Properties

Label 693.4.a.k.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.561553 q^{2} -7.68466 q^{4} +3.31534 q^{5} +7.00000 q^{7} +8.80776 q^{8} -1.86174 q^{10} -11.0000 q^{11} -41.9157 q^{13} -3.93087 q^{14} +56.5312 q^{16} +68.8769 q^{17} -114.408 q^{19} -25.4773 q^{20} +6.17708 q^{22} +124.985 q^{23} -114.009 q^{25} +23.5379 q^{26} -53.7926 q^{28} +147.670 q^{29} -55.9697 q^{31} -102.207 q^{32} -38.6780 q^{34} +23.2074 q^{35} +162.948 q^{37} +64.2462 q^{38} +29.2007 q^{40} -258.617 q^{41} -106.739 q^{43} +84.5312 q^{44} -70.1856 q^{46} -110.779 q^{47} +49.0000 q^{49} +64.0218 q^{50} +322.108 q^{52} -10.4451 q^{53} -36.4688 q^{55} +61.6543 q^{56} -82.9242 q^{58} +182.283 q^{59} +189.879 q^{61} +31.4299 q^{62} -394.855 q^{64} -138.965 q^{65} +580.779 q^{67} -529.295 q^{68} -13.0322 q^{70} +1161.39 q^{71} -79.6998 q^{73} -91.5038 q^{74} +879.187 q^{76} -77.0000 q^{77} +1090.04 q^{79} +187.420 q^{80} +145.227 q^{82} +874.830 q^{83} +228.350 q^{85} +59.9394 q^{86} -96.8854 q^{88} +844.193 q^{89} -293.410 q^{91} -960.466 q^{92} +62.2084 q^{94} -379.302 q^{95} +925.097 q^{97} -27.5161 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 3 q^{4} + 19 q^{5} + 14 q^{7} - 3 q^{8} + 54 q^{10} - 22 q^{11} + 11 q^{13} + 21 q^{14} - 23 q^{16} + 146 q^{17} - 101 q^{19} + 48 q^{20} - 33 q^{22} + 184 q^{23} + 7 q^{25} + 212 q^{26}+ \cdots + 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.561553 −0.198539 −0.0992695 0.995061i \(-0.531651\pi\)
−0.0992695 + 0.995061i \(0.531651\pi\)
\(3\) 0 0
\(4\) −7.68466 −0.960582
\(5\) 3.31534 0.296533 0.148267 0.988947i \(-0.452631\pi\)
0.148267 + 0.988947i \(0.452631\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 8.80776 0.389252
\(9\) 0 0
\(10\) −1.86174 −0.0588734
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −41.9157 −0.894256 −0.447128 0.894470i \(-0.647553\pi\)
−0.447128 + 0.894470i \(0.647553\pi\)
\(14\) −3.93087 −0.0750407
\(15\) 0 0
\(16\) 56.5312 0.883301
\(17\) 68.8769 0.982653 0.491326 0.870975i \(-0.336512\pi\)
0.491326 + 0.870975i \(0.336512\pi\)
\(18\) 0 0
\(19\) −114.408 −1.38142 −0.690711 0.723131i \(-0.742702\pi\)
−0.690711 + 0.723131i \(0.742702\pi\)
\(20\) −25.4773 −0.284845
\(21\) 0 0
\(22\) 6.17708 0.0598617
\(23\) 124.985 1.13309 0.566547 0.824030i \(-0.308279\pi\)
0.566547 + 0.824030i \(0.308279\pi\)
\(24\) 0 0
\(25\) −114.009 −0.912068
\(26\) 23.5379 0.177545
\(27\) 0 0
\(28\) −53.7926 −0.363066
\(29\) 147.670 0.945570 0.472785 0.881178i \(-0.343249\pi\)
0.472785 + 0.881178i \(0.343249\pi\)
\(30\) 0 0
\(31\) −55.9697 −0.324273 −0.162136 0.986768i \(-0.551838\pi\)
−0.162136 + 0.986768i \(0.551838\pi\)
\(32\) −102.207 −0.564621
\(33\) 0 0
\(34\) −38.6780 −0.195095
\(35\) 23.2074 0.112079
\(36\) 0 0
\(37\) 162.948 0.724013 0.362006 0.932176i \(-0.382092\pi\)
0.362006 + 0.932176i \(0.382092\pi\)
\(38\) 64.2462 0.274266
\(39\) 0 0
\(40\) 29.2007 0.115426
\(41\) −258.617 −0.985104 −0.492552 0.870283i \(-0.663936\pi\)
−0.492552 + 0.870283i \(0.663936\pi\)
\(42\) 0 0
\(43\) −106.739 −0.378546 −0.189273 0.981924i \(-0.560613\pi\)
−0.189273 + 0.981924i \(0.560613\pi\)
\(44\) 84.5312 0.289626
\(45\) 0 0
\(46\) −70.1856 −0.224963
\(47\) −110.779 −0.343805 −0.171902 0.985114i \(-0.554991\pi\)
−0.171902 + 0.985114i \(0.554991\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 64.0218 0.181081
\(51\) 0 0
\(52\) 322.108 0.859006
\(53\) −10.4451 −0.0270706 −0.0135353 0.999908i \(-0.504309\pi\)
−0.0135353 + 0.999908i \(0.504309\pi\)
\(54\) 0 0
\(55\) −36.4688 −0.0894081
\(56\) 61.6543 0.147123
\(57\) 0 0
\(58\) −82.9242 −0.187732
\(59\) 182.283 0.402225 0.201112 0.979568i \(-0.435544\pi\)
0.201112 + 0.979568i \(0.435544\pi\)
\(60\) 0 0
\(61\) 189.879 0.398549 0.199274 0.979944i \(-0.436141\pi\)
0.199274 + 0.979944i \(0.436141\pi\)
\(62\) 31.4299 0.0643807
\(63\) 0 0
\(64\) −394.855 −0.771201
\(65\) −138.965 −0.265177
\(66\) 0 0
\(67\) 580.779 1.05901 0.529504 0.848308i \(-0.322378\pi\)
0.529504 + 0.848308i \(0.322378\pi\)
\(68\) −529.295 −0.943919
\(69\) 0 0
\(70\) −13.0322 −0.0222520
\(71\) 1161.39 1.94129 0.970645 0.240515i \(-0.0773164\pi\)
0.970645 + 0.240515i \(0.0773164\pi\)
\(72\) 0 0
\(73\) −79.6998 −0.127783 −0.0638915 0.997957i \(-0.520351\pi\)
−0.0638915 + 0.997957i \(0.520351\pi\)
\(74\) −91.5038 −0.143745
\(75\) 0 0
\(76\) 879.187 1.32697
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 1090.04 1.55239 0.776195 0.630493i \(-0.217147\pi\)
