Properties

Label 693.4.a.k.1.2
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.56155 q^{2} +4.68466 q^{4} +15.6847 q^{5} +7.00000 q^{7} -11.8078 q^{8} +55.8617 q^{10} -11.0000 q^{11} +52.9157 q^{13} +24.9309 q^{14} -79.5312 q^{16} +77.1231 q^{17} +13.4081 q^{19} +73.4773 q^{20} -39.1771 q^{22} +59.0152 q^{23} +121.009 q^{25} +188.462 q^{26} +32.7926 q^{28} +69.3305 q^{29} +75.9697 q^{31} -188.793 q^{32} +274.678 q^{34} +109.793 q^{35} -335.948 q^{37} +47.7538 q^{38} -185.201 q^{40} +318.617 q^{41} -57.2614 q^{43} -51.5312 q^{44} +210.186 q^{46} +577.779 q^{47} +49.0000 q^{49} +430.978 q^{50} +247.892 q^{52} -315.555 q^{53} -172.531 q^{55} -82.6543 q^{56} +246.924 q^{58} +598.717 q^{59} -337.879 q^{61} +270.570 q^{62} -36.1449 q^{64} +829.965 q^{65} -107.779 q^{67} +361.295 q^{68} +391.032 q^{70} -405.390 q^{71} -133.300 q^{73} -1196.50 q^{74} +62.8125 q^{76} -77.0000 q^{77} -922.038 q^{79} -1247.42 q^{80} +1134.77 q^{82} +1221.17 q^{83} +1209.65 q^{85} -203.939 q^{86} +129.885 q^{88} -1580.19 q^{89} +370.410 q^{91} +276.466 q^{92} +2057.79 q^{94} +210.302 q^{95} -287.097 q^{97} +174.516 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 3 q^{4} + 19 q^{5} + 14 q^{7} - 3 q^{8} + 54 q^{10} - 22 q^{11} + 11 q^{13} + 21 q^{14} - 23 q^{16} + 146 q^{17} - 101 q^{19} + 48 q^{20} - 33 q^{22} + 184 q^{23} + 7 q^{25} + 212 q^{26}+ \cdots + 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.56155 1.25920 0.629600 0.776920i \(-0.283219\pi\)
0.629600 + 0.776920i \(0.283219\pi\)
\(3\) 0 0
\(4\) 4.68466 0.585582
\(5\) 15.6847 1.40288 0.701439 0.712729i \(-0.252541\pi\)
0.701439 + 0.712729i \(0.252541\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −11.8078 −0.521834
\(9\) 0 0
\(10\) 55.8617 1.76650
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 52.9157 1.12894 0.564468 0.825455i \(-0.309081\pi\)
0.564468 + 0.825455i \(0.309081\pi\)
\(14\) 24.9309 0.475933
\(15\) 0 0
\(16\) −79.5312 −1.24268
\(17\) 77.1231 1.10030 0.550150 0.835066i \(-0.314571\pi\)
0.550150 + 0.835066i \(0.314571\pi\)
\(18\) 0 0
\(19\) 13.4081 0.161897 0.0809484 0.996718i \(-0.474205\pi\)
0.0809484 + 0.996718i \(0.474205\pi\)
\(20\) 73.4773 0.821501
\(21\) 0 0
\(22\) −39.1771 −0.379663
\(23\) 59.0152 0.535022 0.267511 0.963555i \(-0.413799\pi\)
0.267511 + 0.963555i \(0.413799\pi\)
\(24\) 0 0
\(25\) 121.009 0.968068
\(26\) 188.462 1.42156
\(27\) 0 0
\(28\) 32.7926 0.221329
\(29\) 69.3305 0.443943 0.221972 0.975053i \(-0.428751\pi\)
0.221972 + 0.975053i \(0.428751\pi\)
\(30\) 0 0
\(31\) 75.9697 0.440147 0.220074 0.975483i \(-0.429370\pi\)
0.220074 + 0.975483i \(0.429370\pi\)
\(32\) −188.793 −1.04294
\(33\) 0 0
\(34\) 274.678 1.38550
\(35\) 109.793 0.530238
\(36\) 0 0
\(37\) −335.948 −1.49269 −0.746344 0.665560i \(-0.768193\pi\)
−0.746344 + 0.665560i \(0.768193\pi\)
\(38\) 47.7538 0.203860
\(39\) 0 0
\(40\) −185.201 −0.732070
\(41\) 318.617 1.21365 0.606825 0.794835i \(-0.292443\pi\)
0.606825 + 0.794835i \(0.292443\pi\)
\(42\) 0 0
\(43\) −57.2614 −0.203076 −0.101538 0.994832i \(-0.532376\pi\)
−0.101538 + 0.994832i \(0.532376\pi\)
\(44\) −51.5312 −0.176560
\(45\) 0 0
\(46\) 210.186 0.673699
\(47\) 577.779 1.79314 0.896572 0.442898i \(-0.146050\pi\)
0.896572 + 0.442898i \(0.146050\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 430.978 1.21899
\(51\) 0 0
\(52\) 247.892 0.661085
\(53\) −315.555 −0.817826 −0.408913 0.912573i \(-0.634092\pi\)
−0.408913 + 0.912573i \(0.634092\pi\)
\(54\) 0 0
\(55\) −172.531 −0.422984
\(56\) −82.6543 −0.197235
\(57\) 0 0
\(58\) 246.924 0.559013
\(59\) 598.717 1.32112 0.660562 0.750772i \(-0.270318\pi\)
0.660562 + 0.750772i \(0.270318\pi\)
\(60\) 0 0
\(61\) −337.879 −0.709196 −0.354598 0.935019i \(-0.615382\pi\)
−0.354598 + 0.935019i \(0.615382\pi\)
\(62\) 270.570 0.554233
\(63\) 0 0
\(64\) −36.1449 −0.0705955
\(65\) 829.965 1.58376
\(66\) 0 0
\(67\) −107.779 −0.196527 −0.0982637 0.995160i \(-0.531329\pi\)
−0.0982637 + 0.995160i \(0.531329\pi\)
\(68\) 361.295 0.644316
\(69\) 0 0
\(70\) 391.032 0.667675
\(71\) −405.390 −0.677619 −0.338810 0.940855i \(-0.610024\pi\)
−0.338810 + 0.940855i \(0.610024\pi\)
\(72\) 0 0
\(73\) −133.300 −0.213721 −0.106860 0.994274i \(-0.534080\pi\)
−0.106860 + 0.994274i \(0.534080\pi\)
\(74\) −1196.50 −1.87959
\(75\) 0 0
\(76\) 62.8125 0.0948039
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −922.038 −1.31313 −0.656566 0.754269i \(-0.727991\pi\)
