Properties

Label 693.4.a.h.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{37}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.54138\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.54138 q^{2} +12.6241 q^{4} -13.1655 q^{5} +7.00000 q^{7} -21.0000 q^{8} +59.7897 q^{10} +11.0000 q^{11} -54.8345 q^{13} -31.7897 q^{14} -5.62414 q^{16} +79.9104 q^{17} +21.2551 q^{19} -166.203 q^{20} -49.9552 q^{22} -119.414 q^{23} +48.3311 q^{25} +249.024 q^{26} +88.3690 q^{28} +87.4829 q^{29} +191.248 q^{31} +193.541 q^{32} -362.904 q^{34} -92.1587 q^{35} +91.6484 q^{37} -96.5277 q^{38} +276.476 q^{40} +60.4829 q^{41} -213.552 q^{43} +138.866 q^{44} +542.304 q^{46} -417.421 q^{47} +49.0000 q^{49} -219.490 q^{50} -692.238 q^{52} +414.904 q^{53} -144.821 q^{55} -147.000 q^{56} -397.293 q^{58} +358.069 q^{59} +515.297 q^{61} -868.531 q^{62} -833.952 q^{64} +721.925 q^{65} -107.572 q^{67} +1008.80 q^{68} +418.528 q^{70} +711.793 q^{71} +131.773 q^{73} -416.210 q^{74} +268.328 q^{76} +77.0000 q^{77} +10.4966 q^{79} +74.0448 q^{80} -274.676 q^{82} +618.352 q^{83} -1052.06 q^{85} +969.821 q^{86} -231.000 q^{88} -1376.44 q^{89} -383.841 q^{91} -1507.50 q^{92} +1895.67 q^{94} -279.835 q^{95} -534.752 q^{97} -222.528 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 7 q^{4} - 2 q^{5} + 14 q^{7} - 42 q^{8} + 77 q^{10} + 22 q^{11} - 134 q^{13} - 21 q^{14} + 7 q^{16} + 26 q^{17} + 152 q^{19} - 229 q^{20} - 33 q^{22} - 178 q^{23} + 48 q^{25} + 127 q^{26}+ \cdots - 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.54138 −1.60562 −0.802810 0.596234i \(-0.796663\pi\)
−0.802810 + 0.596234i \(0.796663\pi\)
\(3\) 0 0
\(4\) 12.6241 1.57802
\(5\) −13.1655 −1.17756 −0.588780 0.808293i \(-0.700392\pi\)
−0.588780 + 0.808293i \(0.700392\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −21.0000 −0.928078
\(9\) 0 0
\(10\) 59.7897 1.89072
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −54.8345 −1.16987 −0.584936 0.811079i \(-0.698881\pi\)
−0.584936 + 0.811079i \(0.698881\pi\)
\(14\) −31.7897 −0.606868
\(15\) 0 0
\(16\) −5.62414 −0.0878772
\(17\) 79.9104 1.14007 0.570033 0.821622i \(-0.306930\pi\)
0.570033 + 0.821622i \(0.306930\pi\)
\(18\) 0 0
\(19\) 21.2551 0.256645 0.128323 0.991732i \(-0.459041\pi\)
0.128323 + 0.991732i \(0.459041\pi\)
\(20\) −166.203 −1.85821
\(21\) 0 0
\(22\) −49.9552 −0.484113
\(23\) −119.414 −1.08259 −0.541294 0.840834i \(-0.682065\pi\)
−0.541294 + 0.840834i \(0.682065\pi\)
\(24\) 0 0
\(25\) 48.3311 0.386648
\(26\) 249.024 1.87837
\(27\) 0 0
\(28\) 88.3690 0.596435
\(29\) 87.4829 0.560178 0.280089 0.959974i \(-0.409636\pi\)
0.280089 + 0.959974i \(0.409636\pi\)
\(30\) 0 0
\(31\) 191.248 1.10804 0.554019 0.832504i \(-0.313093\pi\)
0.554019 + 0.832504i \(0.313093\pi\)
\(32\) 193.541 1.06918
\(33\) 0 0
\(34\) −362.904 −1.83051
\(35\) −92.1587 −0.445076
\(36\) 0 0
\(37\) 91.6484 0.407214 0.203607 0.979053i \(-0.434734\pi\)
0.203607 + 0.979053i \(0.434734\pi\)
\(38\) −96.5277 −0.412075
\(39\) 0 0
\(40\) 276.476 1.09287
\(41\) 60.4829 0.230386 0.115193 0.993343i \(-0.463251\pi\)
0.115193 + 0.993343i \(0.463251\pi\)
\(42\) 0 0
\(43\) −213.552 −0.757357 −0.378679 0.925528i \(-0.623621\pi\)
−0.378679 + 0.925528i \(0.623621\pi\)
\(44\) 138.866 0.475790
\(45\) 0 0
\(46\) 542.304 1.73822
\(47\) −417.421 −1.29547 −0.647735 0.761866i \(-0.724283\pi\)
−0.647735 + 0.761866i \(0.724283\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −219.490 −0.620811
\(51\) 0 0
\(52\) −692.238 −1.84608
\(53\) 414.904 1.07531 0.537655 0.843165i \(-0.319310\pi\)
0.537655 + 0.843165i \(0.319310\pi\)
\(54\) 0 0
\(55\) −144.821 −0.355048
\(56\) −147.000 −0.350780
\(57\) 0 0
\(58\) −397.293 −0.899433
\(59\) 358.069 0.790112 0.395056 0.918657i \(-0.370725\pi\)
0.395056 + 0.918657i \(0.370725\pi\)
\(60\) 0 0
\(61\) 515.297 1.08159 0.540795 0.841154i \(-0.318123\pi\)
0.540795 + 0.841154i \(0.318123\pi\)
\(62\) −868.531 −1.77909
\(63\) 0 0
\(64\) −833.952 −1.62881
\(65\) 721.925 1.37760
\(66\) 0 0
\(67\) −107.572 −0.196150 −0.0980752 0.995179i \(-0.531269\pi\)
−0.0980752 + 0.995179i \(0.531269\pi\)
\(68\) 1008.80 1.79904
\(69\) 0 0
\(70\) 418.528 0.714623
\(71\) 711.793 1.18978 0.594890 0.803807i \(-0.297196\pi\)
0.594890 + 0.803807i \(0.297196\pi\)
\(72\) 0 0
\(73\) 131.773 0.211272 0.105636 0.994405i \(-0.466312\pi\)
0.105636 + 0.994405i \(0.466312\pi\)
\(74\) −416.210 −0.653831
\(75\) 0 0
\(76\) 268.328 0.404991