0.776195 + 0.630493i \(0.217147\pi\)
\(80\) 187.420 0.261928
\(81\) 0 0
\(82\) 145.227 0.195581
\(83\) 874.830 1.15693 0.578464 0.815708i \(-0.303652\pi\)
0.578464 + 0.815708i \(0.303652\pi\)
\(84\) 0 0
\(85\) 228.350 0.291389
\(86\) 59.9394 0.0751562
\(87\) 0 0
\(88\) −96.8854 −0.117364
\(89\) 844.193 1.00544 0.502721 0.864449i \(-0.332332\pi\)
0.502721 + 0.864449i \(0.332332\pi\)
\(90\) 0 0
\(91\) −293.410 −0.337997
\(92\) −960.466 −1.08843
\(93\) 0 0
\(94\) 62.2084 0.0682586
\(95\) −379.302 −0.409638
\(96\) 0 0
\(97\) 925.097 0.968344 0.484172 0.874973i \(-0.339121\pi\)
0.484172 + 0.874973i \(0.339121\pi\)
\(98\) −27.5161 −0.0283627
\(99\) 0 0
\(100\) 876.116 0.876116
\(101\) 884.867 0.871758 0.435879 0.900005i \(-0.356438\pi\)
0.435879 + 0.900005i \(0.356438\pi\)
\(102\) 0 0
\(103\) 1069.78 1.02339 0.511694 0.859168i \(-0.329018\pi\)
0.511694 + 0.859168i \(0.329018\pi\)
\(104\) −369.184 −0.348091
\(105\) 0 0
\(106\) 5.86547 0.00537457
\(107\) −178.196 −0.160999 −0.0804993 0.996755i \(-0.525651\pi\)
−0.0804993 + 0.996755i \(0.525651\pi\)
\(108\) 0 0
\(109\) 1973.58 1.73426 0.867130 0.498082i \(-0.165962\pi\)
0.867130 + 0.498082i \(0.165962\pi\)
\(110\) 20.4791 0.0177510
\(111\) 0 0
\(112\) 395.719 0.333856
\(113\) −1642.68 −1.36753 −0.683763 0.729704i \(-0.739658\pi\)
−0.683763 + 0.729704i \(0.739658\pi\)
\(114\) 0 0
\(115\) 414.367 0.336000
\(116\) −1134.79 −0.908298
\(117\) 0 0
\(118\) −102.362 −0.0798572
\(119\) 482.138 0.371408
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −106.627 −0.0791275
\(123\) 0 0
\(124\) 430.108 0.311491
\(125\) −792.395 −0.566992
\(126\) 0 0
\(127\) −1796.94 −1.25554 −0.627768 0.778400i \(-0.716031\pi\)
−0.627768 + 0.778400i \(0.716031\pi\)
\(128\) 1039.39 0.717735
\(129\) 0 0
\(130\) 78.0361 0.0526479
\(131\) −934.305 −0.623134 −0.311567 0.950224i \(-0.600854\pi\)
−0.311567 + 0.950224i \(0.600854\pi\)
\(132\) 0 0
\(133\) −800.857 −0.522129
\(134\) −326.138 −0.210254
\(135\) 0 0
\(136\) 606.651 0.382499
\(137\) 1590.87 0.992097 0.496048 0.868295i \(-0.334784\pi\)
0.496048 + 0.868295i \(0.334784\pi\)
\(138\) 0 0
\(139\) −1549.00 −0.945213 −0.472607 0.881274i \(-0.656687\pi\)
−0.472607 + 0.881274i \(0.656687\pi\)
\(140\) −178.341 −0.107661
\(141\) 0 0
\(142\) −652.182 −0.385422
\(143\) 461.073 0.269628
\(144\) 0 0
\(145\) 489.575 0.280393
\(146\) 44.7557 0.0253699
\(147\) 0 0
\(148\) −1252.20 −0.695474
\(149\) 468.094 0.257367 0.128684 0.991686i \(-0.458925\pi\)
0.128684 + 0.991686i \(0.458925\pi\)
\(150\) 0 0
\(151\) 1865.34 1.00529 0.502647 0.864492i \(-0.332360\pi\)
0.502647 + 0.864492i \(0.332360\pi\)
\(152\) −1007.68 −0.537721
\(153\) 0 0
\(154\) 43.2396 0.0226256
\(155\) −185.559 −0.0961576
\(156\) 0 0
\(157\) 1501.59 0.763310 0.381655 0.924305i \(-0.375354\pi\)
0.381655 + 0.924305i \(0.375354\pi\)
\(158\) −612.114 −0.308210
\(159\) 0 0
\(160\) −338.852 −0.167429
\(161\) 874.894 0.428269
\(162\) 0 0
\(163\) 524.401 0.251989 0.125995 0.992031i \(-0.459788\pi\)
0.125995 + 0.992031i \(0.459788\pi\)
\(164\) 1987.39 0.946273
\(165\) 0 0
\(166\) −491.263 −0.229695
\(167\) 3293.09 1.52591 0.762956 0.646450i \(-0.223747\pi\)
0.762956 + 0.646450i \(0.223747\pi\)
\(168\) 0 0
\(169\) −440.073 −0.200306
\(170\) −128.231 −0.0578521
\(171\) 0 0
\(172\) 820.250 0.363625
\(173\) 3036.96 1.33466 0.667330 0.744762i \(-0.267437\pi\)
0.667330 + 0.744762i \(0.267437\pi\)
\(174\) 0 0
\(175\) −798.060 −0.344729
\(176\) −621.844 −0.266325
\(177\) 0 0
\(178\) −474.059 −0.199619
\(179\) −690.152 −0.288181 −0.144090 0.989565i \(-0.546026\pi\)
−0.144090 + 0.989565i \(0.546026\pi\)
\(180\) 0 0
\(181\) −2533.94 −1.04059 −0.520294 0.853987i \(-0.674178\pi\)
−0.520294 + 0.853987i \(0.674178\pi\)
\(182\) 164.765 0.0671056
\(183\) 0 0
\(184\) 1100.84 0.441059
\(185\) 540.228 0.214694
\(186\) 0 0
\(187\) −757.646 −0.296281
\(188\) 851.301 0.330253
\(189\) 0 0
\(190\) 212.998 0.0813290
\(191\) −1845.13 −0.698998 −0.349499 0.936937i \(-0.613648\pi\)
−0.349499 + 0.936937i \(0.613648\pi\)
\(192\) 0 0
\(193\) −2654.48 −0.990019 −0.495009 0.868888i \(-0.664835\pi\)
−0.495009 + 0.868888i \(0.664835\pi\)
\(194\) −519.491 −0.192254
\(195\) 0 0
\(196\) −376.548 −0.137226
\(197\) −164.057 −0.0593328 −0.0296664 0.999560i \(-0.509445\pi\)
−0.0296664 + 0.999560i \(0.509445\pi\)
\(198\) 0 0
\(199\) 2888.41 1.02891 0.514457 0.857516i \(-0.327993\pi\)
0.514457 + 0.857516i \(0.327993\pi\)
\(200\) −1004.16 −0.355024
