0.678039\pi\)
−0.530615 + 0.847613i \(0.678039\pi\)
\(332\) −3160.98 −0.522535
\(333\) 0 0
\(334\) −2277.93 −0.373183
\(335\) −6909.69 −1.12692
\(336\) 0 0
\(337\) 8916.41 1.44127 0.720635 0.693315i \(-0.243851\pi\)
0.720635 + 0.693315i \(0.243851\pi\)
\(338\) −5568.34 −0.896088
\(339\) 0 0
\(340\) −1953.28 −0.311563
\(341\) −2046.78 −0.325042
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −734.655 −0.115145
\(345\) 0 0
\(346\) −4532.29 −0.704212
\(347\) −1400.52 −0.216668 −0.108334 0.994115i \(-0.534552\pi\)
−0.108334 + 0.994115i \(0.534552\pi\)
\(348\) 0 0
\(349\) −8985.39 −1.37816 −0.689079 0.724686i \(-0.741985\pi\)
−0.689079 + 0.724686i \(0.741985\pi\)
\(350\) −528.993 −0.0807881
\(351\) 0 0
\(352\) −2062.71 −0.312338
\(353\) −1767.91 −0.266562 −0.133281 0.991078i \(-0.542551\pi\)
−0.133281 + 0.991078i \(0.542551\pi\)
\(354\) 0 0
\(355\) 8238.00 1.23163
\(356\) −8611.25 −1.28201
\(357\) 0 0
\(358\) −37.4587 −0.00553004
\(359\) 1110.48 0.163256 0.0816278 0.996663i \(-0.473988\pi\)
0.0816278 + 0.996663i \(0.473988\pi\)
\(360\) 0 0
\(361\) −6075.69 −0.885799
\(362\) 184.096 0.0267290
\(363\) 0 0
\(364\) −3020.65 −0.434959
\(365\) −6971.48 −0.999737
\(366\) 0 0
\(367\) −5342.61 −0.759896 −0.379948 0.925008i \(-0.624058\pi\)
−0.379948 + 0.925008i \(0.624058\pi\)
\(368\) −1146.62 −0.162423
\(369\) 0 0
\(370\) −2916.99 −0.409858
\(371\) 1017.07 0.142329
\(372\) 0 0
\(373\) 6829.95 0.948101 0.474050 0.880498i \(-0.342791\pi\)
0.474050 + 0.880498i \(0.342791\pi\)
\(374\) 669.726 0.0925955
\(375\) 0 0
\(376\) 5912.74 0.810974
\(377\) −2924.63 −0.399538
\(378\) 0 0
\(379\) 7826.62 1.06076 0.530378 0.847761i \(-0.322050\pi\)
0.530378 + 0.847761i \(0.322050\pi\)
\(380\) −1376.05 −0.185763
\(381\) 0 0
\(382\) −3155.90 −0.422695
\(383\) 7534.69 1.00523 0.502617 0.864509i \(-0.332371\pi\)
0.502617 + 0.864509i \(0.332371\pi\)
\(384\) 0 0
\(385\) 669.896 0.0886781
\(386\) 6699.17 0.883364
\(387\) 0 0
\(388\) −3756.17 −0.491471
\(389\) 13071.8 1.70376 0.851882 0.523734i \(-0.175461\pi\)
0.851882 + 0.523734i \(0.175461\pi\)
\(390\) 0 0
\(391\) 3464.49 0.448099
\(392\) 1025.14 0.132085
\(393\) 0 0
\(394\) −3349.65 −0.428307
\(395\) 7749.37 0.987122
\(396\) 0 0
\(397\) −3692.51 −0.466806 −0.233403 0.972380i \(-0.574986\pi\)
−0.233403 + 0.972380i \(0.574986\pi\)
\(398\) 3710.02 0.467252
\(399\) 0 0
\(400\) −648.362 −0.0810452
\(401\) −8223.85 −1.02414 −0.512069 0.858944i \(-0.671121\pi\)
−0.512069 + 0.858944i \(0.671121\pi\)
\(402\) 0 0
\(403\) 14207.9 1.75619
\(404\) 8452.61 1.04092
\(405\) 0 0
\(406\) 410.892 0.0502272
\(407\) −2406.59 −0.293096
\(408\) 0 0
\(409\) 3689.61 0.446062 0.223031 0.974811i \(-0.428405\pi\)
0.223031 + 0.974811i \(0.428405\pi\)
\(410\) −1068.89 −0.128753
\(411\) 0 0
\(412\) −4941.42 −0.590889
\(413\) 637.322 0.0759336