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 10.4966 0.0149488 0.00747441 0.999972i \(-0.497621\pi\)
0.00747441 + 0.999972i \(0.497621\pi\)
\(80\) 74.0448 0.103481
\(81\) 0 0
\(82\) −274.676 −0.369913
\(83\) 618.352 0.817747 0.408873 0.912591i \(-0.365922\pi\)
0.408873 + 0.912591i \(0.365922\pi\)
\(84\) 0 0
\(85\) −1052.06 −1.34250
\(86\) 969.821 1.21603
\(87\) 0 0
\(88\) −231.000 −0.279826
\(89\) −1376.44 −1.63935 −0.819677 0.572826i \(-0.805847\pi\)
−0.819677 + 0.572826i \(0.805847\pi\)
\(90\) 0 0
\(91\) −383.841 −0.442170
\(92\) −1507.50 −1.70834
\(93\) 0 0
\(94\) 1895.67 2.08003
\(95\) −279.835 −0.302215
\(96\) 0 0
\(97\) −534.752 −0.559751 −0.279875 0.960036i \(-0.590293\pi\)
−0.279875 + 0.960036i \(0.590293\pi\)
\(98\) −222.528 −0.229374
\(99\) 0 0
\(100\) 610.138 0.610138
\(101\) −1620.01 −1.59601 −0.798004 0.602652i \(-0.794111\pi\)
−0.798004 + 0.602652i \(0.794111\pi\)
\(102\) 0 0
\(103\) 822.814 0.787129 0.393564 0.919297i \(-0.371242\pi\)
0.393564 + 0.919297i \(0.371242\pi\)
\(104\) 1151.52 1.08573
\(105\) 0 0
\(106\) −1884.24 −1.72654
\(107\) 1749.78 1.58091 0.790456 0.612518i \(-0.209843\pi\)
0.790456 + 0.612518i \(0.209843\pi\)
\(108\) 0 0
\(109\) −647.607 −0.569078 −0.284539 0.958665i \(-0.591840\pi\)
−0.284539 + 0.958665i \(0.591840\pi\)
\(110\) 657.686 0.570072
\(111\) 0 0
\(112\) −39.3690 −0.0332145
\(113\) −1151.50 −0.958622 −0.479311 0.877645i \(-0.659113\pi\)
−0.479311 + 0.877645i \(0.659113\pi\)
\(114\) 0 0
\(115\) 1572.15 1.27481
\(116\) 1104.40 0.883971
\(117\) 0 0
\(118\) −1626.13 −1.26862
\(119\) 559.373 0.430904
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −2340.16 −1.73662
\(123\) 0 0
\(124\) 2414.35 1.74851
\(125\) 1009.39 0.722259
\(126\) 0 0
\(127\) 278.146 0.194342 0.0971710 0.995268i \(-0.469021\pi\)
0.0971710 + 0.995268i \(0.469021\pi\)
\(128\) 2238.96 1.54608
\(129\) 0 0
\(130\) −3278.54 −2.21190
\(131\) −2332.22 −1.55547 −0.777737 0.628590i \(-0.783633\pi\)
−0.777737 + 0.628590i \(0.783633\pi\)
\(132\) 0 0
\(133\) 148.786 0.0970028
\(134\) 488.528 0.314943
\(135\) 0 0
\(136\) −1678.12 −1.05807
\(137\) −2612.23 −1.62903 −0.814517 0.580139i \(-0.802998\pi\)
−0.814517 + 0.580139i \(0.802998\pi\)
\(138\) 0 0
\(139\) −2884.68 −1.76025 −0.880126 0.474740i \(-0.842542\pi\)
−0.880126 + 0.474740i \(0.842542\pi\)
\(140\) −1163.42 −0.702338
\(141\) 0 0
\(142\) −3232.53 −1.91033
\(143\) −603.179 −0.352730
\(144\) 0 0
\(145\) −1151.76 −0.659643
\(146\) −598.431 −0.339222
\(147\) 0 0
\(148\) 1156.98 0.642590
\(149\) −2909.54 −1.59972 −0.799862 0.600184i \(-0.795094\pi\)
−0.799862 + 0.600184i \(0.795094\pi\)
\(150\) 0 0
\(151\) −2327.06 −1.25413 −0.627063 0.778968i \(-0.715743\pi\)
−0.627063 + 0.778968i \(0.715743\pi\)
\(152\) −446.358 −0.238187
\(153\) 0 0
\(154\) −349.686 −0.182977
\(155\) −2517.88 −1.30478
\(156\) 0 0
\(157\) −927.572 −0.471518 −0.235759 0.971812i \(-0.575758\pi\)
−0.235759 + 0.971812i \(0.575758\pi\)
\(158\) −47.6689 −0.0240021
\(159\) 0 0
\(160\) −2548.07 −1.25902
\(161\) −835.897 −0.409179
\(162\) 0 0
\(163\) −2966.31 −1.42539 −0.712696 0.701473i \(-0.752526\pi\)
−0.712696 + 0.701473i \(0.752526\pi\)
\(164\) 763.545 0.363554
\(165\) 0 0
\(166\) −2808.17 −1.31299
\(167\) −3856.35 −1.78691 −0.893454 0.449156i \(-0.851725\pi\)
−0.893454 + 0.449156i \(0.851725\pi\)
\(168\) 0 0
\(169\) 809.820 0.368602
\(170\) 4777.82 2.15554
\(171\) 0 0
\(172\) −2695.91 −1.19512
\(173\) 2699.52 1.18636 0.593181 0.805069i \(-0.297872\pi\)
0.593181 + 0.805069i \(0.297872\pi\)
\(174\) 0 0
\(175\) 338.317 0.146139
\(176\) −61.8656 −0.0264960
\(177\) 0 0
\(178\) 6250.95 2.63218
\(179\) −1328.58 −0.554764 −0.277382 0.960760i \(-0.589467\pi\)
−0.277382 + 0.960760i \(0.589467\pi\)
\(180\) 0 0
\(181\) 534.944 0.219680 0.109840 0.993949i \(-0.464966\pi\)
0.109840 + 0.993949i \(0.464966\pi\)
\(182\) 1743.17 0.709958
\(183\) 0 0
\(184\) 2507.69 1.00472
\(185\) −1206.60 −0.479519
\(186\) 0 0
\(187\) 879.014 0.343743
\(188\) −5269.58 −2.04427
\(189\) 0 0
\(190\) 1270.84 0.485243
\(191\) 3456.20 1.30933 0.654665 0.755919i \(-0.272810\pi\)
0.654665 + 0.755919i \(0.272810\pi\)
\(192\) 0 0
\(193\) −3106.02 −1.15843 −0.579213 0.815176i \(-0.696640\pi\)
−0.579213 + 0.815176i \(0.696640\pi\)
\(194\) 2428.51 0.898747
\(195\) 0 0
\(196\) 618.583 0.225431
\(197\) −4886.49 −1.76725 −0.883623 0.468198i \(-0.844903\pi\)
−0.883623 + 0.468198i \(0.844903\pi\)
\(198\) 0 0
\(199\) 3319.74 1.18257 0.591283 0.806464i \(-0.298622\pi\)
