Properties

Label 693.4.a.j.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.561553 q^{2} -7.68466 q^{4} -18.6847 q^{5} +7.00000 q^{7} +8.80776 q^{8} +O(q^{10})\) \(q-0.561553 q^{2} -7.68466 q^{4} -18.6847 q^{5} +7.00000 q^{7} +8.80776 q^{8} +10.4924 q^{10} +11.0000 q^{11} +36.4384 q^{13} -3.93087 q^{14} +56.5312 q^{16} -41.1231 q^{17} -23.6998 q^{19} +143.585 q^{20} -6.17708 q^{22} +140.047 q^{23} +224.116 q^{25} -20.4621 q^{26} -53.7926 q^{28} -278.455 q^{29} +191.447 q^{31} -102.207 q^{32} +23.0928 q^{34} -130.793 q^{35} +196.115 q^{37} +13.3087 q^{38} -164.570 q^{40} +322.695 q^{41} -3.67615 q^{43} -84.5312 q^{44} -78.6440 q^{46} +397.596 q^{47} +49.0000 q^{49} -125.853 q^{50} -280.017 q^{52} -597.508 q^{53} -205.531 q^{55} +61.6543 q^{56} +156.367 q^{58} -668.779 q^{59} -667.788 q^{61} -107.508 q^{62} -394.855 q^{64} -680.840 q^{65} -730.762 q^{67} +316.017 q^{68} +73.4470 q^{70} +31.2651 q^{71} -434.408 q^{73} -110.129 q^{74} +182.125 q^{76} +77.0000 q^{77} -782.004 q^{79} -1056.27 q^{80} -181.210 q^{82} +426.705 q^{83} +768.371 q^{85} +2.06435 q^{86} +96.8854 q^{88} +899.693 q^{89} +255.069 q^{91} -1076.22 q^{92} -223.271 q^{94} +442.823 q^{95} -942.716 q^{97} -27.5161 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 3 q^{4} - 25 q^{5} + 14 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} - 3 q^{4} - 25 q^{5} + 14 q^{7} - 3 q^{8} - 12 q^{10} + 22 q^{11} + 77 q^{13} + 21 q^{14} - 23 q^{16} - 74 q^{17} - 101 q^{19} + 114 q^{20} + 33 q^{22} - 58 q^{23} + 139 q^{25} + 124 q^{26} - 21 q^{28} - 91 q^{29} + 152 q^{31} - 291 q^{32} - 94 q^{34} - 175 q^{35} + 619 q^{37} - 262 q^{38} - 90 q^{40} - 138 q^{41} - 230 q^{43} - 33 q^{44} - 784 q^{46} - 149 q^{47} + 98 q^{49} - 429 q^{50} - 90 q^{52} - 1228 q^{53} - 275 q^{55} - 21 q^{56} + 824 q^{58} - 649 q^{59} - 412 q^{61} - 248 q^{62} - 431 q^{64} - 937 q^{65} - 1243 q^{67} + 162 q^{68} - 84 q^{70} - 960 q^{71} - 741 q^{73} + 1396 q^{74} - 180 q^{76} + 154 q^{77} - 492 q^{79} - 554 q^{80} - 1822 q^{82} + 1744 q^{83} + 976 q^{85} - 804 q^{86} - 33 q^{88} + 1552 q^{89} + 539 q^{91} - 2004 q^{92} - 2170 q^{94} + 931 q^{95} + 440 q^{97} + 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.561553 −0.198539 −0.0992695 0.995061i \(-0.531651\pi\)
−0.0992695 + 0.995061i \(0.531651\pi\)
\(3\) 0 0
\(4\) −7.68466 −0.960582
\(5\) −18.6847 −1.67121 −0.835603 0.549333i \(-0.814882\pi\)
−0.835603 + 0.549333i \(0.814882\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 8.80776 0.389252
\(9\) 0 0
\(10\) 10.4924 0.331800
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 36.4384 0.777401 0.388700 0.921364i \(-0.372924\pi\)
0.388700 + 0.921364i \(0.372924\pi\)
\(14\) −3.93087 −0.0750407
\(15\) 0 0
\(16\) 56.5312 0.883301
\(17\) −41.1231 −0.586695 −0.293348 0.956006i \(-0.594769\pi\)
−0.293348 + 0.956006i \(0.594769\pi\)
\(18\) 0 0
\(19\) −23.6998 −0.286164 −0.143082 0.989711i \(-0.545701\pi\)
−0.143082 + 0.989711i \(0.545701\pi\)
\(20\) 143.585 1.60533
\(21\) 0 0
\(22\) −6.17708 −0.0598617
\(23\) 140.047 1.26965 0.634824 0.772657i \(-0.281073\pi\)
0.634824 + 0.772657i \(0.281073\pi\)
\(24\) 0 0
\(25\) 224.116 1.79293
\(26\) −20.4621 −0.154344
\(27\) 0 0
\(28\) −53.7926 −0.363066
\(29\) −278.455 −1.78303 −0.891515 0.452991i \(-0.850357\pi\)
−0.891515 + 0.452991i \(0.850357\pi\)
\(30\) 0 0
\(31\) 191.447 1.10919 0.554595 0.832120i \(-0.312873\pi\)
0.554595 + 0.832120i \(0.312873\pi\)
\(32\) −102.207 −0.564621
\(33\) 0 0
\(34\) 23.0928 0.116482
\(35\) −130.793 −0.631657
\(36\) 0 0
\(37\) 196.115 0.871379 0.435690 0.900097i \(-0.356504\pi\)
0.435690 + 0.900097i \(0.356504\pi\)
\(38\) 13.3087 0.0568146
\(39\) 0 0
\(40\) −164.570 −0.650520
\(41\) 322.695 1.22918 0.614591 0.788846i \(-0.289321\pi\)
0.614591 + 0.788846i \(0.289321\pi\)
\(42\) 0 0
\(43\) −3.67615 −0.0130374 −0.00651869 0.999979i \(-0.502075\pi\)
−0.00651869 + 0.999979i \(0.502075\pi\)
\(44\) −84.5312 −0.289626
\(45\) 0 0
\(46\) −78.6440 −0.252074
\(47\) 397.596 1.23394 0.616971 0.786986i \(-0.288360\pi\)
0.616971 + 0.786986i \(0.288360\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −125.853 −0.355967
\(51\) 0 0
\(52\) −280.017 −0.746757
\(53\) −597.508 −1.54857 −0.774283 0.632840i \(-0.781889\pi\)
−0.774283 + 0.632840i \(0.781889\pi\)
\(54\) 0 0
\(55\) −205.531 −0.503888
\(56\) 61.6543 0.147123
\(57\) 0 0
\(58\) 156.367 0.354001
\(59\) −668.779 −1.47572 −0.737861 0.674952i \(-0.764164\pi\)
−0.737861 + 0.674952i \(0.764164\pi\)
\(60\) 0 0
\(61\) −667.788 −1.40166 −0.700832 0.713327i \(-0.747188\pi\)