\(414\) 0 0
\(415\) −4866.17 −0.575593
\(416\) 14318.5 1.68755
\(417\) 0 0
\(418\) 471.811 0.0552082
\(419\) −15657.0 −1.82552 −0.912762 0.408492i \(-0.866055\pi\)
−0.912762 + 0.408492i \(0.866055\pi\)
\(420\) 0 0
\(421\) −6007.30 −0.695435 −0.347717 0.937599i \(-0.613043\pi\)
−0.347717 + 0.937599i \(0.613043\pi\)
\(422\) 5959.08 0.687402
\(423\) 0 0
\(424\) −3039.76 −0.348170
\(425\) 1959.01 0.223591
\(426\) 0 0
\(427\) −5656.99 −0.641127
\(428\) 4429.83 0.500289
\(429\) 0 0
\(430\) −468.193 −0.0525076
\(431\) −13139.0 −1.46841 −0.734203 0.678931i \(-0.762444\pi\)
−0.734203 + 0.678931i \(0.762444\pi\)
\(432\) 0 0
\(433\) −4392.47 −0.487502 −0.243751 0.969838i \(-0.578378\pi\)
−0.243751 + 0.969838i \(0.578378\pi\)
\(434\) −1996.12 −0.220776
\(435\) 0 0
\(436\) 7635.41 0.838692
\(437\) 2440.67 0.267170
\(438\) 0 0
\(439\) 12676.2 1.37813 0.689066 0.724699i \(-0.258021\pi\)
0.689066 + 0.724699i \(0.258021\pi\)
\(440\) −2002.14 −0.216928
\(441\) 0 0
\(442\) −4648.95 −0.500289
\(443\) 17489.2 1.87571 0.937855 0.347028i \(-0.112809\pi\)
0.937855 + 0.347028i \(0.112809\pi\)
\(444\) 0 0
\(445\) −13256.6 −1.41218
\(446\) −983.069 −0.104371
\(447\) 0 0
\(448\) −1275.34 −0.134496
\(449\) 15491.8 1.62830 0.814148 0.580658i \(-0.197204\pi\)
0.814148 + 0.580658i \(0.197204\pi\)
\(450\) 0 0
\(451\) −881.856 −0.0920731
\(452\) −1064.50 −0.110774
\(453\) 0 0
\(454\) 5546.40 0.573360
\(455\) −4650.13 −0.479124
\(456\) 0 0
\(457\) −7789.99 −0.797375 −0.398688 0.917087i \(-0.630534\pi\)
−0.398688 + 0.917087i \(0.630534\pi\)
\(458\) −3859.13 −0.393723
\(459\) 0 0
\(460\) −4287.59 −0.434586
\(461\) 8497.44 0.858493 0.429247 0.903187i \(-0.358779\pi\)
0.429247 + 0.903187i \(0.358779\pi\)
\(462\) 0 0
\(463\) 875.113 0.0878401 0.0439200 0.999035i \(-0.486015\pi\)
0.0439200 + 0.999035i \(0.486015\pi\)
\(464\) 503.611 0.0503870
\(465\) 0 0
\(466\) −6418.08 −0.638008
\(467\) −17652.5 −1.74917 −0.874584 0.484874i \(-0.838866\pi\)
−0.874584 + 0.484874i \(0.838866\pi\)
\(468\) 0 0
\(469\) −5559.55 −0.547369
\(470\) 3768.17 0.369814
\(471\) 0 0
\(472\) −1904.79 −0.185752
\(473\) −386.270 −0.0375491
\(474\) 0 0
\(475\) 1380.09 0.133311
\(476\) −1571.61 −0.151333
\(477\) 0 0
\(478\) 3957.96 0.378730
\(479\) −3129.76 −0.298544 −0.149272 0.988796i \(-0.547693\pi\)
−0.149272 + 0.988796i \(0.547693\pi\)
\(480\) 0 0
\(481\) 16705.5 1.58359
\(482\) −2332.66 −0.220435
\(483\) 0 0
\(484\) −683.813 −0.0642198
\(485\) −5782.43 −0.541375
\(486\) 0 0
\(487\) −366.055 −0.0340606 −0.0170303 0.999855i \(-0.505421\pi\)
−0.0170303 + 0.999855i \(0.505421\pi\)
\(488\) 16907.2 1.56835
\(489\) 0 0
\(490\) 653.315 0.0602322
\(491\) 14577.2 1.33984 0.669919 0.742434i \(-0.266329\pi\)
0.669919 + 0.742434i \(0.266329\pi\)
\(492\) 0 0
\(493\) −1521.65 −0.139010
\(494\) −3275.11 −0.298288