0.591283 + 0.806464i \(0.298622\pi\)
\(200\) −1014.95 −0.358840
\(201\) 0 0
\(202\) 7357.07 2.56258
\(203\) 612.380 0.211727
\(204\) 0 0
\(205\) −796.289 −0.271294
\(206\) −3736.71 −1.26383
\(207\) 0 0
\(208\) 308.397 0.102805
\(209\) 233.807 0.0773815
\(210\) 0 0
\(211\) 4262.51 1.39073 0.695364 0.718658i \(-0.255243\pi\)
0.695364 + 0.718658i \(0.255243\pi\)
\(212\) 5237.80 1.69686
\(213\) 0 0
\(214\) −7946.42 −2.53835
\(215\) 2811.52 0.891834
\(216\) 0 0
\(217\) 1338.74 0.418799
\(218\) 2941.03 0.913723
\(219\) 0 0
\(220\) −1828.24 −0.560272
\(221\) −4381.84 −1.33373
\(222\) 0 0
\(223\) 2766.16 0.830655 0.415328 0.909672i \(-0.363667\pi\)
0.415328 + 0.909672i \(0.363667\pi\)
\(224\) 1354.79 0.404110
\(225\) 0 0
\(226\) 5229.42 1.53918
\(227\) −545.724 −0.159564 −0.0797818 0.996812i \(-0.525422\pi\)
−0.0797818 + 0.996812i \(0.525422\pi\)
\(228\) 0 0
\(229\) 3197.48 0.922688 0.461344 0.887221i \(-0.347367\pi\)
0.461344 + 0.887221i \(0.347367\pi\)
\(230\) −7139.71 −2.04686
\(231\) 0 0
\(232\) −1837.14 −0.519889
\(233\) −4203.76 −1.18196 −0.590982 0.806684i \(-0.701260\pi\)
−0.590982 + 0.806684i \(0.701260\pi\)
\(234\) 0 0
\(235\) 5495.56 1.52549
\(236\) 4520.32 1.24681
\(237\) 0 0
\(238\) −2540.32 −0.691869
\(239\) −5720.73 −1.54830 −0.774150 0.633003i \(-0.781822\pi\)
−0.774150 + 0.633003i \(0.781822\pi\)
\(240\) 0 0
\(241\) 5191.77 1.38768 0.693841 0.720128i \(-0.255917\pi\)
0.693841 + 0.720128i \(0.255917\pi\)
\(242\) −549.507 −0.145966
\(243\) 0 0
\(244\) 6505.18 1.70677
\(245\) −645.111 −0.168223
\(246\) 0 0
\(247\) −1165.51 −0.300243
\(248\) −4016.21 −1.02835
\(249\) 0 0
\(250\) −4584.01 −1.15967
\(251\) −847.944 −0.213234 −0.106617 0.994300i \(-0.534002\pi\)
−0.106617 + 0.994300i \(0.534002\pi\)
\(252\) 0 0
\(253\) −1313.55 −0.326412
\(254\) −1263.16 −0.312039
\(255\) 0 0
\(256\) −3496.37 −0.853606
\(257\) 1493.87 0.362588 0.181294 0.983429i \(-0.441971\pi\)
0.181294 + 0.983429i \(0.441971\pi\)
\(258\) 0 0
\(259\) 641.539 0.153912
\(260\) 9113.68 2.17387
\(261\) 0 0
\(262\) 10591.5 2.49750
\(263\) −135.848 −0.0318507 −0.0159253 0.999873i \(-0.505069\pi\)
−0.0159253 + 0.999873i \(0.505069\pi\)
\(264\) 0 0
\(265\) −5462.42 −1.26624
\(266\) −675.694 −0.155750
\(267\) 0 0
\(268\) −1358.01 −0.309529
\(269\) 739.406 0.167593 0.0837963 0.996483i \(-0.473295\pi\)
0.0837963 + 0.996483i \(0.473295\pi\)
\(270\) 0 0
\(271\) 4360.29 0.977375 0.488688 0.872459i \(-0.337476\pi\)
0.488688 + 0.872459i \(0.337476\pi\)
\(272\) −449.428 −0.100186
\(273\) 0 0
\(274\) 11863.1 2.61561
\(275\) 531.642 0.116579
\(276\) 0 0
\(277\) −5779.74 −1.25369 −0.626843 0.779146i \(-0.715653\pi\)
−0.626843 + 0.779146i \(0.715653\pi\)
\(278\) 13100.4 2.82630
\(279\) 0 0
\(280\) 1935.33 0.413065
\(281\) 4366.84 0.927059 0.463530 0.886081i \(-0.346583\pi\)
0.463530 + 0.886081i \(0.346583\pi\)
\(282\) 0 0
\(283\) −8294.14 −1.74218 −0.871088 0.491128i \(-0.836585\pi\)
−0.871088 + 0.491128i \(0.836585\pi\)
\(284\) 8985.78 1.87749
\(285\) 0 0
\(286\) 2739.27 0.566351
\(287\) 423.380 0.0870778
\(288\) 0 0
\(289\) 1472.67 0.299750
\(290\) 5230.57 1.05914
\(291\) 0 0
\(292\) 1663.52 0.333391
\(293\) −2434.82 −0.485473 −0.242736 0.970092i \(-0.578045\pi\)
−0.242736 + 0.970092i \(0.578045\pi\)
\(294\) 0 0
\(295\) −4714.17 −0.930405
\(296\) −1924.62 −0.377926
\(297\) 0 0
\(298\) 13213.3 2.56855
\(299\) 6547.99 1.26649
\(300\) 0 0
\(301\) −1494.86 −0.286254
\(302\) 10568.1 2.01365
\(303\) 0 0
\(304\) −119.542 −0.0225533
\(305\) −6784.15 −1.27364
\(306\) 0 0
\(307\) −5972.33 −1.11029 −0.555145 0.831754i \(-0.687337\pi\)
−0.555145 + 0.831754i \(0.687337\pi\)
\(308\) 972.059 0.179832
\(309\) 0 0
\(310\) 11434.7 2.09499
\(311\) 8278.65 1.50945 0.754725 0.656041i \(-0.227770\pi\)
0.754725 + 0.656041i \(0.227770\pi\)
\(312\) 0 0
\(313\) −1386.60 −0.250400 −0.125200 0.992131i \(-0.539957\pi\)
−0.125200 + 0.992131i \(0.539957\pi\)
\(314\) 4212.46 0.757079
\(315\) 0 0
\(316\) 132.510 0.0235895
\(317\) −11.2346 −0.00199053 −0.000995264 1.00000i \(-0.500317\pi\)
−0.000995264 1.00000i \(0.500317\pi\)
\(318\) 0 0
\(319\) 962.312 0.168900
\(320\) 10979.4 1.91803
\(321\) 0 0
\(322\) 3796.13 0.656987
\(323\) 1698.51 0.292593
\(324\) 0 0
\(325\) −2650.21 −0.452329
\(326\) 13471.1 2.28864
\(327\) 0 0
\(328\) −1270.14 −0.213816
\(329\) −2921.94 −0.489641
\(330\) 0 0
\(331\) −4516.29 −0.749963 −0.374981 0.927032i \(-0.622351\pi\)