−0.656566 + 0.754269i \(0.727991\pi\)
\(80\) −1247.42 −1.74332
\(81\) 0 0
\(82\) 1134.77 1.52823
\(83\) 1221.17 1.61495 0.807475 0.589902i \(-0.200833\pi\)
0.807475 + 0.589902i \(0.200833\pi\)
\(84\) 0 0
\(85\) 1209.65 1.54359
\(86\) −203.939 −0.255713
\(87\) 0 0
\(88\) 129.885 0.157339
\(89\) −1580.19 −1.88202 −0.941012 0.338373i \(-0.890123\pi\)
−0.941012 + 0.338373i \(0.890123\pi\)
\(90\) 0 0
\(91\) 370.410 0.426698
\(92\) 276.466 0.313300
\(93\) 0 0
\(94\) 2057.79 2.25793
\(95\) 210.302 0.227121
\(96\) 0 0
\(97\) −287.097 −0.300518 −0.150259 0.988647i \(-0.548011\pi\)
−0.150259 + 0.988647i \(0.548011\pi\)
\(98\) 174.516 0.179886
\(99\) 0 0
\(100\) 566.884 0.566884
\(101\) −780.867 −0.769299 −0.384650 0.923063i \(-0.625678\pi\)
−0.384650 + 0.923063i \(0.625678\pi\)
\(102\) 0 0
\(103\) 1218.22 1.16538 0.582691 0.812694i \(-0.302000\pi\)
0.582691 + 0.812694i \(0.302000\pi\)
\(104\) −624.816 −0.589118
\(105\) 0 0
\(106\) −1123.87 −1.02981
\(107\) 873.196 0.788926 0.394463 0.918912i \(-0.370931\pi\)
0.394463 + 0.918912i \(0.370931\pi\)
\(108\) 0 0
\(109\) 126.424 0.111094 0.0555470 0.998456i \(-0.482310\pi\)
0.0555470 + 0.998456i \(0.482310\pi\)
\(110\) −614.479 −0.532621
\(111\) 0 0
\(112\) −556.719 −0.469687
\(113\) −257.318 −0.214217 −0.107108 0.994247i \(-0.534159\pi\)
−0.107108 + 0.994247i \(0.534159\pi\)
\(114\) 0 0
\(115\) 925.633 0.750571
\(116\) 324.790 0.259965
\(117\) 0 0
\(118\) 2132.36 1.66356
\(119\) 539.862 0.415874
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −1203.37 −0.893019
\(123\) 0 0
\(124\) 355.892 0.257742
\(125\) −62.6052 −0.0447966
\(126\) 0 0
\(127\) 74.9450 0.0523645 0.0261822 0.999657i \(-0.491665\pi\)
0.0261822 + 0.999657i \(0.491665\pi\)
\(128\) 1381.61 0.954048
\(129\) 0 0
\(130\) 2955.96 1.99427
\(131\) 2636.30 1.75828 0.879141 0.476561i \(-0.158117\pi\)
0.879141 + 0.476561i \(0.158117\pi\)
\(132\) 0 0
\(133\) 93.8570 0.0611912
\(134\) −383.862 −0.247467
\(135\) 0 0
\(136\) −910.651 −0.574174
\(137\) −1146.87 −0.715210 −0.357605 0.933873i \(-0.616407\pi\)
−0.357605 + 0.933873i \(0.616407\pi\)
\(138\) 0 0
\(139\) −1013.00 −0.618139 −0.309070 0.951039i \(-0.600018\pi\)
−0.309070 + 0.951039i \(0.600018\pi\)
\(140\) 514.341 0.310498
\(141\) 0 0
\(142\) −1443.82 −0.853257
\(143\) −582.073 −0.340387
\(144\) 0 0
\(145\) 1087.43 0.622798
\(146\) −474.756 −0.269117
\(147\) 0 0
\(148\) −1573.80 −0.874092
\(149\) 2236.91 1.22990 0.614948 0.788568i \(-0.289177\pi\)
0.614948 + 0.788568i \(0.289177\pi\)
\(150\) 0 0
\(151\) 636.657 0.343115 0.171558 0.985174i \(-0.445120\pi\)
0.171558 + 0.985174i \(0.445120\pi\)
\(152\) −158.320 −0.0844833
\(153\) 0 0
\(154\) −274.240 −0.143499
\(155\) 1191.56 0.617473
\(156\) 0 0
\(157\) −3561.59 −1.81048 −0.905241 0.424899i \(-0.860310\pi\)
−0.905241 + 0.424899i \(0.860310\pi\)
\(158\) −3283.89 −1.65349
\(159\) 0 0
\(160\) −2961.15 −1.46312
\(161\) 413.106 0.202219
\(162\) 0 0
\(163\) 2540.60 1.22083 0.610414 0.792082i \(-0.291003\pi\)
0.610414 + 0.792082i \(0.291003\pi\)
\(164\) 1492.61 0.710692
\(165\) 0 0
\(166\) 4349.26 2.03354
\(167\) −1737.09 −0.804913 −0.402456 0.915439i \(-0.631843\pi\)
−0.402456 + 0.915439i \(0.631843\pi\)
\(168\) 0 0
\(169\) 603.073 0.274498
\(170\) 4308.23 1.94368
\(171\) 0 0
\(172\) −268.250 −0.118918
\(173\) −4194.96 −1.84357 −0.921784 0.387704i \(-0.873268\pi\)
−0.921784 + 0.387704i \(0.873268\pi\)
\(174\) 0 0
\(175\) 847.060 0.365895
\(176\) 874.844 0.374681
\(177\) 0 0
\(178\) −5627.94 −2.36984
\(179\) −1349.85 −0.563645 −0.281822 0.959467i \(-0.590939\pi\)
−0.281822 + 0.959467i \(0.590939\pi\)
\(180\) 0 0
\(181\) −1198.06 −0.491994 −0.245997 0.969271i \(-0.579115\pi\)
−0.245997 + 0.969271i \(0.579115\pi\)
\(182\) 1319.23 0.537298
\(183\) 0 0
\(184\) −696.837 −0.279193
\(185\) −5269.23 −2.09406
\(186\) 0 0
\(187\) −848.354 −0.331753
\(188\) 2706.70 1.05003
\(189\) 0 0
\(190\) 749.002 0.285991
\(191\) −764.873 −0.289761 −0.144880 0.989449i \(-0.546280\pi\)
−0.144880 + 0.989449i \(0.546280\pi\)
\(192\) 0 0
\(193\) −2019.52 −0.753204 −0.376602 0.926375i \(-0.622907\pi\)
−0.376602 + 0.926375i \(0.622907\pi\)
\(194\) −1022.51 −0.378412
\(195\) 0 0
\(196\) 229.548 0.0836546
\(197\) −1499.94 −0.542470 −0.271235 0.962513i \(-0.587432\pi\)
−0.271235 + 0.962513i \(0.587432\pi\)
\(198\) 0 0
\(199\) −4574.41 −1.62950 −0.814752 0.579809i \(-0.803127\pi\)
−0.814752 + 0.579809i \(0.803127\pi\)
\(200\) −1428.84 −0.505171