\(495\) 0 0
\(496\) −2446.55 −0.221478
\(497\) 6628.31 0.598230
\(498\) 0 0
\(499\) 9504.05 0.852624 0.426312 0.904576i \(-0.359813\pi\)
0.426312 + 0.904576i \(0.359813\pi\)
\(500\) −8570.24 −0.766546
\(501\) 0 0
\(502\) 2242.39 0.199368
\(503\) 6149.90 0.545150 0.272575 0.962134i \(-0.412125\pi\)
0.272575 + 0.962134i \(0.412125\pi\)
\(504\) 0 0
\(505\) 13012.3 1.14662
\(506\) 1470.10 0.129158
\(507\) 0 0
\(508\) −3317.10 −0.289709
\(509\) 16132.0 1.40479 0.702396 0.711787i \(-0.252114\pi\)
0.702396 + 0.711787i \(0.252114\pi\)
\(510\) 0 0
\(511\) −5609.27 −0.485596
\(512\) −4666.24 −0.402775
\(513\) 0 0
\(514\) −1814.35 −0.155695
\(515\) −7607.06 −0.650887
\(516\) 0 0
\(517\) 3108.83 0.264460
\(518\) −2347.02 −0.199077
\(519\) 0 0
\(520\) 13898.0 1.17205
\(521\) −7654.31 −0.643650 −0.321825 0.946799i \(-0.604296\pi\)
−0.321825 + 0.946799i \(0.604296\pi\)
\(522\) 0 0
\(523\) 21493.7 1.79705 0.898523 0.438926i \(-0.144641\pi\)
0.898523 + 0.438926i \(0.144641\pi\)
\(524\) 3521.09 0.293549
\(525\) 0 0
\(526\) 232.904 0.0193063
\(527\) 7392.20 0.611023
\(528\) 0 0
\(529\) −4562.20 −0.374965
\(530\) −1937.23 −0.158770
\(531\) 0 0
\(532\) −1107.17 −0.0902294
\(533\) 6121.46 0.497467
\(534\) 0 0
\(535\) 6819.49 0.551088
\(536\) 16616.0 1.33900
\(537\) 0 0
\(538\) −391.628 −0.0313834
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −8661.03 −0.688293 −0.344147 0.938916i \(-0.611832\pi\)
−0.344147 + 0.938916i \(0.611832\pi\)
\(542\) −3968.84 −0.314532
\(543\) 0 0
\(544\) 7449.74 0.587142
\(545\) 11754.3 0.923853
\(546\) 0 0
\(547\) 21372.9 1.67064 0.835321 0.549763i \(-0.185282\pi\)
0.835321 + 0.549763i \(0.185282\pi\)
\(548\) −5396.24 −0.420650
\(549\) 0 0
\(550\) 831.274 0.0644466
\(551\) −1071.98 −0.0828817
\(552\) 0 0
\(553\) 6235.16 0.479468
\(554\) 6806.72 0.522003
\(555\) 0 0
\(556\) −8989.15 −0.685656
\(557\) −18062.1 −1.37399 −0.686997 0.726660i \(-0.741071\pi\)
−0.686997 + 0.726660i \(0.741071\pi\)
\(558\) 0 0
\(559\) 2681.32 0.202876
\(560\) 800.738 0.0604238
\(561\) 0 0
\(562\) 2417.32 0.181438
\(563\) −962.299 −0.0720356 −0.0360178 0.999351i \(-0.511467\pi\)
−0.0360178 + 0.999351i \(0.511467\pi\)
\(564\) 0 0
\(565\) −1638.74 −0.122022
\(566\) −5255.49 −0.390291
\(567\) 0 0
\(568\) −19810.2 −1.46341
\(569\) 25409.7 1.87211 0.936055 0.351853i \(-0.114448\pi\)
0.936055 + 0.351853i \(0.114448\pi\)
\(570\) 0 0
\(571\) −5211.13 −0.381925 −0.190962 0.981597i \(-0.561161\pi\)
−0.190962 + 0.981597i \(0.561161\pi\)
\(572\) 4746.73 0.346977
\(573\) 0 0
\(574\) −860.028 −0.0625381
\(575\) 4300.17 0.311878
\(576\) 0 0
\(577\) 409.463 0.0295428 0.0147714 0.999891i \(-0.495298\pi\)
0.0147714 + 0.999891i \(0.495298\pi\)
\(578\) 5110.53 0.367768
\(579\) 0 0
\(580\) 1883.17 0.134818
\(581\) −3915.33 −0.279579
\(582\) 0 0
\(583\) −1598.26 −0.113539