−0.374981 + 0.927032i \(0.622351\pi\)
\(332\) 7806.17 1.29042
\(333\) 0 0
\(334\) 17513.2 2.86910
\(335\) 1416.25 0.230979
\(336\) 0 0
\(337\) −676.780 −0.109396 −0.0546982 0.998503i \(-0.517420\pi\)
−0.0546982 + 0.998503i \(0.517420\pi\)
\(338\) −3677.70 −0.591836
\(339\) 0 0
\(340\) −13281.4 −2.11848
\(341\) 2103.73 0.334086
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 4484.59 0.702886
\(345\) 0 0
\(346\) −12259.5 −1.90485
\(347\) −7619.43 −1.17877 −0.589384 0.807853i \(-0.700629\pi\)
−0.589384 + 0.807853i \(0.700629\pi\)
\(348\) 0 0
\(349\) 3178.35 0.487488 0.243744 0.969840i \(-0.421624\pi\)
0.243744 + 0.969840i \(0.421624\pi\)
\(350\) −1536.43 −0.234644
\(351\) 0 0
\(352\) 2128.96 0.322368
\(353\) −1776.12 −0.267800 −0.133900 0.990995i \(-0.542750\pi\)
−0.133900 + 0.990995i \(0.542750\pi\)
\(354\) 0 0
\(355\) −9371.13 −1.40104
\(356\) −17376.4 −2.58693
\(357\) 0 0
\(358\) 6033.59 0.890740
\(359\) 11425.3 1.67968 0.839838 0.542838i \(-0.182650\pi\)
0.839838 + 0.542838i \(0.182650\pi\)
\(360\) 0 0
\(361\) −6407.22 −0.934133
\(362\) −2429.38 −0.352722
\(363\) 0 0
\(364\) −4845.67 −0.697753
\(365\) −1734.86 −0.248785
\(366\) 0 0
\(367\) −1321.34 −0.187938 −0.0939689 0.995575i \(-0.529955\pi\)
−0.0939689 + 0.995575i \(0.529955\pi\)
\(368\) 671.600 0.0951348
\(369\) 0 0
\(370\) 5479.63 0.769925
\(371\) 2904.32 0.406429
\(372\) 0 0
\(373\) −2011.16 −0.279180 −0.139590 0.990209i \(-0.544578\pi\)
−0.139590 + 0.990209i \(0.544578\pi\)
\(374\) −3991.94 −0.551920
\(375\) 0 0
\(376\) 8765.83 1.20230
\(377\) −4797.08 −0.655337
\(378\) 0 0
\(379\) −1376.20 −0.186519 −0.0932597 0.995642i \(-0.529729\pi\)
−0.0932597 + 0.995642i \(0.529729\pi\)
\(380\) −3532.68 −0.476901
\(381\) 0 0
\(382\) −15695.9 −2.10229
\(383\) −68.4429 −0.00913125 −0.00456563 0.999990i \(-0.501453\pi\)
−0.00456563 + 0.999990i \(0.501453\pi\)
\(384\) 0 0
\(385\) −1013.75 −0.134195
\(386\) 14105.6 1.85999
\(387\) 0 0
\(388\) −6750.78 −0.883297
\(389\) 1796.33 0.234133 0.117066 0.993124i \(-0.462651\pi\)
0.117066 + 0.993124i \(0.462651\pi\)
\(390\) 0 0
\(391\) −9542.40 −1.23422
\(392\) −1029.00 −0.132583
\(393\) 0 0
\(394\) 22191.4 2.83753
\(395\) −138.193 −0.0176031
\(396\) 0 0
\(397\) 4175.59 0.527876 0.263938 0.964540i \(-0.414978\pi\)
0.263938 + 0.964540i \(0.414978\pi\)
\(398\) −15076.2 −1.89875
\(399\) 0 0
\(400\) −271.821 −0.0339776
\(401\) 5735.25 0.714226 0.357113 0.934061i \(-0.383761\pi\)
0.357113 + 0.934061i \(0.383761\pi\)
\(402\) 0 0
\(403\) −10487.0 −1.29626
\(404\) −20451.2 −2.51853
\(405\) 0 0
\(406\) −2781.05 −0.339954
\(407\) 1008.13 0.122780
\(408\) 0 0
\(409\) 4552.26 0.550355 0.275177 0.961394i \(-0.411263\pi\)
0.275177 + 0.961394i \(0.411263\pi\)
\(410\) 3616.25 0.435595
\(411\) 0 0
\(412\) 10387.3 1.24210
\(413\) 2506.48 0.298634
\(414\) 0 0
\(415\) −8140.93 −0.962946
\(416\) −10612.7 −1.25080
\(417\) 0 0
\(418\) −1061.80 −0.124245
\(419\) −12761.1 −1.48788 −0.743940 0.668247i \(-0.767045\pi\)
−0.743940 + 0.668247i \(0.767045\pi\)
\(420\) 0 0
\(421\) −2838.93 −0.328649 −0.164324 0.986406i \(-0.552544\pi\)
−0.164324 + 0.986406i \(0.552544\pi\)
\(422\) −19357.7 −2.23298
\(423\) 0 0
\(424\) −8712.97 −0.997970
\(425\) 3862.15 0.440805
\(426\) 0 0
\(427\) 3607.08 0.408803
\(428\) 22089.5 2.49471
\(429\) 0 0
\(430\) −12768.2 −1.43195
\(431\) 12820.2 1.43277 0.716387 0.697704i \(-0.245795\pi\)
0.716387 + 0.697704i \(0.245795\pi\)
\(432\) 0 0
\(433\) −12570.9 −1.39519 −0.697595 0.716493i \(-0.745746\pi\)
−0.697595 + 0.716493i \(0.745746\pi\)
\(434\) −6079.72 −0.672433
\(435\) 0 0
\(436\) −8175.48 −0.898015
\(437\) −2538.16 −0.277841
\(438\) 0 0
\(439\) −11589.8 −1.26003 −0.630013 0.776585i \(-0.716950\pi\)
−0.630013 + 0.776585i \(0.716950\pi\)
\(440\) 3041.24 0.329512
\(441\) 0 0
\(442\) 19899.6 2.14147
\(443\) −15298.1 −1.64071 −0.820355 0.571855i \(-0.806224\pi\)
−0.820355 + 0.571855i \(0.806224\pi\)
\(444\) 0 0
\(445\) 18121.6 1.93044
\(446\) −12562.2 −1.33372
\(447\) 0 0
\(448\) −5837.66 −0.615633
\(449\) −3370.37 −0.354249 −0.177125 0.984188i \(-0.556680\pi\)
−0.177125 + 0.984188i \(0.556680\pi\)
\(450\) 0 0
\(451\) 665.312 0.0694641
\(452\) −14536.7 −1.51272
\(453\) 0 0
\(454\) 2478.34 0.256199
\(455\) 5053.47 0.520682
\(456\) 0 0
\(457\) −2682.12 −0.274539 −0.137269 0.990534i \(-0.543833\pi\)
−0.137269 + 0.990534i \(0.543833\pi\)
\(458\) −14521.0 −1.48149
\(459\) 0 0
\(460\) 19847.0 2.01168