\(201\) 0 0
\(202\) −496.900 −0.173078
\(203\) 1033.69 0.357392
\(204\) 0 0
\(205\) −857.405 −0.292116
\(206\) −600.740 −0.203182
\(207\) 0 0
\(208\) −2369.55 −0.789897
\(209\) 1258.49 0.416515
\(210\) 0 0
\(211\) 630.956 0.205862 0.102931 0.994689i \(-0.467178\pi\)
0.102931 + 0.994689i \(0.467178\pi\)
\(212\) 80.2670 0.0260036
\(213\) 0 0
\(214\) 100.066 0.0319645
\(215\) −353.875 −0.112252
\(216\) 0 0
\(217\) −391.788 −0.122564
\(218\) −1108.27 −0.344318
\(219\) 0 0
\(220\) 280.250 0.0858839
\(221\) −2887.02 −0.878743
\(222\) 0 0
\(223\) −6252.50 −1.87757 −0.938786 0.344501i \(-0.888048\pi\)
−0.938786 + 0.344501i \(0.888048\pi\)
\(224\) −715.452 −0.213407
\(225\) 0 0
\(226\) 922.453 0.271507
\(227\) 3316.20 0.969621 0.484810 0.874619i \(-0.338889\pi\)
0.484810 + 0.874619i \(0.338889\pi\)
\(228\) 0 0
\(229\) 3077.20 0.887979 0.443989 0.896032i \(-0.353563\pi\)
0.443989 + 0.896032i \(0.353563\pi\)
\(230\) −232.689 −0.0667090
\(231\) 0 0
\(232\) 1300.64 0.368065
\(233\) −1358.08 −0.381849 −0.190924 0.981605i \(-0.561149\pi\)
−0.190924 + 0.981605i \(0.561149\pi\)
\(234\) 0 0
\(235\) −367.271 −0.101950
\(236\) −1400.78 −0.386370
\(237\) 0 0
\(238\) −270.746 −0.0737389
\(239\) 4151.18 1.12350 0.561752 0.827306i \(-0.310128\pi\)
0.561752 + 0.827306i \(0.310128\pi\)
\(240\) 0 0
\(241\) −3491.71 −0.933282 −0.466641 0.884447i \(-0.654536\pi\)
−0.466641 + 0.884447i \(0.654536\pi\)
\(242\) −67.9479 −0.0180490
\(243\) 0 0
\(244\) −1459.15 −0.382839
\(245\) 162.452 0.0423619
\(246\) 0 0
\(247\) 4795.50 1.23535
\(248\) −492.968 −0.126224
\(249\) 0 0
\(250\) 444.972 0.112570
\(251\) 879.383 0.221140 0.110570 0.993868i \(-0.464732\pi\)
0.110570 + 0.993868i \(0.464732\pi\)
\(252\) 0 0
\(253\) −1374.83 −0.341640
\(254\) 1009.08 0.249273
\(255\) 0 0
\(256\) 2575.17 0.628703
\(257\) −5691.10 −1.38133 −0.690663 0.723176i \(-0.742681\pi\)
−0.690663 + 0.723176i \(0.742681\pi\)
\(258\) 0 0
\(259\) 1140.64 0.273651
\(260\) 1067.90 0.254724
\(261\) 0 0
\(262\) 524.661 0.123716
\(263\) −2024.55 −0.474673 −0.237337 0.971427i \(-0.576274\pi\)
−0.237337 + 0.971427i \(0.576274\pi\)
\(264\) 0 0
\(265\) −34.6290 −0.00802734
\(266\) 449.723 0.103663
\(267\) 0 0
\(268\) −4463.09 −1.01726
\(269\) 3431.96 0.777882 0.388941 0.921263i \(-0.372841\pi\)
0.388941 + 0.921263i \(0.372841\pi\)
\(270\) 0 0
\(271\) −2974.80 −0.666812 −0.333406 0.942783i \(-0.608198\pi\)
−0.333406 + 0.942783i \(0.608198\pi\)
\(272\) 3893.70 0.867978
\(273\) 0 0
\(274\) −893.358 −0.196970
\(275\) 1254.09 0.274999
\(276\) 0 0
\(277\) 7781.98 1.68799 0.843996 0.536350i \(-0.180197\pi\)
0.843996 + 0.536350i \(0.180197\pi\)
\(278\) 869.846 0.187662
\(279\) 0 0
\(280\) 204.405 0.0436270
\(281\) 2627.68 0.557845 0.278922 0.960314i \(-0.410023\pi\)
0.278922 + 0.960314i \(0.410023\pi\)
\(282\) 0 0
\(283\) −2501.46 −0.525430 −0.262715 0.964873i \(-0.584618\pi\)
−0.262715 + 0.964873i \(0.584618\pi\)
\(284\) −8924.89 −1.86477
\(285\) 0 0
\(286\) −258.917 −0.0535317
\(287\) −1810.32 −0.372334
\(288\) 0 0
\(289\) −168.973 −0.0343931
\(290\) −274.922 −0.0556689
\(291\) 0 0
\(292\) 612.466 0.122746
\(293\) 4646.04 0.926364 0.463182 0.886263i \(-0.346708\pi\)
0.463182 + 0.886263i \(0.346708\pi\)
\(294\) 0 0
\(295\) 604.331 0.119273
\(296\) 1435.21 0.281823
\(297\) 0 0
\(298\) −262.859 −0.0510974
\(299\) −5238.83 −1.01328
\(300\) 0 0
\(301\) −747.170 −0.143077
\(302\) −1047.49 −0.199590
\(303\) 0 0
\(304\) −6467.63 −1.22021
\(305\) 629.513 0.118183
\(306\) 0 0
\(307\) −4325.92 −0.804213 −0.402107 0.915593i \(-0.631722\pi\)
−0.402107 + 0.915593i \(0.631722\pi\)
\(308\) 591.719 0.109469
\(309\) 0 0
\(310\) 104.201 0.0190910
\(311\) −1845.22 −0.336440 −0.168220 0.985749i \(-0.553802\pi\)
−0.168220 + 0.985749i \(0.553802\pi\)
\(312\) 0 0
\(313\) −5287.15 −0.954784 −0.477392 0.878690i \(-0.658418\pi\)
−0.477392 + 0.878690i \(0.658418\pi\)
\(314\) −843.220 −0.151547
\(315\) 0 0
\(316\) −8376.57 −1.49120
\(317\) −9353.74 −1.65728 −0.828641 0.559780i \(-0.810886\pi\)
−0.828641 + 0.559780i \(0.810886\pi\)
\(318\) 0 0
\(319\) −1624.36 −0.285100
\(320\) −1309.08 −0.228687
\(321\) 0 0
\(322\) −491.299 −0.0850280
\(323\) −7880.08 −1.35746
\(324\) 0 0
\(325\) 4778.75 0.815622
\(326\) −294.479 −0.0500296
\(327\) 0 0
\(328\) −2277.84 −0.383453
\(329\) −775.455 −0.129946
\(330\) 0 0
\(331\) 11385.6 1.89066 0.945330 0.326115i \(-0.105740\pi\)
0.945330 + 0.326115i \(0.105740\pi\)
\(332\) −6722.77 −1.11132
\(333\) 0 0