−0.700832 + 0.713327i \(0.747188\pi\)
\(62\) −107.508 −0.220217
\(63\) 0 0
\(64\) −394.855 −0.771201
\(65\) −680.840 −1.29920
\(66\) 0 0
\(67\) −730.762 −1.33249 −0.666245 0.745733i \(-0.732099\pi\)
−0.666245 + 0.745733i \(0.732099\pi\)
\(68\) 316.017 0.563569
\(69\) 0 0
\(70\) 73.4470 0.125408
\(71\) 31.2651 0.0522603 0.0261302 0.999659i \(-0.491682\pi\)
0.0261302 + 0.999659i \(0.491682\pi\)
\(72\) 0 0
\(73\) −434.408 −0.696488 −0.348244 0.937404i \(-0.613222\pi\)
−0.348244 + 0.937404i \(0.613222\pi\)
\(74\) −110.129 −0.173003
\(75\) 0 0
\(76\) 182.125 0.274884
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −782.004 −1.11370 −0.556850 0.830613i \(-0.687990\pi\)
−0.556850 + 0.830613i \(0.687990\pi\)
\(80\) −1056.27 −1.47618
\(81\) 0 0
\(82\) −181.210 −0.244041
\(83\) 426.705 0.564300 0.282150 0.959370i \(-0.408952\pi\)
0.282150 + 0.959370i \(0.408952\pi\)
\(84\) 0 0
\(85\) 768.371 0.980489
\(86\) 2.06435 0.00258843
\(87\) 0 0
\(88\) 96.8854 0.117364
\(89\) 899.693 1.07154 0.535771 0.844363i \(-0.320021\pi\)
0.535771 + 0.844363i \(0.320021\pi\)
\(90\) 0 0
\(91\) 255.069 0.293830
\(92\) −1076.22 −1.21960
\(93\) 0 0
\(94\) −223.271 −0.244986
\(95\) 442.823 0.478239
\(96\) 0 0
\(97\) −942.716 −0.986786 −0.493393 0.869806i \(-0.664244\pi\)
−0.493393 + 0.869806i \(0.664244\pi\)
\(98\) −27.5161 −0.0283627
\(99\) 0 0
\(100\) −1722.26 −1.72226
\(101\) −366.945 −0.361509 −0.180754 0.983528i \(-0.557854\pi\)
−0.180754 + 0.983528i \(0.557854\pi\)
\(102\) 0 0
\(103\) 1007.35 0.963658 0.481829 0.876265i \(-0.339973\pi\)
0.481829 + 0.876265i \(0.339973\pi\)
\(104\) 320.941 0.302605
\(105\) 0 0
\(106\) 335.532 0.307451
\(107\) 1690.80 1.52763 0.763814 0.645437i \(-0.223325\pi\)
0.763814 + 0.645437i \(0.223325\pi\)
\(108\) 0 0
\(109\) −1808.57 −1.58926 −0.794631 0.607093i \(-0.792336\pi\)
−0.794631 + 0.607093i \(0.792336\pi\)
\(110\) 115.417 0.100041
\(111\) 0 0
\(112\) 395.719 0.333856
\(113\) −952.557 −0.793000 −0.396500 0.918035i \(-0.629775\pi\)
−0.396500 + 0.918035i \(0.629775\pi\)
\(114\) 0 0
\(115\) −2616.74 −2.12184
\(116\) 2139.84 1.71275
\(117\) 0 0
\(118\) 375.555 0.292988
\(119\) −287.862 −0.221750
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 374.998 0.278285
\(123\) 0 0
\(124\) −1471.20 −1.06547
\(125\) −1851.96 −1.32515
\(126\) 0 0
\(127\) 252.951 0.176738 0.0883691 0.996088i \(-0.471834\pi\)
0.0883691 + 0.996088i \(0.471834\pi\)
\(128\) 1039.39 0.717735
\(129\) 0 0
\(130\) 382.328 0.257941
\(131\) 1497.38 0.998679 0.499339 0.866406i \(-0.333576\pi\)
0.499339 + 0.866406i \(0.333576\pi\)
\(132\) 0 0
\(133\) −165.899 −0.108160
\(134\) 410.362 0.264551
\(135\) 0 0
\(136\) −362.203 −0.228372
\(137\) 1207.56 0.753056 0.376528 0.926405i \(-0.377118\pi\)
0.376528 + 0.926405i \(0.377118\pi\)
\(138\) 0 0
\(139\) 212.519 0.129681 0.0648404 0.997896i \(-0.479346\pi\)
0.0648404 + 0.997896i \(0.479346\pi\)
\(140\) 1005.10 0.606758
\(141\) 0 0
\(142\) −17.5570 −0.0103757
\(143\) 400.823 0.234395
\(144\) 0 0
\(145\) 5202.85 2.97981
\(146\) 243.943 0.138280
\(147\) 0 0
\(148\) −1507.07 −0.837032
\(149\) −879.656 −0.483653 −0.241826 0.970320i \(-0.577746\pi\)
−0.241826 + 0.970320i \(0.577746\pi\)
\(150\) 0 0
\(151\) −1215.18 −0.654899 −0.327450 0.944869i \(-0.606189\pi\)
−0.327450 + 0.944869i \(0.606189\pi\)
\(152\) −208.742 −0.111390
\(153\) 0 0
\(154\) −43.2396 −0.0226256
\(155\) −3577.12 −1.85369
\(156\) 0 0
\(157\) 1226.57 0.623507 0.311754 0.950163i \(-0.399084\pi\)
0.311754 + 0.950163i \(0.399084\pi\)
\(158\) 439.136 0.221113
\(159\) 0 0
\(160\) 1909.71 0.943599
\(161\) 980.331 0.479882
\(162\) 0 0
\(163\) −441.224 −0.212021 −0.106010 0.994365i \(-0.533808\pi\)
−0.106010 + 0.994365i \(0.533808\pi\)
\(164\) −2479.80 −1.18073
\(165\) 0 0
\(166\) −239.617 −0.112036
\(167\) 1793.53 0.831064 0.415532 0.909579i \(-0.363595\pi\)
0.415532 + 0.909579i \(0.363595\pi\)
\(168\) 0 0
\(169\) −869.240 −0.395648
\(170\) −431.481 −0.194665
\(171\) 0 0
\(172\) 28.2499 0.0125235
\(173\) −3825.04 −1.68099 −0.840497 0.541816i \(-0.817737\pi\)
−0.840497 + 0.541816i \(0.817737\pi\)
\(174\) 0 0
\(175\) 1568.82 0.677664
\(176\) 621.844 0.266325
\(177\) 0 0
\(178\) −505.225 −0.212743
\(179\) −1315.65 −0.549365 −0.274683 0.961535i \(-0.588573\pi\)
−0.274683 + 0.961535i \(0.588573\pi\)
\(180\) 0 0
\(181\) 674.682 0.277065 0.138532 0.990358i \(-0.455762\pi\)
0.138532 + 0.990358i \(0.455762\pi\)
\(182\) −143.235 −0.0583366
\(183\) 0 0
\(184\) 1233.50 0.494213
\(185\) −3664.33 −1.45626
\(186\) 0 0
\(187\) −452.354 −0.176895