\(461\) −1313.76 −0.132729 −0.0663645 0.997795i \(-0.521140\pi\)
−0.0663645 + 0.997795i \(0.521140\pi\)
\(462\) 0 0
\(463\) 17339.2 1.74043 0.870215 0.492672i \(-0.163980\pi\)
0.870215 + 0.492672i \(0.163980\pi\)
\(464\) −492.016 −0.0492269
\(465\) 0 0
\(466\) 19090.9 1.89779
\(467\) 8810.22 0.872995 0.436497 0.899706i \(-0.356219\pi\)
0.436497 + 0.899706i \(0.356219\pi\)
\(468\) 0 0
\(469\) −753.007 −0.0741379
\(470\) −24957.4 −2.44936
\(471\) 0 0
\(472\) −7519.45 −0.733285
\(473\) −2349.07 −0.228352
\(474\) 0 0
\(475\) 1027.28 0.0992315
\(476\) 7061.60 0.679975
\(477\) 0 0
\(478\) 25980.0 2.48598
\(479\) 708.948 0.0676256 0.0338128 0.999428i \(-0.489235\pi\)
0.0338128 + 0.999428i \(0.489235\pi\)
\(480\) 0 0
\(481\) −5025.49 −0.476388
\(482\) −23577.8 −2.22809
\(483\) 0 0
\(484\) 1527.52 0.143456
\(485\) 7040.29 0.659140
\(486\) 0 0
\(487\) 12253.6 1.14017 0.570085 0.821586i \(-0.306910\pi\)
0.570085 + 0.821586i \(0.306910\pi\)
\(488\) −10821.2 −1.00380
\(489\) 0 0
\(490\) 2929.69 0.270102
\(491\) 5429.37 0.499031 0.249515 0.968371i \(-0.419729\pi\)
0.249515 + 0.968371i \(0.419729\pi\)
\(492\) 0 0
\(493\) 6990.79 0.638640
\(494\) 5293.04 0.482076
\(495\) 0 0
\(496\) −1075.61 −0.0973714
\(497\) 4982.55 0.449694
\(498\) 0 0
\(499\) −14531.6 −1.30366 −0.651829 0.758366i \(-0.725998\pi\)
−0.651829 + 0.758366i \(0.725998\pi\)
\(500\) 12742.6 1.13974
\(501\) 0 0
\(502\) 3850.83 0.342373
\(503\) 6349.27 0.562823 0.281412 0.959587i \(-0.409197\pi\)
0.281412 + 0.959587i \(0.409197\pi\)
\(504\) 0 0
\(505\) 21328.2 1.87940
\(506\) 5965.34 0.524094
\(507\) 0 0
\(508\) 3511.35 0.306675
\(509\) 2082.16 0.181317 0.0906585 0.995882i \(-0.471103\pi\)
0.0906585 + 0.995882i \(0.471103\pi\)
\(510\) 0 0
\(511\) 922.410 0.0798532
\(512\) −2033.36 −0.175513
\(513\) 0 0
\(514\) −6784.24 −0.582179
\(515\) −10832.8 −0.926892
\(516\) 0 0
\(517\) −4591.63 −0.390599
\(518\) −2913.47 −0.247125
\(519\) 0 0
\(520\) −15160.4 −1.27852
\(521\) 17339.3 1.45806 0.729030 0.684481i \(-0.239971\pi\)
0.729030 + 0.684481i \(0.239971\pi\)
\(522\) 0 0
\(523\) −11310.6 −0.945660 −0.472830 0.881154i \(-0.656768\pi\)
−0.472830 + 0.881154i \(0.656768\pi\)
\(524\) −29442.3 −2.45457
\(525\) 0 0
\(526\) 616.936 0.0511401
\(527\) 15282.7 1.26324
\(528\) 0 0
\(529\) 2092.66 0.171995
\(530\) 24806.9 2.03310
\(531\) 0 0
\(532\) 1878.30 0.153072
\(533\) −3316.55 −0.269523
\(534\) 0 0
\(535\) −23036.8 −1.86162
\(536\) 2259.02 0.182043
\(537\) 0 0
\(538\) −3357.93 −0.269090
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −1483.01 −0.117855 −0.0589275 0.998262i \(-0.518768\pi\)
−0.0589275 + 0.998262i \(0.518768\pi\)
\(542\) −19801.7 −1.56929
\(543\) 0 0
\(544\) 15466.0 1.21893
\(545\) 8526.08 0.670123
\(546\) 0 0
\(547\) 3512.31 0.274544 0.137272 0.990533i \(-0.456167\pi\)
0.137272 + 0.990533i \(0.456167\pi\)
\(548\) −32977.2 −2.57065
\(549\) 0 0
\(550\) −2414.39 −0.187181
\(551\) 1859.46 0.143767
\(552\) 0 0
\(553\) 73.4760 0.00565012
\(554\) 26248.0 2.01294
\(555\) 0 0
\(556\) −36416.6 −2.77771
\(557\) −14069.1 −1.07025 −0.535123 0.844774i \(-0.679735\pi\)
−0.535123 + 0.844774i \(0.679735\pi\)
\(558\) 0 0
\(559\) 11710.0 0.886012
\(560\) 518.314 0.0391121
\(561\) 0 0
\(562\) −19831.5 −1.48851
\(563\) −12982.7 −0.971860 −0.485930 0.873998i \(-0.661519\pi\)
−0.485930 + 0.873998i \(0.661519\pi\)
\(564\) 0 0
\(565\) 15160.1 1.12884
\(566\) 37666.9 2.79727
\(567\) 0 0
\(568\) −14947.7 −1.10421
\(569\) 1668.21 0.122909 0.0614545 0.998110i \(-0.480426\pi\)
0.0614545 + 0.998110i \(0.480426\pi\)
\(570\) 0 0
\(571\) −22037.1 −1.61510 −0.807552 0.589797i \(-0.799208\pi\)
−0.807552 + 0.589797i \(0.799208\pi\)
\(572\) −7614.62 −0.556614
\(573\) 0 0
\(574\) −1922.73 −0.139814
\(575\) −5771.39 −0.418581
\(576\) 0 0
\(577\) 22415.8 1.61730 0.808649 0.588292i \(-0.200199\pi\)
0.808649 + 0.588292i \(0.200199\pi\)
\(578\) −6687.96 −0.481284
\(579\) 0 0
\(580\) −14540.0 −1.04093
\(581\) 4328.47 0.309079
\(582\) 0 0
\(583\) 4563.94 0.324218
\(584\) −2767.23 −0.196077
\(585\) 0 0
\(586\) 11057.4 0.779485
\(587\) 24252.2 1.70527 0.852636 0.522506i \(-0.175003\pi\)
0.852636 + 0.522506i \(0.175003\pi\)
\(588\) 0 0
\(589\) 4065.01 0.284373
\(590\) 21408.8 1.49388
\(591\) 0 0
\(592\) −515.444 −0.0357848
\(593\) −18666.9 −1.29268 −0.646340 0.763050i \(-0.723701\pi\)
−0.646340 + 0.763050i \(0.723701\pi\)
\(594\) 0 0
\(595\) −7364.44 −0.507416
\(596\) −36730.5 −2.52439
\(597\) 0 0
\(598\) −29736.9 −2.03350