\(584\) 16764.6 1.18788
\(585\) 0 0
\(586\) 7051.75 0.497108
\(587\) 11756.7 0.826661 0.413331 0.910581i \(-0.364365\pi\)
0.413331 + 0.910581i \(0.364365\pi\)
\(588\) 0 0
\(589\) 5207.68 0.364310
\(590\) −1213.91 −0.0847051
\(591\) 0 0
\(592\) −2876.63 −0.199711
\(593\) 312.172 0.0216178 0.0108089 0.999942i \(-0.496559\pi\)
0.0108089 + 0.999942i \(0.496559\pi\)
\(594\) 0 0
\(595\) −2419.41 −0.166700
\(596\) −8001.42 −0.549918
\(597\) 0 0
\(598\) −10204.8 −0.697834
\(599\) −22486.4 −1.53384 −0.766918 0.641745i \(-0.778211\pi\)
−0.766918 + 0.641745i \(0.778211\pi\)
\(600\) 0 0
\(601\) 25019.6 1.69812 0.849061 0.528295i \(-0.177168\pi\)
0.849061 + 0.528295i \(0.177168\pi\)
\(602\) −376.709 −0.0255042
\(603\) 0 0
\(604\) −2325.89 −0.156687
\(605\) −1052.69 −0.0707407
\(606\) 0 0
\(607\) 7074.22 0.473037 0.236519 0.971627i \(-0.423994\pi\)
0.236519 + 0.971627i \(0.423994\pi\)
\(608\) 5248.22 0.350072
\(609\) 0 0
\(610\) 10774.9 0.715187
\(611\) −21580.1 −1.42887
\(612\) 0 0
\(613\) 4934.94 0.325155 0.162578 0.986696i \(-0.448019\pi\)
0.162578 + 0.986696i \(0.448019\pi\)
\(614\) −7647.61 −0.502658
\(615\) 0 0
\(616\) −1610.93 −0.105367
\(617\) −2125.51 −0.138687 −0.0693434 0.997593i \(-0.522090\pi\)
−0.0693434 + 0.997593i \(0.522090\pi\)
\(618\) 0 0
\(619\) 8168.09 0.530377 0.265188 0.964197i \(-0.414566\pi\)
0.265188 + 0.964197i \(0.414566\pi\)
\(620\) −9148.45 −0.592598
\(621\) 0 0
\(622\) 4811.81 0.310187
\(623\) −10666.3 −0.685931
\(624\) 0 0
\(625\) −7029.59 −0.449894
\(626\) 7238.34 0.462144
\(627\) 0 0
\(628\) 8009.60 0.508946
\(629\) 8691.69 0.550970
\(630\) 0 0
\(631\) −8419.88 −0.531205 −0.265602 0.964083i \(-0.585571\pi\)
−0.265602 + 0.964083i \(0.585571\pi\)
\(632\) −18635.2 −1.17289
\(633\) 0 0
\(634\) 9096.85 0.569846
\(635\) −5106.50 −0.319126
\(636\) 0 0
\(637\) −3741.50 −0.232722
\(638\) −645.687 −0.0400674
\(639\) 0 0
\(640\) −10622.1 −0.656057
\(641\) −27238.9 −1.67843 −0.839213 0.543803i \(-0.816984\pi\)
−0.839213 + 0.543803i \(0.816984\pi\)
\(642\) 0 0
\(643\) −12438.7 −0.762882 −0.381441 0.924393i \(-0.624572\pi\)
−0.381441 + 0.924393i \(0.624572\pi\)
\(644\) −3449.80 −0.211089
\(645\) 0 0
\(646\) −1704.00 −0.103782
\(647\) 9788.76 0.594801 0.297400 0.954753i \(-0.403880\pi\)
0.297400 + 0.954753i \(0.403880\pi\)
\(648\) 0 0
\(649\) −1001.51 −0.0605741
\(650\) −5770.35 −0.348202
\(651\) 0 0
\(652\) 2494.51 0.149835
\(653\) −5539.90 −0.331996 −0.165998 0.986126i \(-0.553084\pi\)
−0.165998 + 0.986126i \(0.553084\pi\)
\(654\) 0 0
\(655\) 5420.54 0.323356
\(656\) −1054.10 −0.0627371
\(657\) 0 0
\(658\) 3031.87 0.179627
\(659\) 18751.7 1.10844 0.554221 0.832370i \(-0.313016\pi\)
0.554221 + 0.832370i \(0.313016\pi\)
\(660\) 0 0
\(661\) 24849.3 1.46222 0.731108 0.682262i \(-0.239004\pi\)
0.731108 + 0.682262i \(0.239004\pi\)