\(201\) 0 0
\(202\) −2781.10 −0.968701
\(203\) 485.313 0.167795
\(204\) 0 0
\(205\) 4997.40 1.70260
\(206\) 4338.74 1.46745
\(207\) 0 0
\(208\) −4208.45 −1.40290
\(209\) −147.490 −0.0488137
\(210\) 0 0
\(211\) −4456.96 −1.45417 −0.727084 0.686548i \(-0.759125\pi\)
−0.727084 + 0.686548i \(0.759125\pi\)
\(212\) −1478.27 −0.478905
\(213\) 0 0
\(214\) 3109.93 0.993414
\(215\) −898.125 −0.284891
\(216\) 0 0
\(217\) 531.788 0.166360
\(218\) 450.267 0.139890
\(219\) 0 0
\(220\) −808.250 −0.247692
\(221\) 4081.02 1.24217
\(222\) 0 0
\(223\) −3003.50 −0.901924 −0.450962 0.892543i \(-0.648919\pi\)
−0.450962 + 0.892543i \(0.648919\pi\)
\(224\) −1321.55 −0.394195
\(225\) 0 0
\(226\) −916.453 −0.269741
\(227\) −1252.20 −0.366130 −0.183065 0.983101i \(-0.558602\pi\)
−0.183065 + 0.983101i \(0.558602\pi\)
\(228\) 0 0
\(229\) 2862.80 0.826110 0.413055 0.910706i \(-0.364462\pi\)
0.413055 + 0.910706i \(0.364462\pi\)
\(230\) 3296.69 0.945118
\(231\) 0 0
\(232\) −818.638 −0.231665
\(233\) −4969.92 −1.39738 −0.698692 0.715423i \(-0.746234\pi\)
−0.698692 + 0.715423i \(0.746234\pi\)
\(234\) 0 0
\(235\) 9062.27 2.51556
\(236\) 2804.78 0.773627
\(237\) 0 0
\(238\) 1922.75 0.523669
\(239\) −4602.18 −1.24557 −0.622783 0.782395i \(-0.713998\pi\)
−0.622783 + 0.782395i \(0.713998\pi\)
\(240\) 0 0
\(241\) −4147.29 −1.10851 −0.554254 0.832348i \(-0.686996\pi\)
−0.554254 + 0.832348i \(0.686996\pi\)
\(242\) 430.948 0.114473
\(243\) 0 0
\(244\) −1582.85 −0.415292
\(245\) 768.548 0.200411
\(246\) 0 0
\(247\) 709.501 0.182771
\(248\) −897.032 −0.229684
\(249\) 0 0
\(250\) −222.972 −0.0564078
\(251\) −988.383 −0.248551 −0.124275 0.992248i \(-0.539661\pi\)
−0.124275 + 0.992248i \(0.539661\pi\)
\(252\) 0 0
\(253\) −649.167 −0.161315
\(254\) 266.920 0.0659373
\(255\) 0 0
\(256\) 5209.83 1.27193
\(257\) 2856.10 0.693224 0.346612 0.938009i \(-0.387332\pi\)
0.346612 + 0.938009i \(0.387332\pi\)
\(258\) 0 0
\(259\) −2351.64 −0.564183
\(260\) 3888.10 0.927423
\(261\) 0 0
\(262\) 9389.34 2.21403
\(263\) −5772.45 −1.35340 −0.676701 0.736258i \(-0.736591\pi\)
−0.676701 + 0.736258i \(0.736591\pi\)
\(264\) 0 0
\(265\) −4949.37 −1.14731
\(266\) 334.277 0.0770519
\(267\) 0 0
\(268\) −504.909 −0.115083
\(269\) 1626.04 0.368555 0.184278 0.982874i \(-0.441005\pi\)
0.184278 + 0.982874i \(0.441005\pi\)
\(270\) 0 0
\(271\) −1816.20 −0.407109 −0.203554 0.979064i \(-0.565249\pi\)
−0.203554 + 0.979064i \(0.565249\pi\)
\(272\) −6133.70 −1.36732
\(273\) 0 0
\(274\) −4084.64 −0.900592
\(275\) −1331.09 −0.291884
\(276\) 0 0
\(277\) −8091.98 −1.75523 −0.877617 0.479362i \(-0.840868\pi\)
−0.877617 + 0.479362i \(0.840868\pi\)
\(278\) −3607.85 −0.778361
\(279\) 0 0
\(280\) −1296.41 −0.276697
\(281\) 8041.32 1.70713 0.853567 0.520982i \(-0.174434\pi\)
0.853567 + 0.520982i \(0.174434\pi\)
\(282\) 0 0
\(283\) 644.465 0.135369 0.0676846 0.997707i \(-0.478439\pi\)
0.0676846 + 0.997707i \(0.478439\pi\)
\(284\) −1899.11 −0.396802
\(285\) 0 0
\(286\) −2073.08 −0.428615
\(287\) 2230.32 0.458717
\(288\) 0 0
\(289\) 1034.97 0.210660
\(290\) 3872.92 0.784227
\(291\) 0 0
\(292\) −624.466 −0.125151
\(293\) 6451.96 1.28644 0.643221 0.765681i \(-0.277598\pi\)
0.643221 + 0.765681i \(0.277598\pi\)
\(294\) 0 0
\(295\) 9390.67 1.85338
\(296\) 3966.79 0.778936
\(297\) 0 0
\(298\) 7966.86 1.54868
\(299\) 3122.83 0.604006
\(300\) 0 0
\(301\) −400.830 −0.0767556
\(302\) 2267.49 0.432051
\(303\) 0 0
\(304\) −1066.37 −0.201185
\(305\) −5299.51 −0.994916
\(306\) 0 0
\(307\) 4175.92 0.776327 0.388164 0.921590i \(-0.373110\pi\)
0.388164 + 0.921590i \(0.373110\pi\)
\(308\) −360.719 −0.0667333
\(309\) 0 0
\(310\) 4243.80 0.777521
\(311\) 8619.22 1.57155 0.785774 0.618514i \(-0.212265\pi\)
0.785774 + 0.618514i \(0.212265\pi\)
\(312\) 0 0
\(313\) −10300.8 −1.86019 −0.930093 0.367324i \(-0.880274\pi\)
−0.930093 + 0.367324i \(0.880274\pi\)
\(314\) −12684.8 −2.27976
\(315\) 0 0
\(316\) −4319.43 −0.768946
\(317\) −7696.26 −1.36361 −0.681806 0.731533i \(-0.738805\pi\)
−0.681806 + 0.731533i \(0.738805\pi\)
\(318\) 0 0
\(319\) −762.635 −0.133854
\(320\) −566.920 −0.0990369
\(321\) 0 0
\(322\) 1471.30 0.254634
\(323\) 1034.08 0.178135
\(324\) 0 0
\(325\) 6403.25 1.09289
\(326\) 9048.48 1.53727
\(327\) 0 0
\(328\) −3762.16 −0.633325
\(329\) 4044.46 0.677745
\(330\) 0 0
\(331\) 6322.41 1.04988 0.524941 0.851138i \(-0.324087\pi\)
0.524941 + 0.851138i \(0.324087\pi\)
\(332\) 5720.77 0.945686
\(333\) 0 0