\(599\) 11400.1 0.777620 0.388810 0.921318i \(-0.372886\pi\)
0.388810 + 0.921318i \(0.372886\pi\)
\(600\) 0 0
\(601\) −9722.11 −0.659856 −0.329928 0.944006i \(-0.607024\pi\)
−0.329928 + 0.944006i \(0.607024\pi\)
\(602\) 6788.75 0.459616
\(603\) 0 0
\(604\) −29377.1 −1.97903
\(605\) −1593.03 −0.107051
\(606\) 0 0
\(607\) −20616.5 −1.37858 −0.689291 0.724484i \(-0.742078\pi\)
−0.689291 + 0.724484i \(0.742078\pi\)
\(608\) 4113.75 0.274399
\(609\) 0 0
\(610\) 30809.4 2.04498
\(611\) 22889.0 1.51553
\(612\) 0 0
\(613\) −363.351 −0.0239406 −0.0119703 0.999928i \(-0.503810\pi\)
−0.0119703 + 0.999928i \(0.503810\pi\)
\(614\) 27122.6 1.78270
\(615\) 0 0
\(616\) −1617.00 −0.105764
\(617\) 19599.7 1.27886 0.639429 0.768850i \(-0.279171\pi\)
0.639429 + 0.768850i \(0.279171\pi\)
\(618\) 0 0
\(619\) 10178.6 0.660926 0.330463 0.943819i \(-0.392795\pi\)
0.330463 + 0.943819i \(0.392795\pi\)
\(620\) −31786.1 −2.05897
\(621\) 0 0
\(622\) −37596.5 −2.42361
\(623\) −9635.09 −0.619618
\(624\) 0 0
\(625\) −19330.5 −1.23715
\(626\) 6297.08 0.402048
\(627\) 0 0
\(628\) −11709.8 −0.744064
\(629\) 7323.66 0.464250
\(630\) 0 0
\(631\) −13503.9 −0.851949 −0.425975 0.904735i \(-0.640069\pi\)
−0.425975 + 0.904735i \(0.640069\pi\)
\(632\) −220.428 −0.0138737
\(633\) 0 0
\(634\) 51.0205 0.00319603
\(635\) −3661.93 −0.228849
\(636\) 0 0
\(637\) −2686.89 −0.167125
\(638\) −4370.22 −0.271189
\(639\) 0 0
\(640\) −29477.1 −1.82060
\(641\) −29389.5 −1.81095 −0.905473 0.424404i \(-0.860483\pi\)
−0.905473 + 0.424404i \(0.860483\pi\)
\(642\) 0 0
\(643\) −11632.9 −0.713461 −0.356730 0.934207i \(-0.616108\pi\)
−0.356730 + 0.934207i \(0.616108\pi\)
\(644\) −10552.5 −0.645692
\(645\) 0 0
\(646\) −7713.56 −0.469793
\(647\) 7522.70 0.457106 0.228553 0.973531i \(-0.426601\pi\)
0.228553 + 0.973531i \(0.426601\pi\)
\(648\) 0 0
\(649\) 3938.76 0.238228
\(650\) 12035.6 0.726270
\(651\) 0 0
\(652\) −37447.1 −2.24929
\(653\) −31890.8 −1.91115 −0.955577 0.294743i \(-0.904766\pi\)
−0.955577 + 0.294743i \(0.904766\pi\)
\(654\) 0 0
\(655\) 30704.9 1.83166
\(656\) −340.164 −0.0202457
\(657\) 0 0
\(658\) 13269.7 0.786178
\(659\) −20234.0 −1.19606 −0.598029 0.801474i \(-0.704049\pi\)
−0.598029 + 0.801474i \(0.704049\pi\)
\(660\) 0 0
\(661\) 16493.0 0.970505 0.485252 0.874374i \(-0.338728\pi\)
0.485252 + 0.874374i \(0.338728\pi\)
\(662\) 20510.2 1.20416
\(663\) 0 0
\(664\) −12985.4 −0.758932
\(665\) −1958.85 −0.114227
\(666\) 0 0
\(667\) −10446.7 −0.606441
\(668\) −48683.1 −2.81977
\(669\) 0 0
\(670\) −6431.72 −0.370864
\(671\) 5668.26 0.326112
\(672\) 0 0
\(673\) 7338.87 0.420346 0.210173 0.977664i \(-0.432597\pi\)
0.210173 + 0.977664i \(0.432597\pi\)
\(674\) 3073.52 0.175649
\(675\) 0 0
\(676\) 10223.3 0.581661
\(677\) −10296.8 −0.584549 −0.292274 0.956334i \(-0.594412\pi\)
−0.292274 + 0.956334i \(0.594412\pi\)
\(678\) 0 0
\(679\) −3743.26 −0.211566
\(680\) 22093.3 1.24594
\(681\) 0 0
\(682\) −9553.85 −0.536416
\(683\) −19884.5 −1.11400 −0.556998 0.830514i \(-0.688047\pi\)
−0.556998 + 0.830514i \(0.688047\pi\)
\(684\) 0 0
\(685\) 34391.4 1.91829
\(686\) −1557.69 −0.0866954
\(687\) 0 0
\(688\) 1201.05 0.0665545
\(689\) −22751.0 −1.25797
\(690\) 0 0
\(691\) 26756.6 1.47304 0.736519 0.676417i \(-0.236468\pi\)
0.736519 + 0.676417i \(0.236468\pi\)
\(692\) 34079.1 1.87210
\(693\) 0 0
\(694\) 34602.7 1.89265
\(695\) 37978.3 2.07280
\(696\) 0 0
\(697\) 4833.21 0.262656
\(698\) −14434.1 −0.782720
\(699\) 0 0
\(700\) 4270.97 0.230611
\(701\) 7556.29 0.407128 0.203564 0.979062i \(-0.434747\pi\)
0.203564 + 0.979062i \(0.434747\pi\)
\(702\) 0 0
\(703\) 1948.00 0.104510
\(704\) −9173.47 −0.491105
\(705\) 0 0
\(706\) 8066.03 0.429985
\(707\) −11340.1 −0.603234
\(708\) 0 0
\(709\) 18371.1 0.973117 0.486558 0.873648i \(-0.338252\pi\)
0.486558 + 0.873648i \(0.338252\pi\)
\(710\) 42557.9 2.24953
\(711\) 0 0
\(712\) 28905.3 1.52145
\(713\) −22837.7 −1.19955
\(714\) 0 0
\(715\) 7941.17 0.415361
\(716\) −16772.2 −0.875427
\(717\) 0 0
\(718\) −51886.6 −2.69692
\(719\) −24627.6 −1.27740 −0.638702 0.769454i \(-0.720528\pi\)
−0.638702 + 0.769454i \(0.720528\pi\)
\(720\) 0 0
\(721\) 5759.70 0.297507
\(722\) 29097.6 1.49986
\(723\) 0 0
\(724\) 6753.20 0.346659
\(725\) 4228.14 0.216592
\(726\) 0 0
\(727\) 19040.6 0.971360 0.485680 0.874137i \(-0.338572\pi\)
0.485680 + 0.874137i \(0.338572\pi\)
\(728\) 8060.67 0.410368
\(729\) 0 0
\(730\) 7878.65 0.399455
\(731\) −17065.0 −0.863437
\(732\) 0 0