\(188\) −3055.39 −1.18530
\(189\) 0 0
\(190\) −248.668 −0.0949490
\(191\) −1915.69 −0.725730 −0.362865 0.931842i \(-0.618201\pi\)
−0.362865 + 0.931842i \(0.618201\pi\)
\(192\) 0 0
\(193\) −2394.71 −0.893134 −0.446567 0.894750i \(-0.647354\pi\)
−0.446567 + 0.894750i \(0.647354\pi\)
\(194\) 529.385 0.195915
\(195\) 0 0
\(196\) −376.548 −0.137226
\(197\) −1356.81 −0.490703 −0.245351 0.969434i \(-0.578903\pi\)
−0.245351 + 0.969434i \(0.578903\pi\)
\(198\) 0 0
\(199\) 2121.45 0.755707 0.377854 0.925865i \(-0.376662\pi\)
0.377854 + 0.925865i \(0.376662\pi\)
\(200\) 1973.96 0.697902
\(201\) 0 0
\(202\) 206.059 0.0717736
\(203\) −1949.19 −0.673922
\(204\) 0 0
\(205\) −6029.45 −2.05422
\(206\) −565.678 −0.191324
\(207\) 0 0
\(208\) 2059.91 0.686678
\(209\) −260.698 −0.0862816
\(210\) 0 0
\(211\) 4492.12 1.46564 0.732821 0.680421i \(-0.238203\pi\)
0.732821 + 0.680421i \(0.238203\pi\)
\(212\) 4591.64 1.48752
\(213\) 0 0
\(214\) −949.476 −0.303294
\(215\) 68.6876 0.0217882
\(216\) 0 0
\(217\) 1340.13 0.419234
\(218\) 1015.61 0.315530
\(219\) 0 0
\(220\) 1579.44 0.484026
\(221\) −1498.46 −0.456097
\(222\) 0 0
\(223\) 5142.35 1.54420 0.772101 0.635499i \(-0.219206\pi\)
0.772101 + 0.635499i \(0.219206\pi\)
\(224\) −715.452 −0.213407
\(225\) 0 0
\(226\) 534.911 0.157441
\(227\) −2987.86 −0.873618 −0.436809 0.899554i \(-0.643891\pi\)
−0.436809 + 0.899554i \(0.643891\pi\)
\(228\) 0 0
\(229\) −5121.38 −1.47786 −0.738931 0.673781i \(-0.764669\pi\)
−0.738931 + 0.673781i \(0.764669\pi\)
\(230\) 1469.44 0.421268
\(231\) 0 0
\(232\) −2452.57 −0.694048
\(233\) −1103.58 −0.310291 −0.155146 0.987892i \(-0.549585\pi\)
−0.155146 + 0.987892i \(0.549585\pi\)
\(234\) 0 0
\(235\) −7428.94 −2.06217
\(236\) 5139.34 1.41755
\(237\) 0 0
\(238\) 161.650 0.0440260
\(239\) 1798.18 0.486671 0.243336 0.969942i \(-0.421758\pi\)
0.243336 + 0.969942i \(0.421758\pi\)
\(240\) 0 0
\(241\) −7342.09 −1.96243 −0.981215 0.192919i \(-0.938204\pi\)
−0.981215 + 0.192919i \(0.938204\pi\)
\(242\) −67.9479 −0.0180490
\(243\) 0 0
\(244\) 5131.72 1.34641
\(245\) −915.548 −0.238744
\(246\) 0 0
\(247\) −863.584 −0.222464
\(248\) 1686.22 0.431754
\(249\) 0 0
\(250\) 1039.97 0.263094
\(251\) −1799.05 −0.452411 −0.226206 0.974080i \(-0.572632\pi\)
−0.226206 + 0.974080i \(0.572632\pi\)
\(252\) 0 0
\(253\) 1540.52 0.382813
\(254\) −142.045 −0.0350894
\(255\) 0 0
\(256\) 2575.17 0.628703
\(257\) 5282.71 1.28220 0.641102 0.767455i \(-0.278477\pi\)
0.641102 + 0.767455i \(0.278477\pi\)
\(258\) 0 0
\(259\) 1372.80 0.329350
\(260\) 5232.02 1.24799
\(261\) 0 0
\(262\) −840.859 −0.198277
\(263\) −3275.55 −0.767981 −0.383990 0.923337i \(-0.625450\pi\)
−0.383990 + 0.923337i \(0.625450\pi\)
\(264\) 0 0
\(265\) 11164.2 2.58797
\(266\) 93.1609 0.0214739
\(267\) 0 0
\(268\) 5615.66 1.27997
\(269\) −3682.35 −0.834636 −0.417318 0.908761i \(-0.637030\pi\)
−0.417318 + 0.908761i \(0.637030\pi\)
\(270\) 0 0
\(271\) −7301.19 −1.63659 −0.818295 0.574799i \(-0.805080\pi\)
−0.818295 + 0.574799i \(0.805080\pi\)
\(272\) −2324.74 −0.518228
\(273\) 0 0
\(274\) −678.108 −0.149511
\(275\) 2465.28 0.540589
\(276\) 0 0
\(277\) 9035.64 1.95993 0.979963 0.199182i \(-0.0638283\pi\)
0.979963 + 0.199182i \(0.0638283\pi\)
\(278\) −119.341 −0.0257467
\(279\) 0 0
\(280\) −1151.99 −0.245874
\(281\) −1651.82 −0.350674 −0.175337 0.984509i \(-0.556101\pi\)
−0.175337 + 0.984509i \(0.556101\pi\)
\(282\) 0 0
\(283\) 3091.62 0.649391 0.324695 0.945819i \(-0.394738\pi\)
0.324695 + 0.945819i \(0.394738\pi\)
\(284\) −240.262 −0.0502004
\(285\) 0 0
\(286\) −225.083 −0.0465365
\(287\) 2258.87 0.464587
\(288\) 0 0
\(289\) −3221.89 −0.655789
\(290\) −2921.67 −0.591609
\(291\) 0 0
\(292\) 3338.28 0.669034
\(293\) −2231.84 −0.445001 −0.222500 0.974933i \(-0.571422\pi\)
−0.222500 + 0.974933i \(0.571422\pi\)
\(294\) 0 0
\(295\) 12495.9 2.46624
\(296\) 1727.33 0.339186
\(297\) 0 0
\(298\) 493.973 0.0960239
\(299\) 5103.11 0.987024
\(300\) 0 0
\(301\) −25.7330 −0.00492767
\(302\) 682.387 0.130023
\(303\) 0 0
\(304\) −1339.78 −0.252769
\(305\) 12477.4 2.34247
\(306\) 0 0
\(307\) −9667.03 −1.79715 −0.898577 0.438816i \(-0.855398\pi\)
−0.898577 + 0.438816i \(0.855398\pi\)
\(308\) −591.719 −0.109469
\(309\) 0 0
\(310\) 2008.74 0.368029
\(311\) 7170.97 1.30749 0.653743 0.756717i \(-0.273198\pi\)
0.653743 + 0.756717i \(0.273198\pi\)
\(312\) 0 0
\(313\) 295.578 0.0533771 0.0266886 0.999644i \(-0.491504\pi\)
0.0266886 + 0.999644i \(0.491504\pi\)
\(314\) −688.782 −0.123790
\(315\) 0 0
\(316\) 6009.43 1.06980
\(317\) −7189.81 −1.27388 −0.636940 0.770914i \(-0.719800\pi\)