\(662\) 9794.03 0.575009
\(663\) 0 0
\(664\) 11701.9 0.683917
\(665\) −1704.44 −0.0993913
\(666\) 0 0
\(667\) −3340.14 −0.193899
\(668\) −8400.08 −0.486540
\(669\) 0 0
\(670\) 10589.3 0.610599
\(671\) 8889.56 0.511442
\(672\) 0 0
\(673\) −9532.72 −0.546002 −0.273001 0.962014i \(-0.588016\pi\)
−0.273001 + 0.962014i \(0.588016\pi\)
\(674\) −13664.7 −0.780926
\(675\) 0 0
\(676\) −20533.7 −1.16828
\(677\) 6544.90 0.371552 0.185776 0.982592i \(-0.440520\pi\)
0.185776 + 0.982592i \(0.440520\pi\)
\(678\) 0 0
\(679\) −4652.56 −0.262958
\(680\) 7230.98 0.407787
\(681\) 0 0
\(682\) 3136.76 0.176118
\(683\) −8438.16 −0.472734 −0.236367 0.971664i \(-0.575957\pi\)
−0.236367 + 0.971664i \(0.575957\pi\)
\(684\) 0 0
\(685\) −8307.23 −0.463362
\(686\) 525.658 0.0292562
\(687\) 0 0
\(688\) −461.715 −0.0255853
\(689\) 11094.4 0.613446
\(690\) 0 0
\(691\) −8196.16 −0.451225 −0.225613 0.974217i \(-0.572438\pi\)
−0.225613 + 0.974217i \(0.572438\pi\)
\(692\) −16713.2 −0.918123
\(693\) 0 0
\(694\) 2146.34 0.117398
\(695\) −13838.3 −0.755278
\(696\) 0 0
\(697\) 3184.93 0.173082
\(698\) 13770.4 0.746730
\(699\) 0 0
\(700\) −1950.71 −0.105328
\(701\) 7172.05 0.386426 0.193213 0.981157i \(-0.438109\pi\)
0.193213 + 0.981157i \(0.438109\pi\)
\(702\) 0 0
\(703\) 6123.15 0.328505
\(704\) 2004.11 0.107291
\(705\) 0 0
\(706\) 2709.38 0.144432
\(707\) 10469.8 0.556939
\(708\) 0 0
\(709\) −16766.6 −0.888127 −0.444063 0.895995i \(-0.646464\pi\)
−0.444063 + 0.895995i \(0.646464\pi\)
\(710\) −12625.0 −0.667335
\(711\) 0 0
\(712\) 31878.6 1.67795
\(713\) 16226.4 0.852292
\(714\) 0 0
\(715\) 7307.35 0.382209
\(716\) −138.132 −0.00720984
\(717\) 0 0
\(718\) −1701.84 −0.0884571
\(719\) 5923.31 0.307235 0.153618 0.988130i \(-0.450908\pi\)
0.153618 + 0.988130i \(0.450908\pi\)
\(720\) 0 0
\(721\) −6120.65 −0.316151
\(722\) 9311.20 0.479954
\(723\) 0 0
\(724\) 678.872 0.0348482
\(725\) −1888.70 −0.0967509
\(726\) 0 0
\(727\) −4256.80 −0.217161 −0.108581 0.994088i \(-0.534631\pi\)
−0.108581 + 0.994088i \(0.534631\pi\)
\(728\) 11182.4 0.569293
\(729\) 0 0
\(730\) 10684.0 0.541689
\(731\) 1395.06 0.0705858
\(732\) 0 0
\(733\) 24556.4 1.23740 0.618698 0.785629i \(-0.287660\pi\)
0.618698 + 0.785629i \(0.287660\pi\)
\(734\) 8187.72 0.411736
\(735\) 0 0
\(736\) 16352.7 0.818981
\(737\) 8736.44 0.436650
\(738\) 0 0
\(739\) 27603.8 1.37405 0.687025 0.726634i \(-0.258916\pi\)
0.687025 + 0.726634i \(0.258916\pi\)
\(740\) −10756.7 −0.534355
\(741\) 0 0
\(742\) −1558.70 −0.0771181
\(743\) −19808.8 −0.978082 −0.489041 0.872261i \(-0.662653\pi\)
−0.489041 + 0.872261i \(0.662653\pi\)
\(744\) 0 0
\(745\) −12317.8 −0.605756
\(746\) −10467.1 −0.513711
\(747\) 0 0
\(748\) 2469.67 0.120722
\(749\) 5486.98 0.267677
\(750\) 0 0
\(751\) 596.125 0.0289653 0.0144826 0.999895i \(-0.495390\pi\)