\(334\) −6186.75 −1.01355
\(335\) −1690.48 −0.275704
\(336\) 0 0
\(337\) 1576.06 0.254758 0.127379 0.991854i \(-0.459344\pi\)
0.127379 + 0.991854i \(0.459344\pi\)
\(338\) 2147.88 0.345648
\(339\) 0 0
\(340\) 5666.80 0.903897
\(341\) −835.667 −0.132709
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 676.129 0.105972
\(345\) 0 0
\(346\) −14940.6 −2.32142
\(347\) −4989.29 −0.771870 −0.385935 0.922526i \(-0.626121\pi\)
−0.385935 + 0.922526i \(0.626121\pi\)
\(348\) 0 0
\(349\) 4348.98 0.667035 0.333518 0.942744i \(-0.391764\pi\)
0.333518 + 0.942744i \(0.391764\pi\)
\(350\) 3016.85 0.460735
\(351\) 0 0
\(352\) 2076.72 0.314459
\(353\) 3724.71 0.561604 0.280802 0.959766i \(-0.409399\pi\)
0.280802 + 0.959766i \(0.409399\pi\)
\(354\) 0 0
\(355\) −6358.40 −0.950617
\(356\) −7402.66 −1.10208
\(357\) 0 0
\(358\) −4807.56 −0.709741
\(359\) 5815.53 0.854963 0.427481 0.904024i \(-0.359401\pi\)
0.427481 + 0.904024i \(0.359401\pi\)
\(360\) 0 0
\(361\) −6679.22 −0.973789
\(362\) −4266.94 −0.619518
\(363\) 0 0
\(364\) 1735.24 0.249867
\(365\) −2090.77 −0.299824
\(366\) 0 0
\(367\) 9298.43 1.32255 0.661273 0.750146i \(-0.270017\pi\)
0.661273 + 0.750146i \(0.270017\pi\)
\(368\) −4693.55 −0.664859
\(369\) 0 0
\(370\) −18766.6 −2.63684
\(371\) −2208.88 −0.309109
\(372\) 0 0
\(373\) 3697.85 0.513318 0.256659 0.966502i \(-0.417378\pi\)
0.256659 + 0.966502i \(0.417378\pi\)
\(374\) −3021.46 −0.417743
\(375\) 0 0
\(376\) −6822.28 −0.935724
\(377\) 3668.67 0.501184
\(378\) 0 0
\(379\) 2040.70 0.276580 0.138290 0.990392i \(-0.455839\pi\)
0.138290 + 0.990392i \(0.455839\pi\)
\(380\) 985.193 0.132998
\(381\) 0 0
\(382\) −2724.14 −0.364866
\(383\) 3311.92 0.441857 0.220928 0.975290i \(-0.429091\pi\)
0.220928 + 0.975290i \(0.429091\pi\)
\(384\) 0 0
\(385\) −1207.72 −0.159873
\(386\) −7192.63 −0.948433
\(387\) 0 0
\(388\) −1344.95 −0.175978
\(389\) −13095.1 −1.70680 −0.853401 0.521255i \(-0.825464\pi\)
−0.853401 + 0.521255i \(0.825464\pi\)
\(390\) 0 0
\(391\) 4551.43 0.588685
\(392\) −578.580 −0.0745478
\(393\) 0 0
\(394\) −5342.13 −0.683077
\(395\) −14461.8 −1.84216
\(396\) 0 0
\(397\) 15359.1 1.94169 0.970843 0.239716i \(-0.0770543\pi\)
0.970843 + 0.239716i \(0.0770543\pi\)
\(398\) −16292.0 −2.05187
\(399\) 0 0
\(400\) −9623.96 −1.20299
\(401\) 11767.6 1.46545 0.732726 0.680524i \(-0.238248\pi\)
0.732726 + 0.680524i \(0.238248\pi\)
\(402\) 0 0
\(403\) 4019.99 0.496898
\(404\) −3658.10 −0.450488
\(405\) 0 0
\(406\) 1728.47 0.211287
\(407\) 3695.43 0.450063
\(408\) 0 0
\(409\) 5071.33 0.613108 0.306554 0.951853i \(-0.400824\pi\)
0.306554 + 0.951853i \(0.400824\pi\)
\(410\) 17798.5 2.14392
\(411\) 0 0
\(412\) 5706.93 0.682427
\(413\) 4191.02 0.499338
\(414\) 0 0
\(415\) 19153.6 2.26558
\(416\) −9990.10 −1.17742
\(417\) 0 0
\(418\) −525.292 −0.0614662
\(419\) −5085.27 −0.592916 −0.296458 0.955046i \(-0.595806\pi\)
−0.296458 + 0.955046i \(0.595806\pi\)
\(420\) 0 0
\(421\) 15655.8 1.81239 0.906196 0.422859i \(-0.138973\pi\)
0.906196 + 0.422859i \(0.138973\pi\)
\(422\) −15873.7 −1.83109
\(423\) 0 0
\(424\) 3726.00 0.426770
\(425\) 9332.55 1.06517
\(426\) 0 0
\(427\) −2365.15 −0.268051
\(428\) 4090.62 0.461981
\(429\) 0 0
\(430\) −3198.72 −0.358735
\(431\) −5775.20 −0.645433 −0.322717 0.946496i \(-0.604596\pi\)
−0.322717 + 0.946496i \(0.604596\pi\)
\(432\) 0 0
\(433\) −6756.97 −0.749929 −0.374964 0.927039i \(-0.622345\pi\)
−0.374964 + 0.927039i \(0.622345\pi\)
\(434\) 1893.99 0.209480
\(435\) 0 0
\(436\) 592.255 0.0650547
\(437\) 791.283 0.0866183
\(438\) 0 0
\(439\) −9068.21 −0.985882 −0.492941 0.870063i \(-0.664078\pi\)
−0.492941 + 0.870063i \(0.664078\pi\)
\(440\) 2037.21 0.220727
\(441\) 0 0
\(442\) 14534.8 1.56414
\(443\) 7095.86 0.761026 0.380513 0.924776i \(-0.375748\pi\)
0.380513 + 0.924776i \(0.375748\pi\)
\(444\) 0 0
\(445\) −24784.8 −2.64025
\(446\) −10697.1 −1.13570
\(447\) 0 0
\(448\) −253.014 −0.0266826
\(449\) −630.680 −0.0662887 −0.0331443 0.999451i \(-0.510552\pi\)
−0.0331443 + 0.999451i \(0.510552\pi\)
\(450\) 0 0
\(451\) −3504.79 −0.365929
\(452\) −1205.45 −0.125441
\(453\) 0 0
\(454\) −4459.78 −0.461030
\(455\) 5809.75 0.598605
\(456\) 0 0
\(457\) 12432.5 1.27258 0.636290 0.771450i \(-0.280468\pi\)
0.636290 + 0.771450i \(0.280468\pi\)
\(458\) 10196.0 1.04024
\(459\) 0 0
\(460\) 4336.27 0.439521
\(461\) −13057.3 −1.31918 −0.659588 0.751627i \(-0.729269\pi\)
−0.659588 + 0.751627i \(0.729269\pi\)
\(462\) 0 0