−0.636940 + 0.770914i \(0.719800\pi\)
\(318\) 0 0
\(319\) −3063.01 −0.537604
\(320\) 7377.73 1.28884
\(321\) 0 0
\(322\) −550.508 −0.0952752
\(323\) 974.610 0.167891
\(324\) 0 0
\(325\) 8166.46 1.39383
\(326\) 247.771 0.0420943
\(327\) 0 0
\(328\) 2842.22 0.478462
\(329\) 2783.17 0.466386
\(330\) 0 0
\(331\) −2878.87 −0.478058 −0.239029 0.971012i \(-0.576829\pi\)
−0.239029 + 0.971012i \(0.576829\pi\)
\(332\) −3279.08 −0.542057
\(333\) 0 0
\(334\) −1007.16 −0.164999
\(335\) 13654.0 2.22687
\(336\) 0 0
\(337\) −11639.7 −1.88146 −0.940731 0.339153i \(-0.889860\pi\)
−0.940731 + 0.339153i \(0.889860\pi\)
\(338\) 488.124 0.0785516
\(339\) 0 0
\(340\) −5904.67 −0.941840
\(341\) 2105.92 0.334433
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −32.3786 −0.00507482
\(345\) 0 0
\(346\) 2147.96 0.333743
\(347\) 4752.91 0.735302 0.367651 0.929964i \(-0.380162\pi\)
0.367651 + 0.929964i \(0.380162\pi\)
\(348\) 0 0
\(349\) −7420.08 −1.13807 −0.569037 0.822312i \(-0.692684\pi\)
−0.569037 + 0.822312i \(0.692684\pi\)
\(350\) −880.973 −0.134543
\(351\) 0 0
\(352\) −1124.28 −0.170240
\(353\) 517.851 0.0780805 0.0390403 0.999238i \(-0.487570\pi\)
0.0390403 + 0.999238i \(0.487570\pi\)
\(354\) 0 0
\(355\) −584.178 −0.0873378
\(356\) −6913.83 −1.02930
\(357\) 0 0
\(358\) 738.808 0.109070
\(359\) 9874.35 1.45167 0.725833 0.687871i \(-0.241454\pi\)
0.725833 + 0.687871i \(0.241454\pi\)
\(360\) 0 0
\(361\) −6297.32 −0.918110
\(362\) −378.869 −0.0550081
\(363\) 0 0
\(364\) −1960.12 −0.282248
\(365\) 8116.77 1.16398
\(366\) 0 0
\(367\) 2098.51 0.298477 0.149239 0.988801i \(-0.452318\pi\)
0.149239 + 0.988801i \(0.452318\pi\)
\(368\) 7917.05 1.12148
\(369\) 0 0
\(370\) 2057.72 0.289123
\(371\) −4182.55 −0.585303
\(372\) 0 0
\(373\) −19.4150 −0.00269510 −0.00134755 0.999999i \(-0.500429\pi\)
−0.00134755 + 0.999999i \(0.500429\pi\)
\(374\) 254.021 0.0351206
\(375\) 0 0
\(376\) 3501.93 0.480314
\(377\) −10146.5 −1.38613
\(378\) 0 0
\(379\) 12541.3 1.69974 0.849869 0.526994i \(-0.176681\pi\)
0.849869 + 0.526994i \(0.176681\pi\)
\(380\) −3402.94 −0.459388
\(381\) 0 0
\(382\) 1075.76 0.144086
\(383\) −9131.73 −1.21830 −0.609151 0.793054i \(-0.708490\pi\)
−0.609151 + 0.793054i \(0.708490\pi\)
\(384\) 0 0
\(385\) −1438.72 −0.190452
\(386\) 1344.76 0.177322
\(387\) 0 0
\(388\) 7244.45 0.947890
\(389\) −9542.57 −1.24377 −0.621886 0.783108i \(-0.713633\pi\)
−0.621886 + 0.783108i \(0.713633\pi\)
\(390\) 0 0
\(391\) −5759.18 −0.744896
\(392\) 431.580 0.0556074
\(393\) 0 0
\(394\) 761.919 0.0974236
\(395\) 14611.5 1.86122
\(396\) 0 0
\(397\) 5322.85 0.672912 0.336456 0.941699i \(-0.390772\pi\)
0.336456 + 0.941699i \(0.390772\pi\)
\(398\) −1191.31 −0.150037
\(399\) 0 0
\(400\) 12669.6 1.58370
\(401\) −5875.92 −0.731744 −0.365872 0.930665i \(-0.619229\pi\)
−0.365872 + 0.930665i \(0.619229\pi\)
\(402\) 0 0
\(403\) 6976.03 0.862285
\(404\) 2819.85 0.347259
\(405\) 0 0
\(406\) 1094.57 0.133800
\(407\) 2157.26 0.262731
\(408\) 0 0
\(409\) −6658.52 −0.804994 −0.402497 0.915421i \(-0.631858\pi\)
−0.402497 + 0.915421i \(0.631858\pi\)
\(410\) 3385.85 0.407842
\(411\) 0 0
\(412\) −7741.11 −0.925673
\(413\) −4681.46 −0.557771
\(414\) 0 0
\(415\) −7972.83 −0.943062
\(416\) −3724.28 −0.438937
\(417\) 0 0
\(418\) 146.396 0.0171303
\(419\) −10913.7 −1.27248 −0.636238 0.771493i \(-0.719510\pi\)
−0.636238 + 0.771493i \(0.719510\pi\)
\(420\) 0 0
\(421\) 3936.75 0.455737 0.227868 0.973692i \(-0.426824\pi\)
0.227868 + 0.973692i \(0.426824\pi\)
\(422\) −2522.56 −0.290987
\(423\) 0 0
\(424\) −5262.71 −0.602782
\(425\) −9216.36 −1.05190
\(426\) 0 0
\(427\) −4674.51 −0.529779
\(428\) −12993.2 −1.46741
\(429\) 0 0
\(430\) −38.5717 −0.00432580
\(431\) −13769.3 −1.53885 −0.769424 0.638738i \(-0.779457\pi\)
−0.769424 + 0.638738i \(0.779457\pi\)
\(432\) 0 0
\(433\) 2858.51 0.317254 0.158627 0.987339i \(-0.449293\pi\)
0.158627 + 0.987339i \(0.449293\pi\)
\(434\) −752.553 −0.0832343
\(435\) 0 0
\(436\) 13898.2 1.52662
\(437\) −3319.10 −0.363327
\(438\) 0 0
\(439\) 8408.98 0.914211 0.457106 0.889412i \(-0.348886\pi\)
0.457106 + 0.889412i \(0.348886\pi\)
\(440\) −1810.27 −0.196139
\(441\) 0 0
\(442\) 841.466 0.0905530
\(443\) 3537.39 0.379383 0.189692 0.981844i \(-0.439251\pi\)
0.189692 + 0.981844i \(0.439251\pi\)
\(444\) 0 0
\(445\) −16810.5 −1.79077
\(446\) −2887.70 −0.306584
\(447\) 0 0
\(448\) −2763.99 −0.291487
\(449\) −473.820 −0.0498016 −0.0249008 0.999690i \(-0.507927\pi\)
−0.0249008 + 0.999690i \(0.507927\pi\)
\(450\) 0 0
\(451\) 3549.65 0.370613