0.0144826 + 0.999895i \(0.495390\pi\)
\(752\) 3716.03 0.180199
\(753\) 0 0
\(754\) 4482.08 0.216482
\(755\) −3580.59 −0.172597
\(756\) 0 0
\(757\) −1845.87 −0.0886253 −0.0443127 0.999018i \(-0.514110\pi\)
−0.0443127 + 0.999018i \(0.514110\pi\)
\(758\) −11994.6 −0.574752
\(759\) 0 0
\(760\) 5094.10 0.243135
\(761\) 13034.2 0.620877 0.310439 0.950593i \(-0.399524\pi\)
0.310439 + 0.950593i \(0.399524\pi\)
\(762\) 0 0
\(763\) 9457.55 0.448737
\(764\) −11637.6 −0.551093
\(765\) 0 0
\(766\) −11547.2 −0.544668
\(767\) 6952.02 0.327279
\(768\) 0 0
\(769\) −38530.6 −1.80683 −0.903413 0.428770i \(-0.858947\pi\)
−0.903413 + 0.428770i \(0.858947\pi\)
\(770\) −1026.64 −0.0480486
\(771\) 0 0
\(772\) 24703.8 1.15169
\(773\) −13835.1 −0.643745 −0.321873 0.946783i \(-0.604312\pi\)
−0.321873 + 0.946783i \(0.604312\pi\)
\(774\) 0 0
\(775\) 9175.31 0.425273
\(776\) 13905.2 0.643259
\(777\) 0 0
\(778\) −20032.9 −0.923154
\(779\) 2243.73 0.103196
\(780\) 0 0
\(781\) −10415.9 −0.477222
\(782\) −5309.44 −0.242794
\(783\) 0 0
\(784\) 644.275 0.0293493
\(785\) 12330.4 0.560624
\(786\) 0 0
\(787\) 11704.2 0.530125 0.265062 0.964231i \(-0.414607\pi\)
0.265062 + 0.964231i \(0.414607\pi\)
\(788\) −12352.1 −0.558409
\(789\) 0 0
\(790\) −11876.2 −0.534854
\(791\) −1318.54 −0.0592690
\(792\) 0 0
\(793\) −61707.5 −2.76330
\(794\) 5658.89 0.252930
\(795\) 0 0
\(796\) 13681.0 0.609184
\(797\) 3367.27 0.149655 0.0748274 0.997196i \(-0.476159\pi\)
0.0748274 + 0.997196i \(0.476159\pi\)
\(798\) 0 0
\(799\) −11227.9 −0.497140
\(800\) 9246.73 0.408652
\(801\) 0 0
\(802\) 12603.3 0.554911
\(803\) 8814.56 0.387371
\(804\) 0 0
\(805\) −5310.79 −0.232523
\(806\) −21774.0 −0.951559
\(807\) 0 0
\(808\) −31291.3 −1.36241
\(809\) −20869.5 −0.906961 −0.453481 0.891266i \(-0.649818\pi\)
−0.453481 + 0.891266i \(0.649818\pi\)
\(810\) 0 0
\(811\) −22445.9 −0.971863 −0.485931 0.873997i \(-0.661520\pi\)
−0.485931 + 0.873997i \(0.661520\pi\)
\(812\) 1515.20 0.0654841
\(813\) 0 0
\(814\) 3688.17 0.158809
\(815\) 3840.17 0.165049
\(816\) 0 0
\(817\) 982.798 0.0420854
\(818\) −5654.45 −0.241691
\(819\) 0 0
\(820\) −3941.61 −0.167862
\(821\) 25516.4 1.08469 0.542343 0.840157i \(-0.317537\pi\)
0.542343 + 0.840157i \(0.317537\pi\)
\(822\) 0 0
\(823\) 36376.7 1.54072 0.770360 0.637609i \(-0.220076\pi\)
0.770360 + 0.637609i \(0.220076\pi\)
\(824\) 18293.0 0.773382
\(825\) 0 0
\(826\) −976.717 −0.0411433
\(827\) −25520.1 −1.07306 −0.536530 0.843881i \(-0.680265\pi\)
−0.536530 + 0.843881i \(0.680265\pi\)
\(828\) 0 0
\(829\) 23202.5 0.972084 0.486042 0.873936i \(-0.338440\pi\)
0.486042 + 0.873936i \(0.338440\pi\)
\(830\) 7457.56 0.311875
\(831\) 0 0
\(832\) −13911.7 −0.579688
\(833\) −1946.66 −0.0809699
\(834\) 0 0
\(835\) −12931.5 −0.535943
\(836\) 1739.84 0.0719782
\(837\) 0 0
\(838\) 23994.9 0.989127