\(463\) 8608.12 0.864046 0.432023 0.901863i \(-0.357800\pi\)
0.432023 + 0.901863i \(0.357800\pi\)
\(464\) −5513.94 −0.551677
\(465\) 0 0
\(466\) −17700.6 −1.75958
\(467\) −14997.6 −1.48610 −0.743049 0.669237i \(-0.766621\pi\)
−0.743049 + 0.669237i \(0.766621\pi\)
\(468\) 0 0
\(469\) −754.455 −0.0742804
\(470\) 32275.8 3.16760
\(471\) 0 0
\(472\) −7069.51 −0.689408
\(473\) 629.875 0.0612298
\(474\) 0 0
\(475\) 1622.50 0.156727
\(476\) 2529.07 0.243529
\(477\) 0 0
\(478\) −16390.9 −1.56841
\(479\) 20698.8 1.97443 0.987216 0.159386i \(-0.0509515\pi\)
0.987216 + 0.159386i \(0.0509515\pi\)
\(480\) 0 0
\(481\) −17776.9 −1.68515
\(482\) −14770.8 −1.39583
\(483\) 0 0
\(484\) 566.844 0.0532348
\(485\) −4503.01 −0.421590
\(486\) 0 0
\(487\) 15390.1 1.43202 0.716008 0.698092i \(-0.245968\pi\)
0.716008 + 0.698092i \(0.245968\pi\)
\(488\) 3989.59 0.370083
\(489\) 0 0
\(490\) 2737.23 0.252358
\(491\) −10771.4 −0.990030 −0.495015 0.868884i \(-0.664837\pi\)
−0.495015 + 0.868884i \(0.664837\pi\)
\(492\) 0 0
\(493\) 5346.98 0.488471
\(494\) 2526.93 0.230145
\(495\) 0 0
\(496\) −6041.96 −0.546960
\(497\) −2837.73 −0.256116
\(498\) 0 0
\(499\) −5999.79 −0.538251 −0.269126 0.963105i \(-0.586735\pi\)
−0.269126 + 0.963105i \(0.586735\pi\)
\(500\) −293.284 −0.0262321
\(501\) 0 0
\(502\) −3520.18 −0.312975
\(503\) −17610.5 −1.56106 −0.780528 0.625121i \(-0.785050\pi\)
−0.780528 + 0.625121i \(0.785050\pi\)
\(504\) 0 0
\(505\) −12247.6 −1.07923
\(506\) −2312.04 −0.203128
\(507\) 0 0
\(508\) 351.092 0.0306637
\(509\) 5920.42 0.515556 0.257778 0.966204i \(-0.417010\pi\)
0.257778 + 0.966204i \(0.417010\pi\)
\(510\) 0 0
\(511\) −933.101 −0.0807788
\(512\) 7502.22 0.647567
\(513\) 0 0
\(514\) 10172.1 0.872907
\(515\) 19107.3 1.63489
\(516\) 0 0
\(517\) −6355.57 −0.540653
\(518\) −8375.47 −0.710419
\(519\) 0 0
\(520\) −9800.03 −0.826461
\(521\) 15886.2 1.33587 0.667935 0.744220i \(-0.267179\pi\)
0.667935 + 0.744220i \(0.267179\pi\)
\(522\) 0 0
\(523\) 1728.58 0.144523 0.0722613 0.997386i \(-0.476978\pi\)
0.0722613 + 0.997386i \(0.476978\pi\)
\(524\) 12350.2 1.02962
\(525\) 0 0
\(526\) −20558.9 −1.70420
\(527\) 5859.02 0.484294
\(528\) 0 0
\(529\) −8684.21 −0.713751
\(530\) −17627.4 −1.44469
\(531\) 0 0
\(532\) 439.688 0.0358325
\(533\) 16859.9 1.37013
\(534\) 0 0
\(535\) 13695.8 1.10677
\(536\) 1272.63 0.102555
\(537\) 0 0
\(538\) 5791.23 0.464085
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 1941.99 0.154331 0.0771653 0.997018i \(-0.475413\pi\)
0.0771653 + 0.997018i \(0.475413\pi\)
\(542\) −6468.51 −0.512631
\(543\) 0 0
\(544\) −14560.3 −1.14755
\(545\) 1982.92 0.155852
\(546\) 0 0
\(547\) −1450.56 −0.113384 −0.0566922 0.998392i \(-0.518055\pi\)
−0.0566922 + 0.998392i \(0.518055\pi\)
\(548\) −5372.70 −0.418814
\(549\) 0 0
\(550\) −4740.76 −0.367539
\(551\) 929.593 0.0718729
\(552\) 0 0
\(553\) −6454.26 −0.496317
\(554\) −28820.0 −2.21019
\(555\) 0 0
\(556\) −4745.55 −0.361972
\(557\) −20821.8 −1.58393 −0.791965 0.610567i \(-0.790942\pi\)
−0.791965 + 0.610567i \(0.790942\pi\)
\(558\) 0 0
\(559\) −3030.03 −0.229260
\(560\) −8731.94 −0.658914
\(561\) 0 0
\(562\) 28639.6 2.14962
\(563\) 3694.11 0.276533 0.138267 0.990395i \(-0.455847\pi\)
0.138267 + 0.990395i \(0.455847\pi\)
\(564\) 0 0
\(565\) −4035.95 −0.300520
\(566\) 2295.30 0.170457
\(567\) 0 0
\(568\) 4786.75 0.353605
\(569\) 16649.2 1.22666 0.613332 0.789825i \(-0.289829\pi\)
0.613332 + 0.789825i \(0.289829\pi\)
\(570\) 0 0
\(571\) 546.005 0.0400168 0.0200084 0.999800i \(-0.493631\pi\)
0.0200084 + 0.999800i \(0.493631\pi\)
\(572\) −2726.81 −0.199325
\(573\) 0 0
\(574\) 7943.41 0.577616
\(575\) 7141.34 0.517938
\(576\) 0 0
\(577\) 7910.36 0.570732 0.285366 0.958419i \(-0.407885\pi\)
0.285366 + 0.958419i \(0.407885\pi\)
\(578\) 3686.11 0.265263
\(579\) 0 0
\(580\) 5094.22 0.364700
\(581\) 8548.19 0.610394
\(582\) 0 0
\(583\) 3471.10 0.246584
\(584\) 1573.98 0.111527
\(585\) 0 0
\(586\) 22979.0 1.61989
\(587\) 744.718 0.0523642 0.0261821 0.999657i \(-0.491665\pi\)
0.0261821 + 0.999657i \(0.491665\pi\)
\(588\) 0 0
\(589\) 1018.61 0.0712584
\(590\) 33445.4 2.33377
\(591\) 0 0
\(592\) 26718.4 1.85493
\(593\) 8167.66 0.565608 0.282804 0.959178i \(-0.408735\pi\)
0.282804 + 0.959178i \(0.408735\pi\)
\(594\) 0 0
\(595\) 8467.55 0.583421
\(596\) 10479.1 0.720205
\(597\) 0 0
\(598\) 11122.1 0.760564
\(599\) −12115.4 −0.826413 −0.413206 0.910637i \(-0.635591\pi\)