\(452\) 7320.07 0.761742
\(453\) 0 0
\(454\) 1677.84 0.173447
\(455\) −4765.88 −0.491050
\(456\) 0 0
\(457\) 535.534 0.0548167 0.0274083 0.999624i \(-0.491275\pi\)
0.0274083 + 0.999624i \(0.491275\pi\)
\(458\) 2875.93 0.293413
\(459\) 0 0
\(460\) 20108.7 2.03820
\(461\) −1075.05 −0.108612 −0.0543058 0.998524i \(-0.517295\pi\)
−0.0543058 + 0.998524i \(0.517295\pi\)
\(462\) 0 0
\(463\) −11373.8 −1.14165 −0.570826 0.821071i \(-0.693377\pi\)
−0.570826 + 0.821071i \(0.693377\pi\)
\(464\) −15741.4 −1.57495
\(465\) 0 0
\(466\) 619.718 0.0616049
\(467\) 15171.1 1.50328 0.751642 0.659572i \(-0.229262\pi\)
0.751642 + 0.659572i \(0.229262\pi\)
\(468\) 0 0
\(469\) −5115.34 −0.503634
\(470\) 4171.74 0.409421
\(471\) 0 0
\(472\) −5890.45 −0.574428
\(473\) −40.4376 −0.00393092
\(474\) 0 0
\(475\) −5311.52 −0.513072
\(476\) 2212.12 0.213009
\(477\) 0 0
\(478\) −1009.77 −0.0966231
\(479\) 3045.24 0.290482 0.145241 0.989396i \(-0.453604\pi\)
0.145241 + 0.989396i \(0.453604\pi\)
\(480\) 0 0
\(481\) 7146.11 0.677411
\(482\) 4122.97 0.389619
\(483\) 0 0
\(484\) −929.844 −0.0873257
\(485\) 17614.3 1.64912
\(486\) 0 0
\(487\) −16956.1 −1.57773 −0.788866 0.614565i \(-0.789331\pi\)
−0.788866 + 0.614565i \(0.789331\pi\)
\(488\) −5881.72 −0.545600
\(489\) 0 0
\(490\) 514.129 0.0473999
\(491\) 13667.0 1.25618 0.628088 0.778142i \(-0.283838\pi\)
0.628088 + 0.778142i \(0.283838\pi\)
\(492\) 0 0
\(493\) 11451.0 1.04610
\(494\) 484.948 0.0441677
\(495\) 0 0
\(496\) 10822.7 0.979748
\(497\) 218.856 0.0197526
\(498\) 0 0
\(499\) −10939.4 −0.981394 −0.490697 0.871330i \(-0.663258\pi\)
−0.490697 + 0.871330i \(0.663258\pi\)
\(500\) 14231.7 1.27292
\(501\) 0 0
\(502\) 1010.26 0.0898213
\(503\) 6194.02 0.549061 0.274530 0.961578i \(-0.411478\pi\)
0.274530 + 0.961578i \(0.411478\pi\)
\(504\) 0 0
\(505\) 6856.24 0.604156
\(506\) −865.084 −0.0760033
\(507\) 0 0
\(508\) −1943.84 −0.169772
\(509\) −16742.7 −1.45797 −0.728987 0.684528i \(-0.760008\pi\)
−0.728987 + 0.684528i \(0.760008\pi\)
\(510\) 0 0
\(511\) −3040.86 −0.263248
\(512\) −9761.22 −0.842557
\(513\) 0 0
\(514\) −2966.52 −0.254567
\(515\) −18821.9 −1.61047
\(516\) 0 0
\(517\) 4373.55 0.372048
\(518\) −770.901 −0.0653889
\(519\) 0 0
\(520\) −5996.68 −0.505715
\(521\) −21184.3 −1.78138 −0.890691 0.454609i \(-0.849779\pi\)
−0.890691 + 0.454609i \(0.849779\pi\)
\(522\) 0 0
\(523\) 7737.42 0.646910 0.323455 0.946244i \(-0.395156\pi\)
0.323455 + 0.946244i \(0.395156\pi\)
\(524\) −11506.9 −0.959313
\(525\) 0 0
\(526\) 1839.39 0.152474
\(527\) −7872.89 −0.650756
\(528\) 0 0
\(529\) 7446.25 0.612004
\(530\) −6269.30 −0.513813
\(531\) 0 0
\(532\) 1274.87 0.103896
\(533\) 11758.5 0.955567
\(534\) 0 0
\(535\) −31592.1 −2.55298
\(536\) −6436.38 −0.518674
\(537\) 0 0
\(538\) 2067.84 0.165708
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −12732.7 −1.01187 −0.505937 0.862571i \(-0.668853\pi\)
−0.505937 + 0.862571i \(0.668853\pi\)
\(542\) 4100.00 0.324927
\(543\) 0 0
\(544\) 4203.09 0.331261
\(545\) 33792.5 2.65599
\(546\) 0 0
\(547\) 4429.06 0.346202 0.173101 0.984904i \(-0.444621\pi\)
0.173101 + 0.984904i \(0.444621\pi\)
\(548\) −9279.68 −0.723372
\(549\) 0 0
\(550\) −1384.39 −0.107328
\(551\) 6599.34 0.510239
\(552\) 0 0
\(553\) −5474.03 −0.420939
\(554\) −5073.99 −0.389121
\(555\) 0 0
\(556\) −1633.14 −0.124569
\(557\) −6080.68 −0.462562 −0.231281 0.972887i \(-0.574292\pi\)
−0.231281 + 0.972887i \(0.574292\pi\)
\(558\) 0 0
\(559\) −133.953 −0.0101353
\(560\) −7393.87 −0.557943
\(561\) 0 0
\(562\) 927.584 0.0696223
\(563\) 12141.8 0.908907 0.454453 0.890771i \(-0.349835\pi\)
0.454453 + 0.890771i \(0.349835\pi\)
\(564\) 0 0
\(565\) 17798.2 1.32527
\(566\) −1736.11 −0.128929
\(567\) 0 0
\(568\) 275.376 0.0203424
\(569\) −22369.0 −1.64808 −0.824039 0.566533i \(-0.808284\pi\)
−0.824039 + 0.566533i \(0.808284\pi\)
\(570\) 0 0
\(571\) −14445.2 −1.05869 −0.529346 0.848406i \(-0.677563\pi\)
−0.529346 + 0.848406i \(0.677563\pi\)
\(572\) −3080.19 −0.225156
\(573\) 0 0
\(574\) −1268.47 −0.0922387
\(575\) 31386.9 2.27639
\(576\) 0 0
\(577\) 1782.41 0.128601 0.0643004 0.997931i \(-0.479518\pi\)
0.0643004 + 0.997931i \(0.479518\pi\)
\(578\) 1809.26 0.130200
\(579\) 0 0
\(580\) −39982.1 −2.86235
\(581\) 2986.93 0.213285
\(582\) 0 0
\(583\) −6572.58 −0.466910
\(584\) −3826.16 −0.271109
\(585\) 0 0
\(586\) 1253.29 0.0883499
\(587\) −23646.2 −1.66266 −0.831330 0.555779i \(-0.812420\pi\)
−0.831330 + 0.555779i \(0.812420\pi\)
\(588\) 0 0
\(589\) −4537.26 −0.317410
\(590\) −7017.12 −0.489644
\(591\) 0 0