\(334\) −1849.25 −0.302953
\(335\) 1925.48 0.314031
\(336\) 0 0
\(337\) −10686.1 −1.72732 −0.863660 0.504075i \(-0.831833\pi\)
−0.863660 + 0.504075i \(0.831833\pi\)
\(338\) 247.124 0.0397686
\(339\) 0 0
\(340\) −1754.80 −0.279903
\(341\) 615.667 0.0977719
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −940.129 −0.147350
\(345\) 0 0
\(346\) −1705.42 −0.264982
\(347\) −6242.71 −0.965782 −0.482891 0.875680i \(-0.660413\pi\)
−0.482891 + 0.875680i \(0.660413\pi\)
\(348\) 0 0
\(349\) 4518.02 0.692964 0.346482 0.938057i \(-0.387376\pi\)
0.346482 + 0.938057i \(0.387376\pi\)
\(350\) 448.153 0.0684422
\(351\) 0 0
\(352\) 1124.28 0.170240
\(353\) 9270.29 1.39776 0.698878 0.715241i \(-0.253683\pi\)
0.698878 + 0.715241i \(0.253683\pi\)
\(354\) 0 0
\(355\) 3850.40 0.575657
\(356\) −6487.34 −0.965809
\(357\) 0 0
\(358\) 387.557 0.0572151
\(359\) −8219.53 −1.20838 −0.604192 0.796839i \(-0.706504\pi\)
−0.604192 + 0.796839i \(0.706504\pi\)
\(360\) 0 0
\(361\) 6230.22 0.908328
\(362\) 1422.94 0.206597
\(363\) 0 0
\(364\) 2254.76 0.324674
\(365\) −264.232 −0.0378919
\(366\) 0 0
\(367\) 9001.57 1.28032 0.640161 0.768241i \(-0.278868\pi\)
0.640161 + 0.768241i \(0.278868\pi\)
\(368\) 7065.55 1.00086
\(369\) 0 0
\(370\) −303.367 −0.0426251
\(371\) −73.1156 −0.0102317
\(372\) 0 0
\(373\) 1966.15 0.272931 0.136466 0.990645i \(-0.456426\pi\)
0.136466 + 0.990645i \(0.456426\pi\)
\(374\) 425.458 0.0588233
\(375\) 0 0
\(376\) −975.718 −0.133827
\(377\) −6189.67 −0.845582
\(378\) 0 0
\(379\) 1022.30 0.138554 0.0692768 0.997597i \(-0.477931\pi\)
0.0692768 + 0.997597i \(0.477931\pi\)
\(380\) 2914.81 0.393491
\(381\) 0 0
\(382\) 1036.14 0.138778
\(383\) −12825.9 −1.71116 −0.855579 0.517672i \(-0.826799\pi\)
−0.855579 + 0.517672i \(0.826799\pi\)
\(384\) 0 0
\(385\) −255.281 −0.0337931
\(386\) 1490.63 0.196557
\(387\) 0 0
\(388\) −7109.05 −0.930174
\(389\) 12229.1 1.59393 0.796964 0.604027i \(-0.206438\pi\)
0.796964 + 0.604027i \(0.206438\pi\)
\(390\) 0 0
\(391\) 8608.57 1.11344
\(392\) 431.580 0.0556074
\(393\) 0 0
\(394\) 92.1266 0.0117799
\(395\) 3613.85 0.460335
\(396\) 0 0
\(397\) −3401.07 −0.429961 −0.214981 0.976618i \(-0.568969\pi\)
−0.214981 + 0.976618i \(0.568969\pi\)
\(398\) −1622.00 −0.204280
\(399\) 0 0
\(400\) −6445.04 −0.805630
\(401\) 6234.40 0.776386 0.388193 0.921578i \(-0.373099\pi\)
0.388193 + 0.921578i \(0.373099\pi\)
\(402\) 0 0
\(403\) 2346.01 0.289983
\(404\) −6799.90 −0.837396
\(405\) 0 0
\(406\) −580.470 −0.0709562
\(407\) −1792.43 −0.218298
\(408\) 0 0
\(409\) −11429.3 −1.38177 −0.690885 0.722964i \(-0.742779\pi\)
−0.690885 + 0.722964i \(0.742779\pi\)
\(410\) 481.478 0.0579964
\(411\) 0 0
\(412\) −8220.93 −0.983048
\(413\) 1275.98 0.152027
\(414\) 0 0
\(415\) 2900.36 0.343068
\(416\) 4284.10 0.504916
\(417\) 0 0
\(418\) −706.708 −0.0826943
\(419\) −3827.73 −0.446293 −0.223146 0.974785i \(-0.571633\pi\)
−0.223146 + 0.974785i \(0.571633\pi\)
\(420\) 0 0
\(421\) −11626.8 −1.34597 −0.672987 0.739654i \(-0.734989\pi\)
−0.672987 + 0.739654i \(0.734989\pi\)
\(422\) −354.315 −0.0408716
\(423\) 0 0
\(424\) −91.9979 −0.0105373
\(425\) −7852.55 −0.896246
\(426\) 0 0
\(427\) 1329.15 0.150637
\(428\) 1369.38 0.154652
\(429\) 0 0
\(430\) 198.720 0.0222863
\(431\) −7469.80 −0.834820 −0.417410 0.908718i \(-0.637062\pi\)
−0.417410 + 0.908718i \(0.637062\pi\)
\(432\) 0 0
\(433\) 1546.97 0.171692 0.0858459 0.996308i \(-0.472641\pi\)
0.0858459 + 0.996308i \(0.472641\pi\)
\(434\) 220.010 0.0243336
\(435\) 0 0
\(436\) −15166.3 −1.66590
\(437\) −14299.3 −1.56528
\(438\) 0 0
\(439\) −8082.79 −0.878748 −0.439374 0.898304i \(-0.644800\pi\)
−0.439374 + 0.898304i \(0.644800\pi\)
\(440\) −321.208 −0.0348023
\(441\) 0 0
\(442\) 1621.22 0.174465
\(443\) 13000.1 1.39426 0.697128 0.716947i \(-0.254461\pi\)
0.697128 + 0.716947i \(0.254461\pi\)
\(444\) 0 0
\(445\) 2798.79 0.298147
\(446\) 3511.11 0.372771
\(447\) 0 0
\(448\) −2763.99 −0.291487
\(449\) 4572.68 0.480619 0.240310 0.970696i \(-0.422751\pi\)
0.240310 + 0.970696i \(0.422751\pi\)
\(450\) 0 0
\(451\) 2844.79 0.297020
\(452\) 12623.4 1.31362
\(453\) 0 0
\(454\) −1862.22 −0.192507
\(455\) −972.754 −0.100227
\(456\) 0 0
\(457\) −10846.5 −1.11024 −0.555119 0.831771i \(-0.687327\pi\)
−0.555119 + 0.831771i \(0.687327\pi\)
\(458\) −1728.01 −0.176298
\(459\) 0 0
\(460\) −3184.27 −0.322755
\(461\) 1299.33 0.131270 0.0656352 0.997844i \(-0.479093\pi\)
0.0656352 + 0.997844i \(0.479093\pi\)
\(462\) 0 0
