Properties

Label 693.4.a.k
Level $693$
Weight $4$
Character orbit 693.a
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{2} + (3 \beta - 3) q^{4} + (3 \beta + 8) q^{5} + 7 q^{7} + ( - 5 \beta + 1) q^{8} + (14 \beta + 20) q^{10} - 11 q^{11} + (23 \beta - 6) q^{13} + (7 \beta + 7) q^{14} + ( - 33 \beta + 5) q^{16}+ \cdots + (49 \beta + 49) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 3 q^{4} + 19 q^{5} + 14 q^{7} - 3 q^{8} + 54 q^{10} - 22 q^{11} + 11 q^{13} + 21 q^{14} - 23 q^{16} + 146 q^{17} - 101 q^{19} + 48 q^{20} - 33 q^{22} + 184 q^{23} + 7 q^{25} + 212 q^{26}+ \cdots + 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
−0.561553 0 −7.68466 3.31534 0 7.00000 8.80776 0 −1.86174
1.2 3.56155 0 4.68466 15.6847 0 7.00000 −11.8078 0 55.8617
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 693.4.a.k 2
3.b odd 2 1 231.4.a.f 2
21.c even 2 1 1617.4.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.4.a.f 2 3.b odd 2 1
693.4.a.k 2 1.a even 1 1 trivial
1617.4.a.i 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(693))\):

\( T_{2}^{2} - 3T_{2} - 2 \) Copy content Toggle raw display
\( T_{5}^{2} - 19T_{5} + 52 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 19T + 52 \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( (T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 11T - 2218 \) Copy content Toggle raw display
$17$ \( T^{2} - 146T + 5312 \) Copy content Toggle raw display
$19$ \( T^{2} + 101T - 1534 \) Copy content Toggle raw display
$23$ \( T^{2} - 184T + 7376 \) Copy content Toggle raw display
$29$ \( T^{2} - 217T + 10238 \) Copy content Toggle raw display
$31$ \( T^{2} - 20T - 4252 \) Copy content Toggle raw display
$37$ \( T^{2} + 173T - 54742 \) Copy content Toggle raw display
$41$ \( T^{2} - 60T - 82400 \) Copy content Toggle raw display
$43$ \( T^{2} + 164T + 6112 \) Copy content Toggle raw display
$47$ \( T^{2} - 467T - 64006 \) Copy content Toggle raw display
$53$ \( T^{2} + 326T + 3296 \) Copy content Toggle raw display
$59$ \( T^{2} - 781T + 109136 \) Copy content Toggle raw display
$61$ \( T^{2} + 148T - 64156 \) Copy content Toggle raw display
$67$ \( T^{2} - 473T - 62596 \) Copy content Toggle raw display
$71$ \( T^{2} - 756T - 470816 \) Copy content Toggle raw display
$73$ \( T^{2} + 213T + 10624 \) Copy content Toggle raw display
$79$ \( T^{2} - 168 T - 1005056 \) Copy content Toggle raw display
$83$ \( T^{2} - 2096 T + 1068316 \) Copy content Toggle raw display
$89$ \( T^{2} + 736 T - 1333988 \) Copy content Toggle raw display
$97$ \( T^{2} - 638T - 265592 \) Copy content Toggle raw display
show more
show less