\(733\) −35623.2 −1.79505 −0.897526 0.440961i \(-0.854638\pi\)
−0.897526 + 0.440961i \(0.854638\pi\)
\(734\) 6000.69 0.301757
\(735\) 0 0
\(736\) −23111.5 −1.15748
\(737\) −1183.30 −0.0591415
\(738\) 0 0
\(739\) 7248.54 0.360814 0.180407 0.983592i \(-0.442258\pi\)
0.180407 + 0.983592i \(0.442258\pi\)
\(740\) −15232.3 −0.756689
\(741\) 0 0
\(742\) −13189.6 −0.652570
\(743\) 29033.2 1.43354 0.716772 0.697307i \(-0.245619\pi\)
0.716772 + 0.697307i \(0.245619\pi\)
\(744\) 0 0
\(745\) 38305.6 1.88377
\(746\) 9133.46 0.448257
\(747\) 0 0
\(748\) 11096.8 0.542432
\(749\) 12248.5 0.597529
\(750\) 0 0
\(751\) −32062.0 −1.55787 −0.778933 0.627107i \(-0.784239\pi\)
−0.778933 + 0.627107i \(0.784239\pi\)
\(752\) 2347.63 0.113842
\(753\) 0 0
\(754\) 21785.4 1.05222
\(755\) 30636.9 1.47681
\(756\) 0 0
\(757\) 16132.9 0.774584 0.387292 0.921957i \(-0.373411\pi\)
0.387292 + 0.921957i \(0.373411\pi\)
\(758\) 6249.87 0.299479
\(759\) 0 0
\(760\) 5876.54 0.280479
\(761\) 37232.9 1.77358 0.886789 0.462175i \(-0.152931\pi\)
0.886789 + 0.462175i \(0.152931\pi\)
\(762\) 0 0
\(763\) −4533.25 −0.215091
\(764\) 43631.6 2.06615
\(765\) 0 0
\(766\) 310.825 0.0146613
\(767\) −19634.5 −0.924331
\(768\) 0 0
\(769\) 36009.7 1.68861 0.844305 0.535862i \(-0.180013\pi\)
0.844305 + 0.535862i \(0.180013\pi\)
\(770\) 4603.80 0.215467
\(771\) 0 0
\(772\) −39210.9 −1.82802
\(773\) −20156.0 −0.937856 −0.468928 0.883236i \(-0.655360\pi\)
−0.468928 + 0.883236i \(0.655360\pi\)
\(774\) 0 0
\(775\) 9243.23 0.428421
\(776\) 11229.8 0.519492
\(777\) 0 0
\(778\) −8157.83 −0.375929
\(779\) 1285.57 0.0591276
\(780\) 0 0
\(781\) 7829.73 0.358732
\(782\) 43335.7 1.98169
\(783\) 0 0
\(784\) −275.583 −0.0125539
\(785\) 12212.0 0.555241
\(786\) 0 0
\(787\) −19711.9 −0.892823 −0.446411 0.894828i \(-0.647298\pi\)
−0.446411 + 0.894828i \(0.647298\pi\)
\(788\) −61687.7 −2.78875
\(789\) 0 0
\(790\) 627.587 0.0282640
\(791\) −8060.52 −0.362325
\(792\) 0 0
\(793\) −28256.0 −1.26532
\(794\) −18963.0 −0.847569
\(795\) 0 0
\(796\) 41908.9 1.86611
\(797\) 8274.02 0.367730 0.183865 0.982952i \(-0.441139\pi\)
0.183865 + 0.982952i \(0.441139\pi\)
\(798\) 0 0
\(799\) −33356.2 −1.47692
\(800\) 9354.06 0.413395
\(801\) 0 0
\(802\) −26045.9 −1.14678
\(803\) 1449.50 0.0637009
\(804\) 0 0
\(805\) 11005.0 0.481833
\(806\) 47625.5 2.08131
\(807\) 0 0
\(808\) 34020.2 1.48122
\(809\) −15039.4 −0.653593 −0.326797 0.945095i \(-0.605969\pi\)
−0.326797 + 0.945095i \(0.605969\pi\)
\(810\) 0 0
\(811\) −31217.1 −1.35164 −0.675820 0.737067i \(-0.736210\pi\)
−0.675820 + 0.737067i \(0.736210\pi\)
\(812\) 7730.77 0.334110
\(813\) 0 0
\(814\) −4578.31 −0.197137
\(815\) 39053.0 1.67849
\(816\) 0 0
\(817\) −4539.08 −0.194372
\(818\) −20673.6 −0.883661
\(819\) 0 0
\(820\) −10052.5 −0.428106
\(821\) −6151.17 −0.261483 −0.130741 0.991417i \(-0.541736\pi\)
−0.130741 + 0.991417i \(0.541736\pi\)
\(822\) 0 0
\(823\) −34084.1 −1.44362 −0.721808 0.692093i \(-0.756689\pi\)
−0.721808 + 0.692093i \(0.756689\pi\)
\(824\) −17279.1 −0.730517
\(825\) 0 0
\(826\) −11382.9 −0.479494
\(827\) −19451.9 −0.817907 −0.408953 0.912555i \(-0.634106\pi\)
−0.408953 + 0.912555i \(0.634106\pi\)
\(828\) 0 0
\(829\) 26492.7 1.10993 0.554963 0.831875i \(-0.312732\pi\)
0.554963 + 0.831875i \(0.312732\pi\)
\(830\) 36971.1 1.54613
\(831\) 0 0
\(832\) 45729.3 1.90550
\(833\) 3915.61 0.162867
\(834\) 0 0
\(835\) 50770.9 2.10419
\(836\) 2951.61 0.122109
\(837\) 0 0
\(838\) 57953.1 2.38897
\(839\) 8978.20 0.369442 0.184721 0.982791i \(-0.440862\pi\)
0.184721 + 0.982791i \(0.440862\pi\)
\(840\) 0 0
\(841\) −16735.7 −0.686201
\(842\) 12892.7 0.527685
\(843\) 0 0
\(844\) 53810.6 2.19459
\(845\) −10661.7 −0.434052
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −2333.48 −0.0944952
\(849\) 0 0
\(850\) −17539.5 −0.707765
\(851\) −10944.1 −0.440844
\(852\) 0 0
\(853\) −27980.8 −1.12315 −0.561574 0.827427i \(-0.689804\pi\)
−0.561574 + 0.827427i \(0.689804\pi\)
\(854\) −16381.1 −0.656382
\(855\) 0 0
\(856\) −36745.4 −1.46721
\(857\) 4175.08 0.166416 0.0832078 0.996532i \(-0.473483\pi\)
0.0832078 + 0.996532i \(0.473483\pi\)
\(858\) 0 0
\(859\) 38793.4 1.54088 0.770439 0.637514i \(-0.220037\pi\)
0.770439 + 0.637514i \(0.220037\pi\)
\(860\) 35493.1 1.40733
\(861\) 0 0
\(862\) −58221.2 −2.30049
\(863\) 19429.6 0.766385 0.383193 0.923668i \(-0.374825\pi\)
0.383193 + 0.923668i \(0.374825\pi\)
\(864\) 0 0
\(865\) −35540.6 −1.39701
\(866\) 57089.1 2.24015