\(592\) 11086.6 0.769690
\(593\) 2871.03 0.198818 0.0994089 0.995047i \(-0.468305\pi\)
0.0994089 + 0.995047i \(0.468305\pi\)
\(594\) 0 0
\(595\) 5378.60 0.370590
\(596\) 6759.86 0.464588
\(597\) 0 0
\(598\) −2865.66 −0.195963
\(599\) −6685.11 −0.456004 −0.228002 0.973661i \(-0.573219\pi\)
−0.228002 + 0.973661i \(0.573219\pi\)
\(600\) 0 0
\(601\) 8875.42 0.602389 0.301195 0.953563i \(-0.402615\pi\)
0.301195 + 0.953563i \(0.402615\pi\)
\(602\) 14.4505 0.000978333 0
\(603\) 0 0
\(604\) 9338.23 0.629085
\(605\) −2260.84 −0.151928
\(606\) 0 0
\(607\) 379.477 0.0253748 0.0126874 0.999920i \(-0.495961\pi\)
0.0126874 + 0.999920i \(0.495961\pi\)
\(608\) 2422.30 0.161574
\(609\) 0 0
\(610\) −7006.71 −0.465071
\(611\) 14487.8 0.959267
\(612\) 0 0
\(613\) 17480.5 1.15177 0.575883 0.817532i \(-0.304658\pi\)
0.575883 + 0.817532i \(0.304658\pi\)
\(614\) 5428.55 0.356805
\(615\) 0 0
\(616\) 678.198 0.0443594
\(617\) 9901.31 0.646048 0.323024 0.946391i \(-0.395301\pi\)
0.323024 + 0.946391i \(0.395301\pi\)
\(618\) 0 0
\(619\) −152.433 −0.00989788 −0.00494894 0.999988i \(-0.501575\pi\)
−0.00494894 + 0.999988i \(0.501575\pi\)
\(620\) 27489.0 1.78062
\(621\) 0 0
\(622\) −4026.88 −0.259587
\(623\) 6297.85 0.405005
\(624\) 0 0
\(625\) 6588.63 0.421672
\(626\) −165.983 −0.0105974
\(627\) 0 0
\(628\) −9425.74 −0.598930
\(629\) −8064.84 −0.511234
\(630\) 0 0
\(631\) −23661.7 −1.49280 −0.746399 0.665499i \(-0.768219\pi\)
−0.746399 + 0.665499i \(0.768219\pi\)
\(632\) −6887.70 −0.433510
\(633\) 0 0
\(634\) 4037.46 0.252915
\(635\) −4726.30 −0.295366
\(636\) 0 0
\(637\) 1785.48 0.111057
\(638\) 1720.04 0.106735
\(639\) 0 0
\(640\) −19420.7 −1.19948
\(641\) −25340.3 −1.56144 −0.780719 0.624882i \(-0.785147\pi\)
−0.780719 + 0.624882i \(0.785147\pi\)
\(642\) 0 0
\(643\) −1774.90 −0.108858 −0.0544288 0.998518i \(-0.517334\pi\)
−0.0544288 + 0.998518i \(0.517334\pi\)
\(644\) −7533.51 −0.460966
\(645\) 0 0
\(646\) −547.295 −0.0333329
\(647\) 23685.1 1.43919 0.719595 0.694394i \(-0.244328\pi\)
0.719595 + 0.694394i \(0.244328\pi\)
\(648\) 0 0
\(649\) −7356.57 −0.444947
\(650\) −4585.90 −0.276729
\(651\) 0 0
\(652\) 3390.66 0.203663
\(653\) 1969.99 0.118058 0.0590288 0.998256i \(-0.481200\pi\)
0.0590288 + 0.998256i \(0.481200\pi\)
\(654\) 0 0
\(655\) −27978.1 −1.66900
\(656\) 18242.4 1.08574
\(657\) 0 0
\(658\) −1562.90 −0.0925958
\(659\) −15314.6 −0.905270 −0.452635 0.891696i \(-0.649516\pi\)
−0.452635 + 0.891696i \(0.649516\pi\)
\(660\) 0 0
\(661\) 31443.3 1.85023 0.925115 0.379687i \(-0.123968\pi\)
0.925115 + 0.379687i \(0.123968\pi\)
\(662\) 1616.64 0.0949130
\(663\) 0 0
\(664\) 3758.31 0.219655
\(665\) 3099.76 0.180757
\(666\) 0 0
\(667\) −38996.9 −2.26382
\(668\) −13782.7 −0.798305
\(669\) 0 0
\(670\) −7667.47 −0.442120
\(671\) −7345.67 −0.422617
\(672\) 0 0
\(673\) −8079.34 −0.462757 −0.231379 0.972864i \(-0.574324\pi\)
−0.231379 + 0.972864i \(0.574324\pi\)
\(674\) 6536.29 0.373543
\(675\) 0 0
\(676\) 6679.81 0.380053
\(677\) 15701.7 0.891383 0.445692 0.895187i \(-0.352958\pi\)
0.445692 + 0.895187i \(0.352958\pi\)
\(678\) 0 0
\(679\) −6599.01 −0.372970
\(680\) 6767.63 0.381657
\(681\) 0 0
\(682\) −1182.58 −0.0663980
\(683\) −29752.9 −1.66686 −0.833430 0.552626i \(-0.813626\pi\)
−0.833430 + 0.552626i \(0.813626\pi\)
\(684\) 0 0
\(685\) −22562.8 −1.25851
\(686\) −192.613 −0.0107201
\(687\) 0 0
\(688\) −207.817 −0.0115159
\(689\) −21772.2 −1.20386
\(690\) 0 0
\(691\) 3082.57 0.169706 0.0848528 0.996393i \(-0.472958\pi\)
0.0848528 + 0.996393i \(0.472958\pi\)
\(692\) 29394.1 1.61473
\(693\) 0 0
\(694\) −2669.01 −0.145986
\(695\) −3970.84 −0.216723
\(696\) 0 0
\(697\) −13270.2 −0.721156
\(698\) 4166.77 0.225952
\(699\) 0 0
\(700\) −12055.8 −0.650953
\(701\) −19301.0 −1.03993 −0.519963 0.854189i \(-0.674054\pi\)
−0.519963 + 0.854189i \(0.674054\pi\)
\(702\) 0 0
\(703\) −4647.88 −0.249357
\(704\) −4343.41 −0.232526
\(705\) 0 0
\(706\) −290.801 −0.0155020
\(707\) −2568.61 −0.136637
\(708\) 0 0
\(709\) 28531.3 1.51130 0.755652 0.654973i \(-0.227320\pi\)
0.755652 + 0.654973i \(0.227320\pi\)
\(710\) 328.047 0.0173400
\(711\) 0 0
\(712\) 7924.29 0.417100
\(713\) 26811.6 1.40828
\(714\) 0 0
\(715\) −7489.24 −0.391723
\(716\) 10110.3 0.527711
\(717\) 0 0
\(718\) −5544.97 −0.288212
\(719\) −3884.65 −0.201492 −0.100746 0.994912i \(-0.532123\pi\)
−0.100746 + 0.994912i \(0.532123\pi\)
\(720\) 0 0
\(721\) 7051.43 0.364229
\(722\) 3536.28 0.182281
\(723\) 0 0
\(724\) −5184.70 −0.266143
\(725\) −62406.5 −3.19685
\(726\) 0 0
\(727\) 23489.8 1.19833 0.599167 0.800624i \(-0.295499\pi\)