\(839\) 10538.6 0.433649 0.216824 0.976211i \(-0.430430\pi\)
0.216824 + 0.976211i \(0.430430\pi\)
\(840\) 0 0
\(841\) −22922.0 −0.939849
\(842\) 9206.38 0.376809
\(843\) 0 0
\(844\) 21974.6 0.896206
\(845\) −31610.6 −1.28691
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −1910.42 −0.0773635
\(849\) 0 0
\(850\) −3002.25 −0.121149
\(851\) 19078.9 0.768526
\(852\) 0 0
\(853\) 40061.0 1.60805 0.804023 0.594598i \(-0.202689\pi\)
0.804023 + 0.594598i \(0.202689\pi\)
\(854\) 8669.52 0.347383
\(855\) 0 0
\(856\) −16399.1 −0.654801
\(857\) −775.719 −0.0309195 −0.0154598 0.999880i \(-0.504921\pi\)
−0.0154598 + 0.999880i \(0.504921\pi\)
\(858\) 0 0
\(859\) −10241.5 −0.406792 −0.203396 0.979097i \(-0.565198\pi\)
−0.203396 + 0.979097i \(0.565198\pi\)
\(860\) −1726.50 −0.0684573
\(861\) 0 0
\(862\) 20135.9 0.795629
\(863\) 1268.51 0.0500356 0.0250178 0.999687i \(-0.492036\pi\)
0.0250178 + 0.999687i \(0.492036\pi\)
\(864\) 0 0
\(865\) −25729.1 −1.01135
\(866\) 6731.60 0.264144
\(867\) 0 0
\(868\) −7360.86 −0.287839
\(869\) −9798.11 −0.382483
\(870\) 0 0
\(871\) −60644.6 −2.35920
\(872\) −28266.1 −1.09772
\(873\) 0 0
\(874\) −3740.41 −0.144761
\(875\) −10615.5 −0.410135
\(876\) 0 0
\(877\) 6691.33 0.257640 0.128820 0.991668i \(-0.458881\pi\)
0.128820 + 0.991668i \(0.458881\pi\)
\(878\) −19426.6 −0.746716
\(879\) 0 0
\(880\) −1258.30 −0.0482015
\(881\) −14514.6 −0.555063 −0.277531 0.960717i \(-0.589516\pi\)
−0.277531 + 0.960717i \(0.589516\pi\)
\(882\) 0 0
\(883\) 10335.2 0.393891 0.196946 0.980414i \(-0.436898\pi\)
0.196946 + 0.980414i \(0.436898\pi\)
\(884\) −17143.4 −0.652257
\(885\) 0 0
\(886\) −26802.8 −1.01632
\(887\) −42946.3 −1.62570 −0.812851 0.582472i \(-0.802086\pi\)
−0.812851 + 0.582472i \(0.802086\pi\)
\(888\) 0 0
\(889\) −4108.70 −0.155007
\(890\) 20316.1 0.765166
\(891\) 0 0
\(892\) −3625.15 −0.136075
\(893\) −7909.87 −0.296410
\(894\) 0 0
\(895\) −212.648 −0.00794193
\(896\) −8546.59 −0.318662
\(897\) 0 0
\(898\) −23741.7 −0.882263
\(899\) −7126.87 −0.264399
\(900\) 0 0
\(901\) 5772.31 0.213434
\(902\) 1351.47 0.0498882
\(903\) 0 0
\(904\) 3940.75 0.144986
\(905\) 1045.09 0.0383866
\(906\) 0 0
\(907\) 8376.30 0.306649 0.153324 0.988176i \(-0.451002\pi\)
0.153324 + 0.988176i \(0.451002\pi\)
\(908\) 20452.8 0.747524
\(909\) 0 0
\(910\) 7126.47 0.259605
\(911\) −17335.4 −0.630460 −0.315230 0.949015i \(-0.602082\pi\)
−0.315230 + 0.949015i \(0.602082\pi\)
\(912\) 0 0
\(913\) 6152.66 0.223027
\(914\) 11938.4 0.432043
\(915\) 0 0
\(916\) −14230.9 −0.513321
\(917\) 4361.38 0.157061
\(918\) 0 0
\(919\) −34995.3 −1.25613 −0.628067 0.778159i \(-0.716154\pi\)
−0.628067 + 0.778159i \(0.716154\pi\)
\(920\) 15872.5 0.568806
\(921\) 0 0
\(922\) −13022.6 −0.465159
\(923\) 72302.8 2.57841
\(924\) 0 0
\(925\) 10788.3 0.383476
\(926\) −1341.14 −0.0475945