\(867\) 0 0
\(868\) 16900.4 0.660873
\(869\) 115.462 0.00450724
\(870\) 0 0
\(871\) 5898.68 0.229471
\(872\) 13599.7 0.528148
\(873\) 0 0
\(874\) 11526.7 0.446107
\(875\) 7065.71 0.272988
\(876\) 0 0
\(877\) −17547.9 −0.675656 −0.337828 0.941208i \(-0.609692\pi\)
−0.337828 + 0.941208i \(0.609692\pi\)
\(878\) 52633.8 2.02312
\(879\) 0 0
\(880\) 814.493 0.0312006
\(881\) 44948.7 1.71891 0.859455 0.511212i \(-0.170803\pi\)
0.859455 + 0.511212i \(0.170803\pi\)
\(882\) 0 0
\(883\) −37819.3 −1.44136 −0.720680 0.693268i \(-0.756170\pi\)
−0.720680 + 0.693268i \(0.756170\pi\)
\(884\) −55317.0 −2.10465
\(885\) 0 0
\(886\) 69474.4 2.63436
\(887\) 7203.82 0.272695 0.136348 0.990661i \(-0.456464\pi\)
0.136348 + 0.990661i \(0.456464\pi\)
\(888\) 0 0
\(889\) 1947.02 0.0734543
\(890\) −82297.0 −3.09955
\(891\) 0 0
\(892\) 34920.5 1.31079
\(893\) −8872.33 −0.332476
\(894\) 0 0
\(895\) 17491.5 0.653268
\(896\) 15672.7 0.584363
\(897\) 0 0
\(898\) 15306.2 0.568790
\(899\) 16731.0 0.620699
\(900\) 0 0
\(901\) 33155.1 1.22592
\(902\) −3021.43 −0.111533
\(903\) 0 0
\(904\) 24181.6 0.889676
\(905\) −7042.81 −0.258686
\(906\) 0 0
\(907\) 9420.96 0.344893 0.172446 0.985019i \(-0.444833\pi\)
0.172446 + 0.985019i \(0.444833\pi\)
\(908\) −6889.30 −0.251794
\(909\) 0 0
\(910\) −22949.7 −0.836018
\(911\) −40045.0 −1.45637 −0.728184 0.685382i \(-0.759635\pi\)
−0.728184 + 0.685382i \(0.759635\pi\)
\(912\) 0 0
\(913\) 6801.87 0.246560
\(914\) 12180.5 0.440805
\(915\) 0 0
\(916\) 40365.5 1.45602
\(917\) −16325.6 −0.587914
\(918\) 0 0
\(919\) −8881.69 −0.318803 −0.159402 0.987214i \(-0.550956\pi\)
−0.159402 + 0.987214i \(0.550956\pi\)
\(920\) −33015.1 −1.18312
\(921\) 0 0
\(922\) 5966.30 0.213112
\(923\) −39030.8 −1.39189
\(924\) 0 0
\(925\) 4429.46 0.157448
\(926\) −78743.7 −2.79447
\(927\) 0 0
\(928\) 16931.6 0.598928
\(929\) −39037.4 −1.37866 −0.689331 0.724447i \(-0.742095\pi\)
−0.689331 + 0.724447i \(0.742095\pi\)
\(930\) 0 0
\(931\) 1041.50 0.0366636
\(932\) −53068.9 −1.86516
\(933\) 0 0
\(934\) −40010.6 −1.40170
\(935\) −11572.7 −0.404778
\(936\) 0 0
\(937\) 17549.7 0.611870 0.305935 0.952052i \(-0.401031\pi\)
0.305935 + 0.952052i \(0.401031\pi\)
\(938\) 3419.69 0.119037
\(939\) 0 0
\(940\) 69376.8 2.40726
\(941\) 28176.8 0.976128 0.488064 0.872808i \(-0.337703\pi\)
0.488064 + 0.872808i \(0.337703\pi\)
\(942\) 0 0
\(943\) −7222.49 −0.249413
\(944\) −2013.83 −0.0694329
\(945\) 0 0
\(946\) 10668.0 0.366646
\(947\) 11092.6 0.380636 0.190318 0.981722i \(-0.439048\pi\)
0.190318 + 0.981722i \(0.439048\pi\)
\(948\) 0 0
\(949\) −7225.69 −0.247161
\(950\) −4665.28 −0.159328
\(951\) 0 0
\(952\) −11746.8 −0.399913
\(953\) −21883.0 −0.743820 −0.371910 0.928269i \(-0.621297\pi\)
−0.371910 + 0.928269i \(0.621297\pi\)
\(954\) 0 0
\(955\) −45502.7 −1.54181
\(956\) −72219.4 −2.44324
\(957\) 0 0
\(958\) −3219.60 −0.108581
\(959\) −18285.6 −0.615717
\(960\) 0 0
\(961\) 6784.91 0.227750
\(962\) 22822.7 0.764899
\(963\) 0 0
\(964\) 65541.7 2.18979
\(965\) 40892.4 1.36412
\(966\) 0 0
\(967\) 40235.4 1.33804 0.669019 0.743245i \(-0.266714\pi\)
0.669019 + 0.743245i \(0.266714\pi\)
\(968\) −2541.00 −0.0843707
\(969\) 0 0
\(970\) −31972.6 −1.05833
\(971\) −44470.2 −1.46974 −0.734870 0.678208i \(-0.762757\pi\)
−0.734870 + 0.678208i \(0.762757\pi\)
\(972\) 0 0
\(973\) −20192.7 −0.665313
\(974\) −55648.2 −1.83068
\(975\) 0 0
\(976\) −2898.10 −0.0950472
\(977\) 55989.4 1.83343 0.916715 0.399542i \(-0.130831\pi\)
0.916715 + 0.399542i \(0.130831\pi\)
\(978\) 0 0
\(979\) −15140.9 −0.494284
\(980\) −8143.97 −0.265459
\(981\) 0 0
\(982\) −24656.8 −0.801254
\(983\) 5987.22 0.194265 0.0971326 0.995271i \(-0.469033\pi\)
0.0971326 + 0.995271i \(0.469033\pi\)
\(984\) 0 0
\(985\) 64333.1 2.08104
\(986\) −31747.8 −1.02541
\(987\) 0 0
\(988\) −14713.6 −0.473788
\(989\) 25501.1 0.819905
\(990\) 0 0
\(991\) −1965.53 −0.0630043 −0.0315022 0.999504i \(-0.510029\pi\)
−0.0315022 + 0.999504i \(0.510029\pi\)
\(992\) 37014.5 1.18469
\(993\) 0 0
\(994\) −22627.7 −0.722039
\(995\) −43706.2 −1.39254
\(996\) 0 0
\(997\) −10802.9 −0.343161 −0.171581 0.985170i \(-0.554887\pi\)
−0.171581 + 0.985170i \(0.554887\pi\)
\(998\) 65993.7 2.09318
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.h.1.1 2
3.2 odd 2 231.4.a.i.1.2 2
21.20 even 2 1617.4.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.i.1.2 2 3.2 odd 2
693.4.a.h.1.1 2 1.1 even 1 trivial
1617.4.a.l.1.2 2 21.20 even 2