−0.413206 + 0.910637i \(0.635591\pi\)
\(600\) 0 0
\(601\) 13606.0 0.923458 0.461729 0.887021i \(-0.347229\pi\)
0.461729 + 0.887021i \(0.347229\pi\)
\(602\) −1427.58 −0.0966506
\(603\) 0 0
\(604\) 2982.52 0.200922
\(605\) 1897.84 0.127534
\(606\) 0 0
\(607\) −11404.4 −0.762585 −0.381293 0.924454i \(-0.624521\pi\)
−0.381293 + 0.924454i \(0.624521\pi\)
\(608\) −2531.36 −0.168849
\(609\) 0 0
\(610\) −18874.5 −1.25280
\(611\) 30573.6 2.02435
\(612\) 0 0
\(613\) 15266.2 1.00587 0.502934 0.864325i \(-0.332254\pi\)
0.502934 + 0.864325i \(0.332254\pi\)
\(614\) 14872.8 0.977550
\(615\) 0 0
\(616\) 909.198 0.0594685
\(617\) −23638.9 −1.54241 −0.771205 0.636586i \(-0.780346\pi\)
−0.771205 + 0.636586i \(0.780346\pi\)
\(618\) 0 0
\(619\) 27681.1 1.79741 0.898706 0.438551i \(-0.144508\pi\)
0.898706 + 0.438551i \(0.144508\pi\)
\(620\) 5582.05 0.361581
\(621\) 0 0
\(622\) 30697.8 1.97889
\(623\) −11061.4 −0.711338
\(624\) 0 0
\(625\) −16108.0 −1.03091
\(626\) −36687.0 −2.34235
\(627\) 0 0
\(628\) −16684.8 −1.06019
\(629\) −25909.3 −1.64241
\(630\) 0 0
\(631\) 18208.7 1.14877 0.574386 0.818585i \(-0.305241\pi\)
0.574386 + 0.818585i \(0.305241\pi\)
\(632\) 10887.2 0.685237
\(633\) 0 0
\(634\) −27410.6 −1.71706
\(635\) 1175.49 0.0734610
\(636\) 0 0
\(637\) 2592.87 0.161277
\(638\) −2716.17 −0.168549
\(639\) 0 0
\(640\) 21670.1 1.33841
\(641\) 23373.8 1.44026 0.720131 0.693838i \(-0.244082\pi\)
0.720131 + 0.693838i \(0.244082\pi\)
\(642\) 0 0
\(643\) 6742.72 0.413541 0.206770 0.978389i \(-0.433705\pi\)
0.206770 + 0.978389i \(0.433705\pi\)
\(644\) 1935.26 0.118416
\(645\) 0 0
\(646\) 3682.92 0.224307
\(647\) 17592.4 1.06898 0.534490 0.845175i \(-0.320504\pi\)
0.534490 + 0.845175i \(0.320504\pi\)
\(648\) 0 0
\(649\) −6585.89 −0.398334
\(650\) 22805.5 1.37616
\(651\) 0 0
\(652\) 11901.8 0.714896
\(653\) −20074.0 −1.20300 −0.601498 0.798875i \(-0.705429\pi\)
−0.601498 + 0.798875i \(0.705429\pi\)
\(654\) 0 0
\(655\) 41349.5 2.46666
\(656\) −25340.0 −1.50817
\(657\) 0 0
\(658\) 14404.5 0.853416
\(659\) 13778.4 0.814460 0.407230 0.913326i \(-0.366495\pi\)
0.407230 + 0.913326i \(0.366495\pi\)
\(660\) 0 0
\(661\) −7724.16 −0.454516 −0.227258 0.973835i \(-0.572976\pi\)
−0.227258 + 0.973835i \(0.572976\pi\)
\(662\) 22517.6 1.32201
\(663\) 0 0
\(664\) −14419.3 −0.842737
\(665\) 1472.11 0.0858438
\(666\) 0 0
\(667\) 4091.55 0.237519
\(668\) −8137.69 −0.471343
\(669\) 0 0
\(670\) −6020.74 −0.347166
\(671\) 3716.67 0.213831
\(672\) 0 0
\(673\) −18081.2 −1.03563 −0.517816 0.855492i \(-0.673255\pi\)
−0.517816 + 0.855492i \(0.673255\pi\)
\(674\) 5613.21 0.320791
\(675\) 0 0
\(676\) 2825.19 0.160741
\(677\) 23199.8 1.31705 0.658523 0.752561i \(-0.271182\pi\)
0.658523 + 0.752561i \(0.271182\pi\)
\(678\) 0 0
\(679\) −2009.68 −0.113585
\(680\) −14283.3 −0.805497
\(681\) 0 0
\(682\) −2976.27 −0.167107
\(683\) −13339.6 −0.747329 −0.373665 0.927564i \(-0.621899\pi\)
−0.373665 + 0.927564i \(0.621899\pi\)
\(684\) 0 0
\(685\) −17988.3 −1.00335
\(686\) 1221.61 0.0679904
\(687\) 0 0
\(688\) 4554.07 0.252358
\(689\) −16697.8 −0.923274
\(690\) 0 0
\(691\) −17221.4 −0.948097 −0.474048 0.880499i \(-0.657208\pi\)
−0.474048 + 0.880499i \(0.657208\pi\)
\(692\) −19652.0 −1.07956
\(693\) 0 0
\(694\) −17769.6 −0.971938
\(695\) −15888.5 −0.867175
\(696\) 0 0
\(697\) 24572.8 1.33538
\(698\) 15489.1 0.839930
\(699\) 0 0
\(700\) 3968.18 0.214262
\(701\) 27196.5 1.46533 0.732665 0.680589i \(-0.238276\pi\)
0.732665 + 0.680589i \(0.238276\pi\)
\(702\) 0 0
\(703\) −4504.44 −0.241661
\(704\) 397.594 0.0212853
\(705\) 0 0
\(706\) 13265.8 0.707172
\(707\) −5466.07 −0.290768
\(708\) 0 0
\(709\) 22682.8 1.20151 0.600755 0.799434i \(-0.294867\pi\)
0.600755 + 0.799434i \(0.294867\pi\)
\(710\) −22645.8 −1.19702
\(711\) 0 0
\(712\) 18658.5 0.982105
\(713\) 4483.36 0.235488
\(714\) 0 0
\(715\) −9129.61 −0.477522
\(716\) −6323.58 −0.330060
\(717\) 0 0
\(718\) 20712.3 1.07657
\(719\) −10878.2 −0.564241 −0.282121 0.959379i \(-0.591038\pi\)
−0.282121 + 0.959379i \(0.591038\pi\)
\(720\) 0 0
\(721\) 8527.51 0.440473
\(722\) −23788.4 −1.22619
\(723\) 0 0
\(724\) −5612.49 −0.288103
\(725\) 8389.58 0.429767
\(726\) 0 0
\(727\) −2793.35 −0.142503 −0.0712514 0.997458i \(-0.522699\pi\)
−0.0712514 + 0.997458i \(0.522699\pi\)
\(728\) −4373.71 −0.222666
\(729\) 0 0
\(730\) −7446.38 −0.377538
\(731\) −4416.17 −0.223445
\(732\) 0 0
\(733\) −7597.31 −0.382828 −0.191414 0.981509i \(-0.561307\pi\)