\(927\) 0 0
\(928\) −7182.35 −0.254065
\(929\) 10671.6 0.376882 0.188441 0.982084i \(-0.439657\pi\)
0.188441 + 0.982084i \(0.439657\pi\)
\(930\) 0 0
\(931\) −1371.39 −0.0482767
\(932\) −23667.2 −0.831808
\(933\) 0 0
\(934\) 27053.1 0.947755
\(935\) 3801.93 0.132980
\(936\) 0 0
\(937\) −1855.85 −0.0647045 −0.0323522 0.999477i \(-0.510300\pi\)
−0.0323522 + 0.999477i \(0.510300\pi\)
\(938\) 8520.19 0.296582
\(939\) 0 0
\(940\) 13895.4 0.482148
\(941\) −15378.8 −0.532766 −0.266383 0.963867i \(-0.585829\pi\)
−0.266383 + 0.963867i \(0.585829\pi\)
\(942\) 0 0
\(943\) 6991.16 0.241425
\(944\) −1197.12 −0.0412742
\(945\) 0 0
\(946\) 591.972 0.0203453
\(947\) 14600.9 0.501020 0.250510 0.968114i \(-0.419402\pi\)
0.250510 + 0.968114i \(0.419402\pi\)
\(948\) 0 0
\(949\) −61186.9 −2.09295
\(950\) −2115.03 −0.0722324
\(951\) 0 0
\(952\) 5818.06 0.198072
\(953\) 2114.27 0.0718658 0.0359329 0.999354i \(-0.488560\pi\)
0.0359329 + 0.999354i \(0.488560\pi\)
\(954\) 0 0
\(955\) −17915.5 −0.607051
\(956\) 14595.3 0.493773
\(957\) 0 0
\(958\) 4796.46 0.161761
\(959\) −6684.02 −0.225066
\(960\) 0 0
\(961\) 4831.40 0.162177
\(962\) −25601.7 −0.858037
\(963\) 0 0
\(964\) −8601.87 −0.287394
\(965\) 38030.2 1.26864
\(966\) 0 0
\(967\) 7251.75 0.241159 0.120579 0.992704i \(-0.461525\pi\)
0.120579 + 0.992704i \(0.461525\pi\)
\(968\) 2531.46 0.0840538
\(969\) 0 0
\(970\) 8861.77 0.293334
\(971\) −2742.57 −0.0906420 −0.0453210 0.998972i \(-0.514431\pi\)
−0.0453210 + 0.998972i \(0.514431\pi\)
\(972\) 0 0
\(973\) −11134.4 −0.366856
\(974\) 560.991 0.0184551
\(975\) 0 0
\(976\) 10625.8 0.348488
\(977\) −23770.4 −0.778384 −0.389192 0.921157i \(-0.627246\pi\)
−0.389192 + 0.921157i \(0.627246\pi\)
\(978\) 0 0
\(979\) 16761.3 0.547184
\(980\) 2409.16 0.0785282
\(981\) 0 0
\(982\) −22340.1 −0.725967
\(983\) 49265.4 1.59850 0.799249 0.601000i \(-0.205231\pi\)
0.799249 + 0.601000i \(0.205231\pi\)
\(984\) 0 0
\(985\) −19015.5 −0.615109
\(986\) 2331.98 0.0753198
\(987\) 0 0
\(988\) −12077.2 −0.388895
\(989\) 3062.26 0.0984574
\(990\) 0 0
\(991\) −17123.5 −0.548884 −0.274442 0.961604i \(-0.588493\pi\)
−0.274442 + 0.961604i \(0.588493\pi\)
\(992\) 34891.9 1.11675
\(993\) 0 0
\(994\) −10158.1 −0.324140
\(995\) 21061.2 0.671040
\(996\) 0 0
\(997\) −41275.5 −1.31114 −0.655571 0.755134i \(-0.727572\pi\)
−0.655571 + 0.755134i \(0.727572\pi\)
\(998\) −14565.3 −0.461979
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.l.1.2 4
3.2 odd 2 77.4.a.d.1.3 4
12.11 even 2 1232.4.a.s.1.1 4
15.14 odd 2 1925.4.a.p.1.2 4
21.20 even 2 539.4.a.g.1.3 4
33.32 even 2 847.4.a.d.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.d.1.3 4 3.2 odd 2
539.4.a.g.1.3 4 21.20 even 2
693.4.a.l.1.2 4 1.1 even 1 trivial
847.4.a.d.1.2 4 33.32 even 2
1232.4.a.s.1.1 4 12.11 even 2
1925.4.a.p.1.2 4 15.14 odd 2