\(463\) 12116.9 1.21624 0.608120 0.793845i \(-0.291924\pi\)
0.608120 + 0.793845i \(0.291924\pi\)
\(464\) 8347.94 0.835223
\(465\) 0 0
\(466\) 762.633 0.0758118
\(467\) 13546.6 1.34232 0.671160 0.741313i \(-0.265796\pi\)
0.671160 + 0.741313i \(0.265796\pi\)
\(468\) 0 0
\(469\) 4065.46 0.400267
\(470\) 206.242 0.0202409
\(471\) 0 0
\(472\) 1605.51 0.156567
\(473\) 1174.12 0.114136
\(474\) 0 0
\(475\) 13043.5 1.25995
\(476\) −3705.07 −0.356768
\(477\) 0 0
\(478\) −2331.10 −0.223059
\(479\) 10663.2 1.01715 0.508573 0.861019i \(-0.330173\pi\)
0.508573 + 0.861019i \(0.330173\pi\)
\(480\) 0 0
\(481\) −6830.08 −0.647453
\(482\) 1960.78 0.185293
\(483\) 0 0
\(484\) −929.844 −0.0873257
\(485\) 3067.01 0.287146
\(486\) 0 0
\(487\) 8149.91 0.758332 0.379166 0.925329i \(-0.376211\pi\)
0.379166 + 0.925329i \(0.376211\pi\)
\(488\) 1672.41 0.155136
\(489\) 0 0
\(490\) −91.2252 −0.00841048
\(491\) 15142.4 1.39178 0.695891 0.718147i \(-0.255010\pi\)
0.695891 + 0.718147i \(0.255010\pi\)
\(492\) 0 0
\(493\) 10171.0 0.929167
\(494\) −2692.93 −0.245264
\(495\) 0 0
\(496\) −3164.04 −0.286430
\(497\) 8129.73 0.733739
\(498\) 0 0
\(499\) 10430.8 0.935764 0.467882 0.883791i \(-0.345017\pi\)
0.467882 + 0.883791i \(0.345017\pi\)
\(500\) 6089.28 0.544642
\(501\) 0 0
\(502\) −493.820 −0.0439049
\(503\) −2173.55 −0.192671 −0.0963356 0.995349i \(-0.530712\pi\)
−0.0963356 + 0.995349i \(0.530712\pi\)
\(504\) 0 0
\(505\) 2933.64 0.258505
\(506\) 772.042 0.0678289
\(507\) 0 0
\(508\) 13808.9 1.20605
\(509\) 13729.6 1.19559 0.597793 0.801651i \(-0.296045\pi\)
0.597793 + 0.801651i \(0.296045\pi\)
\(510\) 0 0
\(511\) −557.899 −0.0482974
\(512\) −9761.22 −0.842557
\(513\) 0 0
\(514\) 3195.85 0.274247
\(515\) 3546.70 0.303468
\(516\) 0 0
\(517\) 1218.57 0.103661
\(518\) −640.527 −0.0543304
\(519\) 0 0
\(520\) −1223.97 −0.103220
\(521\) −18257.2 −1.53525 −0.767623 0.640902i \(-0.778561\pi\)
−0.767623 + 0.640902i \(0.778561\pi\)
\(522\) 0 0
\(523\) −19979.6 −1.67045 −0.835225 0.549908i \(-0.814663\pi\)
−0.835225 + 0.549908i \(0.814663\pi\)
\(524\) 7179.81 0.598572
\(525\) 0 0
\(526\) 1136.89 0.0942411
\(527\) −3855.02 −0.318648
\(528\) 0 0
\(529\) 3454.21 0.283900
\(530\) 19.4460 0.00159374
\(531\) 0 0
\(532\) 6154.31 0.501548
\(533\) 10840.1 0.880935
\(534\) 0 0
\(535\) −590.780 −0.0477414
\(536\) 5115.37 0.412221
\(537\) 0 0
\(538\) −1927.23 −0.154440
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 7904.01 0.628133 0.314066 0.949401i \(-0.398309\pi\)
0.314066 + 0.949401i \(0.398309\pi\)
\(542\) 1670.51 0.132388
\(543\) 0 0
\(544\) −7039.73 −0.554827
\(545\) 6543.08 0.514265
\(546\) 0 0
\(547\) 16806.6 1.31370 0.656852 0.754019i \(-0.271887\pi\)
0.656852 + 0.754019i \(0.271887\pi\)
\(548\) −12225.3 −0.952991
\(549\) 0 0
\(550\) −704.240 −0.0545980
\(551\) −16894.6 −1.30623
\(552\) 0 0
\(553\) 7630.26 0.586748
\(554\) −4369.99 −0.335132
\(555\) 0 0
\(556\) 11903.6 0.907955
\(557\) 8002.82 0.608780 0.304390 0.952548i \(-0.401547\pi\)
0.304390 + 0.952548i \(0.401547\pi\)
\(558\) 0 0
\(559\) 4474.03 0.338517
\(560\) 1311.94 0.0989995
\(561\) 0 0
\(562\) −1475.58 −0.110754
\(563\) 12327.9 0.922840 0.461420 0.887182i \(-0.347340\pi\)
0.461420 + 0.887182i \(0.347340\pi\)
\(564\) 0 0
\(565\) −5446.05 −0.405517
\(566\) 1404.70 0.104318
\(567\) 0 0
\(568\) 10229.2 0.755651
\(569\) 6786.77 0.500028 0.250014 0.968242i \(-0.419565\pi\)
0.250014 + 0.968242i \(0.419565\pi\)
\(570\) 0 0
\(571\) 16890.0 1.23787 0.618935 0.785442i \(-0.287564\pi\)
0.618935 + 0.785442i \(0.287564\pi\)
\(572\) −3543.19 −0.259000
\(573\) 0 0
\(574\) 1016.59 0.0739228
\(575\) −14249.3 −1.03346
\(576\) 0 0
\(577\) 1857.64 0.134029 0.0670144 0.997752i \(-0.478653\pi\)
0.0670144 + 0.997752i \(0.478653\pi\)
\(578\) 94.8875 0.00682837
\(579\) 0 0
\(580\) −3762.22 −0.269341
\(581\) 6123.81 0.437278
\(582\) 0 0
\(583\) 114.896 0.00816210
\(584\) −701.977 −0.0497398
\(585\) 0 0
\(586\) −2609.00 −0.183919
\(587\) −21977.7 −1.54534 −0.772672 0.634805i \(-0.781080\pi\)
−0.772672 + 0.634805i \(0.781080\pi\)
\(588\) 0 0
\(589\) 6403.39 0.447958
\(590\) −339.364 −0.0236803
\(591\) 0 0
\(592\) 9211.65 0.639521
\(593\) −17263.7 −1.19550 −0.597752 0.801681i \(-0.703939\pi\)
−0.597752 + 0.801681i \(0.703939\pi\)
\(594\) 0 0
\(595\) 1598.45 0.110135
\(596\) −3597.14 −0.247223
\(597\) 0 0
\(598\) 2941.88 0.201175
\(599\) 23211.4 1.58329 0.791646 0.610981i \(-0.209225\pi\)
0.791646 + 0.610981i \(0.209225\pi\)