−0.191414 + 0.981509i \(0.561307\pi\)
\(734\) 33116.9 1.66535
\(735\) 0 0
\(736\) −11141.6 −0.557997
\(737\) 1185.57 0.0592553
\(738\) 0 0
\(739\) −14304.7 −0.712052 −0.356026 0.934476i \(-0.615868\pi\)
−0.356026 + 0.934476i \(0.615868\pi\)
\(740\) −24684.5 −1.22625
\(741\) 0 0
\(742\) −7867.06 −0.389230
\(743\) −31212.2 −1.54114 −0.770569 0.637357i \(-0.780028\pi\)
−0.770569 + 0.637357i \(0.780028\pi\)
\(744\) 0 0
\(745\) 35085.1 1.72539
\(746\) 13170.1 0.646369
\(747\) 0 0
\(748\) −3974.25 −0.194269
\(749\) 6112.37 0.298186
\(750\) 0 0
\(751\) 30743.1 1.49378 0.746891 0.664946i \(-0.231546\pi\)
0.746891 + 0.664946i \(0.231546\pi\)
\(752\) −45951.5 −2.22830
\(753\) 0 0
\(754\) 13066.2 0.631090
\(755\) 9985.75 0.481349
\(756\) 0 0
\(757\) 13176.9 0.632657 0.316328 0.948650i \(-0.397550\pi\)
0.316328 + 0.948650i \(0.397550\pi\)
\(758\) 7268.07 0.348270
\(759\) 0 0
\(760\) −2483.20 −0.118520
\(761\) 10696.4 0.509520 0.254760 0.967004i \(-0.418004\pi\)
0.254760 + 0.967004i \(0.418004\pi\)
\(762\) 0 0
\(763\) 884.970 0.0419896
\(764\) −3583.17 −0.169679
\(765\) 0 0
\(766\) 11795.6 0.556385
\(767\) 31681.5 1.49147
\(768\) 0 0
\(769\) −7724.46 −0.362225 −0.181113 0.983462i \(-0.557970\pi\)
−0.181113 + 0.983462i \(0.557970\pi\)
\(770\) −4301.35 −0.201312
\(771\) 0 0
\(772\) −9460.77 −0.441063
\(773\) −28801.0 −1.34010 −0.670051 0.742315i \(-0.733728\pi\)
−0.670051 + 0.742315i \(0.733728\pi\)
\(774\) 0 0
\(775\) 9192.98 0.426092
\(776\) 3389.97 0.156821
\(777\) 0 0
\(778\) −46638.7 −2.14920
\(779\) 4272.07 0.196486
\(780\) 0 0
\(781\) 4459.29 0.204310
\(782\) 16210.2 0.741272
\(783\) 0 0
\(784\) −3897.03 −0.177525
\(785\) −55862.3 −2.53989
\(786\) 0 0
\(787\) −11812.0 −0.535007 −0.267504 0.963557i \(-0.586199\pi\)
−0.267504 + 0.963557i \(0.586199\pi\)
\(788\) −7026.72 −0.317661
\(789\) 0 0
\(790\) −51506.6 −2.31965
\(791\) −1801.23 −0.0809662
\(792\) 0 0
\(793\) −17879.1 −0.800637
\(794\) 54702.1 2.44497
\(795\) 0 0
\(796\) −21429.6 −0.954209
\(797\) 26884.2 1.19484 0.597420 0.801928i \(-0.296192\pi\)
0.597420 + 0.801928i \(0.296192\pi\)
\(798\) 0 0
\(799\) 44560.1 1.97300
\(800\) −22845.5 −1.00964
\(801\) 0 0
\(802\) 41910.9 1.84530
\(803\) 1466.30 0.0644392
\(804\) 0 0
\(805\) 6479.43 0.283689
\(806\) 14317.4 0.625694
\(807\) 0 0
\(808\) 9220.30 0.401447
\(809\) 18360.8 0.797936 0.398968 0.916965i \(-0.369368\pi\)
0.398968 + 0.916965i \(0.369368\pi\)
\(810\) 0 0
\(811\) 17033.7 0.737528 0.368764 0.929523i \(-0.379781\pi\)
0.368764 + 0.929523i \(0.379781\pi\)
\(812\) 2273.53 0.0982576
\(813\) 0 0
\(814\) 13161.5 0.566718
\(815\) 39848.4 1.71267
\(816\) 0 0
\(817\) −767.768 −0.0328774
\(818\) 18061.8 0.772026
\(819\) 0 0
\(820\) 23411.1 0.997015
\(821\) 29675.1 1.26147 0.630735 0.775998i \(-0.282754\pi\)
0.630735 + 0.775998i \(0.282754\pi\)
\(822\) 0 0
\(823\) −24677.2 −1.04519 −0.522596 0.852581i \(-0.675036\pi\)
−0.522596 + 0.852581i \(0.675036\pi\)
\(824\) −14384.4 −0.608137
\(825\) 0 0
\(826\) 14926.5 0.628766
\(827\) 9168.43 0.385511 0.192755 0.981247i \(-0.438258\pi\)
0.192755 + 0.981247i \(0.438258\pi\)
\(828\) 0 0
\(829\) 8065.03 0.337889 0.168945 0.985626i \(-0.445964\pi\)
0.168945 + 0.985626i \(0.445964\pi\)
\(830\) 68216.7 2.85281
\(831\) 0 0
\(832\) −1912.63 −0.0796979
\(833\) 3779.03 0.157186
\(834\) 0 0
\(835\) −27245.7 −1.12919
\(836\) −690.938 −0.0285844
\(837\) 0 0
\(838\) −18111.5 −0.746599
\(839\) 29665.7 1.22071 0.610354 0.792129i \(-0.291027\pi\)
0.610354 + 0.792129i \(0.291027\pi\)
\(840\) 0 0
\(841\) −19582.3 −0.802915
\(842\) 55758.9 2.28216
\(843\) 0 0
\(844\) −20879.3 −0.851535
\(845\) 9458.99 0.385088
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 25096.5 1.01629
\(849\) 0 0
\(850\) 33238.4 1.34126
\(851\) −19826.0 −0.798622
\(852\) 0 0
\(853\) −33087.0 −1.32811 −0.664056 0.747683i \(-0.731166\pi\)
−0.664056 + 0.747683i \(0.731166\pi\)
\(854\) −8423.61 −0.337529
\(855\) 0 0
\(856\) −10310.5 −0.411689
\(857\) 8204.78 0.327036 0.163518 0.986540i \(-0.447716\pi\)
0.163518 + 0.986540i \(0.447716\pi\)
\(858\) 0 0
\(859\) 19406.0 0.770808 0.385404 0.922748i \(-0.374062\pi\)
0.385404 + 0.922748i \(0.374062\pi\)
\(860\) −4207.41 −0.166827
\(861\) 0 0
\(862\) −20568.7 −0.812729
\(863\) 3352.45 0.132235 0.0661174 0.997812i \(-0.478939\pi\)
0.0661174 + 0.997812i \(0.478939\pi\)
\(864\) 0 0
\(865\) −65796.6 −2.58630
\(866\) −24065.3 −0.944310
\(867\) 0 0