0.599167 + 0.800624i \(0.295499\pi\)
\(728\) 2246.59 0.114374
\(729\) 0 0
\(730\) −4557.99 −0.231094
\(731\) 151.175 0.00764897
\(732\) 0 0
\(733\) 30288.1 1.52622 0.763109 0.646270i \(-0.223672\pi\)
0.763109 + 0.646270i \(0.223672\pi\)
\(734\) −1178.42 −0.0592593
\(735\) 0 0
\(736\) −14313.9 −0.716870
\(737\) −8038.39 −0.401761
\(738\) 0 0
\(739\) 29765.0 1.48163 0.740815 0.671709i \(-0.234440\pi\)
0.740815 + 0.671709i \(0.234440\pi\)
\(740\) 28159.2 1.39885
\(741\) 0 0
\(742\) 2348.72 0.116205
\(743\) 1200.21 0.0592617 0.0296309 0.999561i \(-0.490567\pi\)
0.0296309 + 0.999561i \(0.490567\pi\)
\(744\) 0 0
\(745\) 16436.1 0.808284
\(746\) 10.9026 0.000535082 0
\(747\) 0 0
\(748\) 3476.19 0.169922
\(749\) 11835.6 0.577389
\(750\) 0 0
\(751\) 441.096 0.0214325 0.0107163 0.999943i \(-0.496589\pi\)
0.0107163 + 0.999943i \(0.496589\pi\)
\(752\) 22476.6 1.08994
\(753\) 0 0
\(754\) 5697.79 0.275200
\(755\) 22705.2 1.09447
\(756\) 0 0
\(757\) −37080.3 −1.78032 −0.890162 0.455644i \(-0.849409\pi\)
−0.890162 + 0.455644i \(0.849409\pi\)
\(758\) −7042.58 −0.337464
\(759\) 0 0
\(760\) 3900.28 0.186155
\(761\) 3056.78 0.145609 0.0728044 0.997346i \(-0.476805\pi\)
0.0728044 + 0.997346i \(0.476805\pi\)
\(762\) 0 0
\(763\) −12660.0 −0.600685
\(764\) 14721.4 0.697123
\(765\) 0 0
\(766\) 5127.95 0.241880
\(767\) −24369.3 −1.14723
\(768\) 0 0
\(769\) 31834.7 1.49283 0.746417 0.665479i \(-0.231773\pi\)
0.746417 + 0.665479i \(0.231773\pi\)
\(770\) 807.917 0.0378121
\(771\) 0 0
\(772\) 18402.5 0.857929
\(773\) 2351.46 0.109413 0.0547064 0.998502i \(-0.482578\pi\)
0.0547064 + 0.998502i \(0.482578\pi\)
\(774\) 0 0
\(775\) 42906.4 1.98870
\(776\) −8303.22 −0.384108
\(777\) 0 0
\(778\) 5358.65 0.246937
\(779\) −7647.81 −0.351748
\(780\) 0 0
\(781\) 343.916 0.0157571
\(782\) 3234.08 0.147891
\(783\) 0 0
\(784\) 2770.03 0.126186
\(785\) −22918.0 −1.04201
\(786\) 0 0
\(787\) −41575.3 −1.88310 −0.941550 0.336874i \(-0.890630\pi\)
−0.941550 + 0.336874i \(0.890630\pi\)
\(788\) 10426.6 0.471361
\(789\) 0 0
\(790\) −8205.11 −0.369525
\(791\) −6667.90 −0.299726
\(792\) 0 0
\(793\) −24333.2 −1.08965
\(794\) −2989.06 −0.133599
\(795\) 0 0
\(796\) −16302.6 −0.725919
\(797\) 26199.7 1.16442 0.582208 0.813040i \(-0.302189\pi\)
0.582208 + 0.813040i \(0.302189\pi\)
\(798\) 0 0
\(799\) −16350.4 −0.723948
\(800\) −22906.4 −1.01233
\(801\) 0 0
\(802\) 3299.64 0.145280
\(803\) −4778.49 −0.209999
\(804\) 0 0
\(805\) −18317.2 −0.801981
\(806\) −3917.41 −0.171197
\(807\) 0 0
\(808\) −3231.96 −0.140718
\(809\) 2338.60 0.101633 0.0508164 0.998708i \(-0.483818\pi\)
0.0508164 + 0.998708i \(0.483818\pi\)
\(810\) 0 0
\(811\) −3032.48 −0.131301 −0.0656504 0.997843i \(-0.520912\pi\)
−0.0656504 + 0.997843i \(0.520912\pi\)
\(812\) 14978.8 0.647358
\(813\) 0 0
\(814\) −1211.42 −0.0521623
\(815\) 8244.13 0.354330
\(816\) 0 0
\(817\) 87.1240 0.00373082
\(818\) 3739.11 0.159823
\(819\) 0 0
\(820\) 46334.2 1.97325
\(821\) 28900.3 1.22854 0.614268 0.789098i \(-0.289451\pi\)
0.614268 + 0.789098i \(0.289451\pi\)
\(822\) 0 0
\(823\) −19810.2 −0.839054 −0.419527 0.907743i \(-0.637804\pi\)
−0.419527 + 0.907743i \(0.637804\pi\)
\(824\) 8872.47 0.375106
\(825\) 0 0
\(826\) 2628.88 0.110739
\(827\) −12280.7 −0.516374 −0.258187 0.966095i \(-0.583125\pi\)
−0.258187 + 0.966095i \(0.583125\pi\)
\(828\) 0 0
\(829\) −3499.72 −0.146623 −0.0733114 0.997309i \(-0.523357\pi\)
−0.0733114 + 0.997309i \(0.523357\pi\)
\(830\) 4477.16 0.187235
\(831\) 0 0
\(832\) −14387.9 −0.599532
\(833\) −2015.03 −0.0838136
\(834\) 0 0
\(835\) −33511.5 −1.38888
\(836\) 2003.37 0.0828806
\(837\) 0 0
\(838\) 6128.60 0.252636
\(839\) 11751.6 0.483562 0.241781 0.970331i \(-0.422268\pi\)
0.241781 + 0.970331i \(0.422268\pi\)
\(840\) 0 0
\(841\) 53148.4 2.17920
\(842\) −2210.69 −0.0904815
\(843\) 0 0
\(844\) −34520.4 −1.40787
\(845\) 16241.4 0.661210
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −33777.8 −1.36785
\(849\) 0 0
\(850\) 5175.48 0.208844
\(851\) 27465.3 1.10634
\(852\) 0 0
\(853\) 1403.01 0.0563166 0.0281583 0.999603i \(-0.491036\pi\)
0.0281583 + 0.999603i \(0.491036\pi\)
\(854\) 2624.99 0.105182
\(855\) 0 0
\(856\) 14892.2 0.594632
\(857\) −15111.0 −0.602311 −0.301156 0.953575i \(-0.597372\pi\)
−0.301156 + 0.953575i \(0.597372\pi\)
\(858\) 0 0
\(859\) 18620.9 0.739623 0.369811 0.929107i \(-0.379422\pi\)
0.369811 + 0.929107i \(0.379422\pi\)
\(860\) −527.841 −0.0209293
\(861\) 0 0
\(862\) 7732.19 0.305521
\(863\) 33659.0 1.32765 0.663827 0.747886i \(-0.268931\pi\)
0.663827 + 0.747886i \(0.268931\pi\)