\(600\) 0 0
\(601\) −20051.0 −1.36089 −0.680446 0.732799i \(-0.738214\pi\)
−0.680446 + 0.732799i \(0.738214\pi\)
\(602\) 419.576 0.0284064
\(603\) 0 0
\(604\) −14334.5 −0.965668
\(605\) 401.156 0.0269576
\(606\) 0 0
\(607\) −7862.63 −0.525756 −0.262878 0.964829i \(-0.584672\pi\)
−0.262878 + 0.964829i \(0.584672\pi\)
\(608\) 11693.4 0.779981
\(609\) 0 0
\(610\) −353.505 −0.0234639
\(611\) 4643.39 0.307449
\(612\) 0 0
\(613\) −16366.2 −1.07835 −0.539173 0.842195i \(-0.681263\pi\)
−0.539173 + 0.842195i \(0.681263\pi\)
\(614\) 2429.23 0.159668
\(615\) 0 0
\(616\) −678.198 −0.0443594
\(617\) −3749.07 −0.244622 −0.122311 0.992492i \(-0.539031\pi\)
−0.122311 + 0.992492i \(0.539031\pi\)
\(618\) 0 0
\(619\) 20036.9 1.30105 0.650525 0.759485i \(-0.274549\pi\)
0.650525 + 0.759485i \(0.274549\pi\)
\(620\) 1425.95 0.0923673
\(621\) 0 0
\(622\) 1036.19 0.0667965
\(623\) 5909.35 0.380021
\(624\) 0 0
\(625\) 11624.0 0.743936
\(626\) 2969.01 0.189562
\(627\) 0 0
\(628\) −11539.2 −0.733222
\(629\) 11223.3 0.711453
\(630\) 0 0
\(631\) 5839.34 0.368400 0.184200 0.982889i \(-0.441031\pi\)
0.184200 + 0.982889i \(0.441031\pi\)
\(632\) 9600.80 0.604271
\(633\) 0 0
\(634\) 5252.62 0.329035
\(635\) −5957.49 −0.372308
\(636\) 0 0
\(637\) −2053.87 −0.127751
\(638\) 912.166 0.0566035
\(639\) 0 0
\(640\) 3445.94 0.212832
\(641\) 14682.2 0.904702 0.452351 0.891840i \(-0.350585\pi\)
0.452351 + 0.891840i \(0.350585\pi\)
\(642\) 0 0
\(643\) 30541.3 1.87314 0.936571 0.350477i \(-0.113981\pi\)
0.936571 + 0.350477i \(0.113981\pi\)
\(644\) −6723.26 −0.411388
\(645\) 0 0
\(646\) 4425.08 0.269508
\(647\) −7991.44 −0.485588 −0.242794 0.970078i \(-0.578064\pi\)
−0.242794 + 0.970078i \(0.578064\pi\)
\(648\) 0 0
\(649\) −2005.11 −0.121275
\(650\) −2683.52 −0.161933
\(651\) 0 0
\(652\) −4029.84 −0.242056
\(653\) −18400.0 −1.10268 −0.551338 0.834282i \(-0.685883\pi\)
−0.551338 + 0.834282i \(0.685883\pi\)
\(654\) 0 0
\(655\) −3097.54 −0.184780
\(656\) −14620.0 −0.870143
\(657\) 0 0
\(658\) 435.459 0.0257993
\(659\) −15887.4 −0.939126 −0.469563 0.882899i \(-0.655589\pi\)
−0.469563 + 0.882899i \(0.655589\pi\)
\(660\) 0 0
\(661\) −14947.8 −0.879582 −0.439791 0.898100i \(-0.644947\pi\)
−0.439791 + 0.898100i \(0.644947\pi\)
\(662\) −6393.61 −0.375370
\(663\) 0 0
\(664\) 7705.29 0.450336
\(665\) −2655.11 −0.154828
\(666\) 0 0
\(667\) 18456.4 1.07142
\(668\) −25306.3 −1.46576
\(669\) 0 0
\(670\) −1081.26 −0.0623473
\(671\) −2088.67 −0.120167
\(672\) 0 0
\(673\) 1091.22 0.0625014 0.0312507 0.999512i \(-0.490051\pi\)
0.0312507 + 0.999512i \(0.490051\pi\)
\(674\) 6000.79 0.342940
\(675\) 0 0
\(676\) 3381.81 0.192411
\(677\) 26564.2 1.50804 0.754022 0.656849i \(-0.228111\pi\)
0.754022 + 0.656849i \(0.228111\pi\)
\(678\) 0 0
\(679\) 6475.68 0.365999
\(680\) 2011.26 0.113424
\(681\) 0 0
\(682\) −345.729 −0.0194115
\(683\) 20461.6 1.14633 0.573164 0.819441i \(-0.305716\pi\)
0.573164 + 0.819441i \(0.305716\pi\)
\(684\) 0 0
\(685\) 5274.28 0.294190
\(686\) −192.613 −0.0107201
\(687\) 0 0
\(688\) −6034.07 −0.334370
\(689\) 437.813 0.0242081
\(690\) 0 0
\(691\) −12100.6 −0.666175 −0.333087 0.942896i \(-0.608090\pi\)
−0.333087 + 0.942896i \(0.608090\pi\)
\(692\) −23338.0 −1.28205
\(693\) 0 0
\(694\) 3505.61 0.191745
\(695\) −5135.47 −0.280287
\(696\) 0 0
\(697\) −17812.8 −0.968015
\(698\) −2537.11 −0.137580
\(699\) 0 0
\(700\) 6132.82 0.331141
\(701\) −27360.5 −1.47417 −0.737083 0.675802i \(-0.763797\pi\)
−0.737083 + 0.675802i \(0.763797\pi\)
\(702\) 0 0
\(703\) −18642.6 −1.00017
\(704\) 4343.41 0.232526
\(705\) 0 0
\(706\) −5205.76 −0.277509
\(707\) 6194.07 0.329494
\(708\) 0 0
\(709\) 19314.2 1.02308 0.511538 0.859261i \(-0.329076\pi\)
0.511538 + 0.859261i \(0.329076\pi\)
\(710\) −2162.21 −0.114290
\(711\) 0 0
\(712\) 7435.45 0.391370
\(713\) −6995.36 −0.367431
\(714\) 0 0
\(715\) 1528.61 0.0799537
\(716\) 5303.58 0.276821
\(717\) 0 0
\(718\) 4615.70 0.239911
\(719\) 11811.2 0.612635 0.306317 0.951929i \(-0.400903\pi\)
0.306317 + 0.951929i \(0.400903\pi\)
\(720\) 0 0
\(721\) 7488.49 0.386804
\(722\) −3498.60 −0.180338
\(723\) 0 0
\(724\) 19472.5 0.999571
\(725\) −16835.6 −0.862424
\(726\) 0 0
\(727\) 17995.3 0.918034 0.459017 0.888428i \(-0.348202\pi\)
0.459017 + 0.888428i \(0.348202\pi\)
\(728\) −2584.29 −0.131566
\(729\) 0 0
\(730\) 148.380 0.00752301
\(731\) −7351.83 −0.371980
\(732\) 0 0
\(733\) −28542.7 −1.43827 −0.719133 0.694873i \(-0.755461\pi\)