\(868\) 2491.24 0.0974174
\(869\) 10142.4 0.395924
\(870\) 0 0
\(871\) −5703.22 −0.221867
\(872\) −1492.79 −0.0579727
\(873\) 0 0
\(874\) 2818.20 0.109070
\(875\) −438.236 −0.0169315
\(876\) 0 0
\(877\) −20076.9 −0.773033 −0.386516 0.922283i \(-0.626322\pi\)
−0.386516 + 0.922283i \(0.626322\pi\)
\(878\) −32296.9 −1.24142
\(879\) 0 0
\(880\) 13721.6 0.525632
\(881\) 14800.2 0.565982 0.282991 0.959123i \(-0.408673\pi\)
0.282991 + 0.959123i \(0.408673\pi\)
\(882\) 0 0
\(883\) −19955.4 −0.760534 −0.380267 0.924877i \(-0.624168\pi\)
−0.380267 + 0.924877i \(0.624168\pi\)
\(884\) 19118.2 0.727392
\(885\) 0 0
\(886\) 25272.3 0.958283
\(887\) 9205.47 0.348466 0.174233 0.984704i \(-0.444255\pi\)
0.174233 + 0.984704i \(0.444255\pi\)
\(888\) 0 0
\(889\) 524.615 0.0197919
\(890\) −88272.3 −3.32460
\(891\) 0 0
\(892\) −14070.4 −0.528151
\(893\) 7746.94 0.290304
\(894\) 0 0
\(895\) −21171.9 −0.790725
\(896\) 9671.26 0.360596
\(897\) 0 0
\(898\) −2246.20 −0.0834706
\(899\) 5267.02 0.195400
\(900\) 0 0
\(901\) −24336.6 −0.899854
\(902\) −12482.5 −0.460778
\(903\) 0 0
\(904\) 3038.35 0.111786
\(905\) −18791.1 −0.690207
\(906\) 0 0
\(907\) 6722.78 0.246115 0.123057 0.992400i \(-0.460730\pi\)
0.123057 + 0.992400i \(0.460730\pi\)
\(908\) −5866.13 −0.214399
\(909\) 0 0
\(910\) 20691.7 0.753763
\(911\) −51855.3 −1.88589 −0.942944 0.332952i \(-0.891955\pi\)
−0.942944 + 0.332952i \(0.891955\pi\)
\(912\) 0 0
\(913\) −13432.9 −0.486926
\(914\) 44279.1 1.60243
\(915\) 0 0
\(916\) 13411.2 0.483755
\(917\) 18454.1 0.664568
\(918\) 0 0
\(919\) −55119.5 −1.97848 −0.989240 0.146302i \(-0.953263\pi\)
−0.989240 + 0.146302i \(0.953263\pi\)
\(920\) −10929.7 −0.391674
\(921\) 0 0
\(922\) −46504.4 −1.66111
\(923\) −21451.5 −0.764989
\(924\) 0 0
\(925\) −40652.6 −1.44502
\(926\) 30658.3 1.08801
\(927\) 0 0
\(928\) −13089.1 −0.463007
\(929\) −31459.7 −1.11104 −0.555522 0.831502i \(-0.687482\pi\)
−0.555522 + 0.831502i \(0.687482\pi\)
\(930\) 0 0
\(931\) 656.999 0.0231281
\(932\) −23282.4 −0.818283
\(933\) 0 0
\(934\) −53414.9 −1.87129
\(935\) −13306.1 −0.465409
\(936\) 0 0
\(937\) −13745.6 −0.479242 −0.239621 0.970867i \(-0.577023\pi\)
−0.239621 + 0.970867i \(0.577023\pi\)
\(938\) −2687.03 −0.0935338
\(939\) 0 0
\(940\) 42453.6 1.47307
\(941\) 29814.2 1.03285 0.516427 0.856331i \(-0.327262\pi\)
0.516427 + 0.856331i \(0.327262\pi\)
\(942\) 0 0
\(943\) 18803.3 0.649330
\(944\) −47616.7 −1.64173
\(945\) 0 0
\(946\) 2243.33 0.0771005
\(947\) −32410.4 −1.11214 −0.556070 0.831135i \(-0.687691\pi\)
−0.556070 + 0.831135i \(0.687691\pi\)
\(948\) 0 0
\(949\) −7053.67 −0.241277
\(950\) 5778.61 0.197351
\(951\) 0 0
\(952\) −6374.56 −0.217018
\(953\) −8931.28 −0.303581 −0.151790 0.988413i \(-0.548504\pi\)
−0.151790 + 0.988413i \(0.548504\pi\)
\(954\) 0 0
\(955\) −11996.8 −0.406499
\(956\) −21559.6 −0.729381
\(957\) 0 0
\(958\) 73719.9 2.48620
\(959\) −8028.10 −0.270324
\(960\) 0 0
\(961\) −24019.6 −0.806271
\(962\) −63313.4 −2.12194
\(963\) 0 0
\(964\) −19428.6 −0.649122
\(965\) −31675.5 −1.05665
\(966\) 0 0
\(967\) 28665.0 0.953262 0.476631 0.879104i \(-0.341858\pi\)
0.476631 + 0.879104i \(0.341858\pi\)
\(968\) −1428.74 −0.0474395
\(969\) 0 0
\(970\) −16037.7 −0.530866
\(971\) 40925.2 1.35258 0.676288 0.736637i \(-0.263587\pi\)
0.676288 + 0.736637i \(0.263587\pi\)
\(972\) 0 0
\(973\) −7090.99 −0.233635
\(974\) 54812.6 1.80319
\(975\) 0 0
\(976\) 26871.9 0.881300
\(977\) 21288.8 0.697124 0.348562 0.937286i \(-0.386670\pi\)
0.348562 + 0.937286i \(0.386670\pi\)
\(978\) 0 0
\(979\) 17382.1 0.567452
\(980\) 3600.39 0.117357
\(981\) 0 0
\(982\) −38362.8 −1.24664
\(983\) 53128.8 1.72385 0.861925 0.507035i \(-0.169259\pi\)
0.861925 + 0.507035i \(0.169259\pi\)
\(984\) 0 0
\(985\) −23526.1 −0.761019
\(986\) 19043.6 0.615082
\(987\) 0 0
\(988\) 3323.77 0.107028
\(989\) −3379.29 −0.108650
\(990\) 0 0
\(991\) −17978.4 −0.576290 −0.288145 0.957587i \(-0.593039\pi\)
−0.288145 + 0.957587i \(0.593039\pi\)
\(992\) −14342.5 −0.459048
\(993\) 0 0
\(994\) −10106.7 −0.322501
\(995\) −71748.1 −2.28600
\(996\) 0 0
\(997\) 10063.9 0.319687 0.159844 0.987142i \(-0.448901\pi\)
0.159844 + 0.987142i \(0.448901\pi\)
\(998\) −21368.6 −0.677766
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.k.1.2 2
3.2 odd 2 231.4.a.f.1.1 2
21.20 even 2 1617.4.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.f.1.1 2 3.2 odd 2
693.4.a.k.1.2 2 1.1 even 1 trivial
1617.4.a.i.1.1 2 21.20 even 2