\(864\) 0 0
\(865\) 71469.5 2.80929
\(866\) −1605.20 −0.0629873
\(867\) 0 0
\(868\) −10298.4 −0.402709
\(869\) −8602.04 −0.335793
\(870\) 0 0
\(871\) −26627.8 −1.03588
\(872\) −15929.5 −0.618623
\(873\) 0 0
\(874\) 1863.85 0.0721345
\(875\) −12963.7 −0.500861
\(876\) 0 0
\(877\) −2730.45 −0.105132 −0.0525659 0.998617i \(-0.516740\pi\)
−0.0525659 + 0.998617i \(0.516740\pi\)
\(878\) −4722.09 −0.181507
\(879\) 0 0
\(880\) −11618.9 −0.445084
\(881\) 16625.5 0.635787 0.317894 0.948126i \(-0.397025\pi\)
0.317894 + 0.948126i \(0.397025\pi\)
\(882\) 0 0
\(883\) 10063.4 0.383536 0.191768 0.981440i \(-0.438578\pi\)
0.191768 + 0.981440i \(0.438578\pi\)
\(884\) 11515.2 0.438119
\(885\) 0 0
\(886\) −1986.43 −0.0753223
\(887\) −29939.9 −1.13335 −0.566676 0.823940i \(-0.691771\pi\)
−0.566676 + 0.823940i \(0.691771\pi\)
\(888\) 0 0
\(889\) 1770.66 0.0668008
\(890\) 9439.96 0.355537
\(891\) 0 0
\(892\) −39517.2 −1.48333
\(893\) −9422.94 −0.353109
\(894\) 0 0
\(895\) 24582.5 0.918103
\(896\) 7275.74 0.271278
\(897\) 0 0
\(898\) 266.075 0.00988756
\(899\) −53309.5 −1.97772
\(900\) 0 0
\(901\) 24571.4 0.908536
\(902\) −1993.31 −0.0735810
\(903\) 0 0
\(904\) −8389.90 −0.308677
\(905\) −12606.2 −0.463032
\(906\) 0 0
\(907\) 296.554 0.0108566 0.00542829 0.999985i \(-0.498272\pi\)
0.00542829 + 0.999985i \(0.498272\pi\)
\(908\) 22960.7 0.839182
\(909\) 0 0
\(910\) 2676.29 0.0974926
\(911\) 3552.96 0.129215 0.0646074 0.997911i \(-0.479420\pi\)
0.0646074 + 0.997911i \(0.479420\pi\)
\(912\) 0 0
\(913\) 4693.75 0.170143
\(914\) −300.730 −0.0108832
\(915\) 0 0
\(916\) 39356.1 1.41961
\(917\) 10481.7 0.377465
\(918\) 0 0
\(919\) −32047.3 −1.15032 −0.575159 0.818042i \(-0.695060\pi\)
−0.575159 + 0.818042i \(0.695060\pi\)
\(920\) −23047.6 −0.825931
\(921\) 0 0
\(922\) 603.696 0.0215636
\(923\) 1139.25 0.0406272
\(924\) 0 0
\(925\) 43952.5 1.56232
\(926\) 6386.98 0.226662
\(927\) 0 0
\(928\) 28460.2 1.00674
\(929\) −5628.82 −0.198790 −0.0993949 0.995048i \(-0.531691\pi\)
−0.0993949 + 0.995048i \(0.531691\pi\)
\(930\) 0 0
\(931\) −1161.29 −0.0408805
\(932\) 8480.63 0.298060
\(933\) 0 0
\(934\) −8519.36 −0.298460
\(935\) 8452.08 0.295629
\(936\) 0 0
\(937\) −41269.1 −1.43885 −0.719425 0.694570i \(-0.755595\pi\)
−0.719425 + 0.694570i \(0.755595\pi\)
\(938\) 2872.53 0.0999909
\(939\) 0 0
\(940\) 57088.9 1.98089
\(941\) −2086.74 −0.0722909 −0.0361454 0.999347i \(-0.511508\pi\)
−0.0361454 + 0.999347i \(0.511508\pi\)
\(942\) 0 0
\(943\) 45192.6 1.56063
\(944\) −37806.9 −1.30351
\(945\) 0 0
\(946\) 22.7079 0.000780440 0
\(947\) 21040.7 0.721995 0.360998 0.932567i \(-0.382436\pi\)
0.360998 + 0.932567i \(0.382436\pi\)
\(948\) 0 0
\(949\) −15829.2 −0.541450
\(950\) 2982.70 0.101865
\(951\) 0 0
\(952\) −2535.42 −0.0863166
\(953\) −25644.0 −0.871658 −0.435829 0.900030i \(-0.643545\pi\)
−0.435829 + 0.900030i \(0.643545\pi\)
\(954\) 0 0
\(955\) 35794.0 1.21284
\(956\) −13818.4 −0.467488
\(957\) 0 0
\(958\) −1710.06 −0.0576719
\(959\) 8452.91 0.284628
\(960\) 0 0
\(961\) 6860.94 0.230302
\(962\) −4012.92 −0.134492
\(963\) 0 0
\(964\) 56421.4 1.88507
\(965\) 44744.3 1.49261
\(966\) 0 0
\(967\) 28262.5 0.939878 0.469939 0.882699i \(-0.344276\pi\)
0.469939 + 0.882699i \(0.344276\pi\)
\(968\) 1065.74 0.0353865
\(969\) 0 0
\(970\) −9891.37 −0.327415
\(971\) −19180.0 −0.633899 −0.316950 0.948442i \(-0.602659\pi\)
−0.316950 + 0.948442i \(0.602659\pi\)
\(972\) 0 0
\(973\) 1487.63 0.0490147
\(974\) 9521.76 0.313241
\(975\) 0 0
\(976\) −37750.9 −1.23809
\(977\) 35269.8 1.15495 0.577473 0.816410i \(-0.304039\pi\)
0.577473 + 0.816410i \(0.304039\pi\)
\(978\) 0 0
\(979\) 9896.62 0.323082
\(980\) 7035.68 0.229333
\(981\) 0 0
\(982\) −7674.73 −0.249400
\(983\) −40100.1 −1.30111 −0.650557 0.759458i \(-0.725464\pi\)
−0.650557 + 0.759458i \(0.725464\pi\)
\(984\) 0 0
\(985\) 25351.5 0.820066
\(986\) −6430.32 −0.207691
\(987\) 0 0
\(988\) 6636.35 0.213695
\(989\) −514.835 −0.0165529
\(990\) 0 0
\(991\) 3191.81 0.102312 0.0511560 0.998691i \(-0.483709\pi\)
0.0511560 + 0.998691i \(0.483709\pi\)
\(992\) −19567.3 −0.626272
\(993\) 0 0
\(994\) −122.899 −0.00392165
\(995\) −39638.6 −1.26294
\(996\) 0 0
\(997\) 8275.27 0.262869 0.131435 0.991325i \(-0.458042\pi\)
0.131435 + 0.991325i \(0.458042\pi\)
\(998\) 6143.06 0.194845
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.j.1.1 2
3.2 odd 2 231.4.a.g.1.2 2
21.20 even 2 1617.4.a.h.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.g.1.2 2 3.2 odd 2
693.4.a.j.1.1 2 1.1 even 1 trivial
1617.4.a.h.1.2 2 21.20 even 2