−0.719133 + 0.694873i \(0.755461\pi\)
\(734\) −5054.86 −0.254194
\(735\) 0 0
\(736\) −12774.4 −0.639769
\(737\) −6388.57 −0.319303
\(738\) 0 0
\(739\) −5283.32 −0.262991 −0.131495 0.991317i \(-0.541978\pi\)
−0.131495 + 0.991317i \(0.541978\pi\)
\(740\) −4151.47 −0.206231
\(741\) 0 0
\(742\) 41.0583 0.00203140
\(743\) 8423.21 0.415905 0.207953 0.978139i \(-0.433320\pi\)
0.207953 + 0.978139i \(0.433320\pi\)
\(744\) 0 0
\(745\) 1551.89 0.0763180
\(746\) −1104.10 −0.0541874
\(747\) 0 0
\(748\) 5822.25 0.284602
\(749\) −1247.37 −0.0608518
\(750\) 0 0
\(751\) 26417.9 1.28363 0.641814 0.766861i \(-0.278182\pi\)
0.641814 + 0.766861i \(0.278182\pi\)
\(752\) −6262.49 −0.303683
\(753\) 0 0
\(754\) 3475.83 0.167881
\(755\) 6184.25 0.298103
\(756\) 0 0
\(757\) −24157.9 −1.15988 −0.579942 0.814658i \(-0.696925\pi\)
−0.579942 + 0.814658i \(0.696925\pi\)
\(758\) −574.073 −0.0275083
\(759\) 0 0
\(760\) −3340.80 −0.159452
\(761\) 9195.59 0.438029 0.219014 0.975722i \(-0.429716\pi\)
0.219014 + 0.975722i \(0.429716\pi\)
\(762\) 0 0
\(763\) 13815.0 0.655488
\(764\) 14179.2 0.671445
\(765\) 0 0
\(766\) 7202.43 0.339732
\(767\) −7640.53 −0.359692
\(768\) 0 0
\(769\) −15430.5 −0.723589 −0.361794 0.932258i \(-0.617836\pi\)
−0.361794 + 0.932258i \(0.617836\pi\)
\(770\) 143.354 0.00670924
\(771\) 0 0
\(772\) 20398.8 0.950994
\(773\) 14100.0 0.656068 0.328034 0.944666i \(-0.393614\pi\)
0.328034 + 0.944666i \(0.393614\pi\)
\(774\) 0 0
\(775\) 6381.02 0.295759
\(776\) 8148.03 0.376930
\(777\) 0 0
\(778\) −6867.26 −0.316457
\(779\) 29587.9 1.36084
\(780\) 0 0
\(781\) −12775.3 −0.585321
\(782\) −4834.17 −0.221061
\(783\) 0 0
\(784\) 2770.03 0.126186
\(785\) 4978.27 0.226347
\(786\) 0 0
\(787\) 4428.96 0.200604 0.100302 0.994957i \(-0.468019\pi\)
0.100302 + 0.994957i \(0.468019\pi\)
\(788\) 1260.72 0.0569941
\(789\) 0 0
\(790\) −2029.37 −0.0913944
\(791\) −11498.8 −0.516876
\(792\) 0 0
\(793\) −7958.90 −0.356405
\(794\) 1909.88 0.0853640
\(795\) 0 0
\(796\) −22196.4 −0.988357
\(797\) −32311.2 −1.43604 −0.718019 0.696024i \(-0.754951\pi\)
−0.718019 + 0.696024i \(0.754951\pi\)
\(798\) 0 0
\(799\) −7630.14 −0.337841
\(800\) 11652.5 0.514973
\(801\) 0 0
\(802\) −3500.94 −0.154143
\(803\) 876.698 0.0385280
\(804\) 0 0
\(805\) 2900.57 0.126996
\(806\) −1317.41 −0.0575729
\(807\) 0 0
\(808\) 7793.70 0.339334
\(809\) 45404.2 1.97321 0.986605 0.163125i \(-0.0521574\pi\)
0.986605 + 0.163125i \(0.0521574\pi\)
\(810\) 0 0
\(811\) −36636.7 −1.58630 −0.793150 0.609026i \(-0.791560\pi\)
−0.793150 + 0.609026i \(0.791560\pi\)
\(812\) −7943.53 −0.343304
\(813\) 0 0
\(814\) 1006.54 0.0433407
\(815\) 1738.57 0.0747231
\(816\) 0 0
\(817\) 12211.8 0.522932
\(818\) 6418.17 0.274335
\(819\) 0 0
\(820\) 6588.86 0.280601
\(821\) 14967.9 0.636279 0.318139 0.948044i \(-0.396942\pi\)
0.318139 + 0.948044i \(0.396942\pi\)
\(822\) 0 0
\(823\) −8353.81 −0.353822 −0.176911 0.984227i \(-0.556610\pi\)
−0.176911 + 0.984227i \(0.556610\pi\)
\(824\) 9422.41 0.398356
\(825\) 0 0
\(826\) −716.531 −0.0301832
\(827\) −26797.4 −1.12677 −0.563384 0.826195i \(-0.690501\pi\)
−0.563384 + 0.826195i \(0.690501\pi\)
\(828\) 0 0
\(829\) −14645.0 −0.613562 −0.306781 0.951780i \(-0.599252\pi\)
−0.306781 + 0.951780i \(0.599252\pi\)
\(830\) −1628.70 −0.0681122
\(831\) 0 0
\(832\) 16550.6 0.689651
\(833\) 3374.97 0.140379
\(834\) 0 0
\(835\) 10917.7 0.452484
\(836\) −9671.06 −0.400097
\(837\) 0 0
\(838\) 2149.47 0.0886065
\(839\) 10093.3 0.415327 0.207664 0.978200i \(-0.433414\pi\)
0.207664 + 0.978200i \(0.433414\pi\)
\(840\) 0 0
\(841\) −2582.72 −0.105897
\(842\) 6529.06 0.267228
\(843\) 0 0
\(844\) −4848.68 −0.197747
\(845\) −1458.99 −0.0593975
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −590.474 −0.0239115
\(849\) 0 0
\(850\) 4409.62 0.177940
\(851\) 20366.0 0.820374
\(852\) 0 0
\(853\) 28743.0 1.15374 0.576872 0.816835i \(-0.304273\pi\)
0.576872 + 0.816835i \(0.304273\pi\)
\(854\) −746.389 −0.0299074
\(855\) 0 0
\(856\) −1569.51 −0.0626690
\(857\) 19741.2 0.786870 0.393435 0.919352i \(-0.371287\pi\)
0.393435 + 0.919352i \(0.371287\pi\)
\(858\) 0 0
\(859\) −41550.0 −1.65037 −0.825185 0.564863i \(-0.808929\pi\)
−0.825185 + 0.564863i \(0.808929\pi\)
\(860\) 2719.41 0.107827
\(861\) 0 0
\(862\) 4194.69 0.165744
\(863\) −45844.4 −1.80830 −0.904150 0.427215i \(-0.859495\pi\)
−0.904150 + 0.427215i \(0.859495\pi\)
\(864\) 0 0
\(865\) 10068.6 0.395771
\(866\) −868.704 −0.0340875
\(867\) 0 0
\(868\) 3010.76 0.117732
\(869\) −11990.4 −0.468063
\(870\) 0 0
\(871\) −24343.8 −0.947024
\(872\) 17382.8 0.675064
\(873\) 0 0
\(874\) 8029.80 0.310769
\(875\) −5546.76 −0.214303
\(876\) 0 0
\(877\) 2558.92 0.0985277 0.0492638 0.998786i \(-0.484312\pi\)
0.0492638 + 0.998786i \(0.484312\pi\)
\(878\) 4538.91 0.174466
\(879\) 0 0
\(880\) −2061.62 −0.0789742
\(881\) −1119.16 −0.0427983 −0.0213992 0.999771i \(-0.506812\pi\)
−0.0213992 + 0.999771i \(0.506812\pi\)
\(882\) 0 0
\(883\) −1677.64 −0.0639377 −0.0319688 0.999489i \(-0.510178\pi\)
−0.0319688 + 0.999489i \(0.510178\pi\)
\(884\) 22185.8 0.844105
\(885\) 0 0
\(886\) −7300.27 −0.276814
\(887\) −12127.5 −0.459076 −0.229538 0.973300i \(-0.573722\pi\)
−0.229538 + 0.973300i \(0.573722\pi\)
\(888\) 0 0
\(889\) −12578.6 −0.474548
\(890\) −1571.67 −0.0591937
\(891\) 0 0
\(892\) 48048.4 1.80356
\(893\) 12674.1 0.474940
\(894\) 0 0
\(895\) −2288.09 −0.0854551
\(896\) 7275.74 0.271278
\(897\) 0 0
\(898\) −2567.80 −0.0954216
\(899\) −8265.02 −0.306623
\(900\) 0 0
\(901\) −719.425 −0.0266010
\(902\) −1597.50 −0.0589700
\(903\) 0 0
\(904\) −14468.4 −0.532312
\(905\) −8400.89 −0.308569
\(906\) 0 0
\(907\) −13826.8 −0.506186 −0.253093 0.967442i \(-0.581448\pi\)
−0.253093 + 0.967442i \(0.581448\pi\)
\(908\) −25483.9 −0.931401
\(909\) 0 0
\(910\) 546.253 0.0198990
\(911\) 41945.3 1.52548 0.762739 0.646706i \(-0.223854\pi\)
0.762739 + 0.646706i \(0.223854\pi\)
\(912\) 0 0
\(913\) −9623.13 −0.348827
\(914\) 6090.90 0.220426
\(915\) 0 0
\(916\) −23647.2 −0.852977
\(917\) −6540.13 −0.235523
\(918\) 0 0
\(919\) −8132.54 −0.291913 −0.145956 0.989291i \(-0.546626\pi\)
−0.145956 + 0.989291i \(0.546626\pi\)
\(920\) 3649.65 0.130789
\(921\) 0 0
\(922\) −729.641 −0.0260623
\(923\) −48680.5 −1.73601
\(924\) 0 0
\(925\) −18577.4 −0.660349
\(926\) −6804.27 −0.241471
\(927\) 0 0
\(928\) −15092.9 −0.533889
\(929\) 48334.7 1.70701 0.853504 0.521086i \(-0.174473\pi\)
0.853504 + 0.521086i \(0.174473\pi\)
\(930\) 0 0
\(931\) −5606.00 −0.197346
\(932\) 10436.4 0.366797
\(933\) 0 0
\(934\) −7607.15 −0.266503
\(935\) −2511.85 −0.0878571
\(936\) 0 0
\(937\) −6068.39 −0.211575 −0.105787 0.994389i \(-0.533736\pi\)
−0.105787 + 0.994389i \(0.533736\pi\)
\(938\) −2282.97 −0.0794686
\(939\) 0 0
\(940\) 2822.35 0.0979309
\(941\) −15416.2 −0.534065 −0.267032 0.963688i \(-0.586043\pi\)
−0.267032 + 0.963688i \(0.586043\pi\)
\(942\) 0 0
\(943\) −32323.3 −1.11621
\(944\) 10304.7 0.355285
\(945\) 0 0
\(946\) −659.333 −0.0226604
\(947\) 45788.4 1.57120 0.785598 0.618737i \(-0.212355\pi\)
0.785598 + 0.618737i \(0.212355\pi\)
\(948\) 0 0
\(949\) 3340.67 0.114271
\(950\) −7324.61 −0.250149
\(951\) 0 0
\(952\) 4246.56 0.144571
\(953\) −36543.7 −1.24215 −0.621074 0.783752i \(-0.713303\pi\)
−0.621074 + 0.783752i \(0.713303\pi\)
\(954\) 0 0
\(955\) −6117.23 −0.207276
\(956\) −31900.4 −1.07922
\(957\) 0 0
\(958\) −5987.94 −0.201943
\(959\) 11136.1 0.374977
\(960\) 0 0
\(961\) −26658.4 −0.894847
\(962\) 3835.45 0.128545
\(963\) 0 0
\(964\) 26832.6 0.896494
\(965\) −8800.50 −0.293573
\(966\) 0 0
\(967\) 3077.00 0.102327 0.0511633 0.998690i \(-0.483707\pi\)
0.0511633 + 0.998690i \(0.483707\pi\)
\(968\) 1065.74 0.0353865
\(969\) 0 0
\(970\) −1722.29 −0.0570096
\(971\) −41714.2 −1.37865 −0.689327 0.724451i \(-0.742094\pi\)
−0.689327 + 0.724451i \(0.742094\pi\)
\(972\) 0 0
\(973\) −10843.0 −0.357257
\(974\) −4576.61 −0.150558
\(975\) 0 0
\(976\) 10734.1 0.352039
\(977\) 22237.2 0.728178 0.364089 0.931364i \(-0.381380\pi\)
0.364089 + 0.931364i \(0.381380\pi\)
\(978\) 0 0
\(979\) −9286.12 −0.303152
\(980\) −1248.39 −0.0406921
\(981\) 0 0
\(982\) −8503.23 −0.276323
\(983\) 26617.2 0.863639 0.431820 0.901960i \(-0.357872\pi\)
0.431820 + 0.901960i \(0.357872\pi\)
\(984\) 0 0
\(985\) −543.905 −0.0175942
\(986\) −5711.56 −0.184476
\(987\) 0 0
\(988\) −36851.8 −1.18665
\(989\) −13340.7 −0.428928
\(990\) 0 0
\(991\) 28839.4 0.924435 0.462217 0.886767i \(-0.347054\pi\)
0.462217 + 0.886767i \(0.347054\pi\)
\(992\) 5720.52 0.183091
\(993\) 0 0
\(994\) −4565.27 −0.145676
\(995\) 9576.07 0.305107
\(996\) 0 0
\(997\) 35924.1 1.14115 0.570575 0.821246i \(-0.306720\pi\)
0.570575 + 0.821246i \(0.306720\pi\)
\(998\) −5857.44 −0.185786
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.k.1.1 2
3.2 odd 2 231.4.a.f.1.2 2
21.20 even 2 1617.4.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.f.1.2 2 3.2 odd 2
693.4.a.k.1.1 2 1.1 even 1 trivial
1617.4.a.i.1.2 2 21.20 even 2