Properties

Label 693.4.a.g.1.2
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.561553 q^{2} -7.68466 q^{4} -6.68466 q^{5} +7.00000 q^{7} -8.80776 q^{8} +O(q^{10})\) \(q+0.561553 q^{2} -7.68466 q^{4} -6.68466 q^{5} +7.00000 q^{7} -8.80776 q^{8} -3.75379 q^{10} +11.0000 q^{11} +14.3002 q^{13} +3.93087 q^{14} +56.5312 q^{16} +47.7538 q^{17} +11.9157 q^{19} +51.3693 q^{20} +6.17708 q^{22} +44.4924 q^{23} -80.3153 q^{25} +8.03031 q^{26} -53.7926 q^{28} +139.501 q^{29} -208.600 q^{31} +102.207 q^{32} +26.8163 q^{34} -46.7926 q^{35} -253.086 q^{37} +6.69130 q^{38} +58.8769 q^{40} +156.294 q^{41} -263.386 q^{43} -84.5312 q^{44} +24.9848 q^{46} -386.533 q^{47} +49.0000 q^{49} -45.1013 q^{50} -109.892 q^{52} +36.5701 q^{53} -73.5312 q^{55} -61.6543 q^{56} +78.3371 q^{58} +114.762 q^{59} -53.0758 q^{61} -117.140 q^{62} -394.855 q^{64} -95.5919 q^{65} +132.348 q^{67} -366.972 q^{68} -26.2765 q^{70} -583.447 q^{71} -817.012 q^{73} -142.121 q^{74} -91.5682 q^{76} +77.0000 q^{77} -369.633 q^{79} -377.892 q^{80} +87.7671 q^{82} +69.1534 q^{83} -319.218 q^{85} -147.905 q^{86} -96.8854 q^{88} -467.295 q^{89} +100.101 q^{91} -341.909 q^{92} -217.059 q^{94} -79.6525 q^{95} -1170.11 q^{97} +27.5161 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 3 q^{4} - q^{5} + 14 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{2} - 3 q^{4} - q^{5} + 14 q^{7} + 3 q^{8} - 24 q^{10} + 22 q^{11} - 25 q^{13} - 21 q^{14} - 23 q^{16} + 112 q^{17} - 71 q^{19} + 78 q^{20} - 33 q^{22} + 56 q^{23} - 173 q^{25} + 148 q^{26} - 21 q^{28} + 11 q^{29} - 310 q^{31} + 291 q^{32} - 202 q^{34} - 7 q^{35} - 65 q^{37} + 302 q^{38} + 126 q^{40} - 42 q^{41} - 32 q^{43} - 33 q^{44} - 16 q^{46} - 101 q^{47} + 98 q^{49} + 285 q^{50} - 294 q^{52} - 166 q^{53} - 11 q^{55} + 21 q^{56} + 536 q^{58} + 11 q^{59} - 436 q^{61} + 244 q^{62} - 431 q^{64} - 319 q^{65} - 127 q^{67} - 66 q^{68} - 168 q^{70} - 936 q^{71} - 327 q^{73} - 812 q^{74} - 480 q^{76} + 154 q^{77} - 228 q^{79} - 830 q^{80} + 794 q^{82} + 262 q^{83} + 46 q^{85} - 972 q^{86} + 33 q^{88} - 44 q^{89} - 175 q^{91} - 288 q^{92} - 1234 q^{94} - 551 q^{95} - 2266 q^{97} - 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.561553 0.198539 0.0992695 0.995061i \(-0.468349\pi\)
0.0992695 + 0.995061i \(0.468349\pi\)
\(3\) 0 0
\(4\) −7.68466 −0.960582
\(5\) −6.68466 −0.597894 −0.298947 0.954270i \(-0.596635\pi\)
−0.298947 + 0.954270i \(0.596635\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −8.80776 −0.389252
\(9\) 0 0
\(10\) −3.75379 −0.118705
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 14.3002 0.305089 0.152545 0.988297i \(-0.451253\pi\)
0.152545 + 0.988297i \(0.451253\pi\)
\(14\) 3.93087 0.0750407
\(15\) 0 0
\(16\) 56.5312 0.883301
\(17\) 47.7538 0.681294 0.340647 0.940191i \(-0.389354\pi\)
0.340647 + 0.940191i \(0.389354\pi\)
\(18\) 0 0
\(19\) 11.9157 0.143876 0.0719382 0.997409i \(-0.477082\pi\)
0.0719382 + 0.997409i \(0.477082\pi\)
\(20\) 51.3693 0.574326
\(21\) 0 0
\(22\) 6.17708 0.0598617
\(23\) 44.4924 0.403361 0.201681 0.979451i \(-0.435360\pi\)
0.201681 + 0.979451i \(0.435360\pi\)
\(24\) 0 0
\(25\) −80.3153 −0.642523
\(26\) 8.03031 0.0605721
\(27\) 0 0
\(28\) −53.7926 −0.363066
\(29\) 139.501 0.893265 0.446632 0.894718i \(-0.352623\pi\)
0.446632 + 0.894718i \(0.352623\pi\)
\(30\) 0 0
\(31\) −208.600 −1.20857 −0.604286 0.796767i \(-0.706542\pi\)
−0.604286 + 0.796767i \(0.706542\pi\)
\(32\) 102.207 0.564621
\(33\) 0 0
\(34\) 26.8163 0.135263
\(35\) −46.7926 −0.225983
\(36\) 0 0
\(37\) −253.086 −1.12452 −0.562258 0.826962i \(-0.690067\pi\)
−0.562258 + 0.826962i \(0.690067\pi\)
\(38\) 6.69130 0.0285651
\(39\) 0 0
\(40\) 58.8769 0.232731
\(41\) 156.294 0.595340 0.297670 0.954669i \(-0.403790\pi\)
0.297670 + 0.954669i \(0.403790\pi\)
\(42\) 0 0
\(43\) −263.386 −0.934094 −0.467047 0.884233i \(-0.654682\pi\)
−0.467047 + 0.884233i \(0.654682\pi\)
\(44\) −84.5312 −0.289626
\(45\) 0 0
\(46\) 24.9848 0.0800829
\(47\) −386.533 −1.19961 −0.599805 0.800146i \(-0.704755\pi\)
−0.599805 + 0.800146i \(0.704755\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −45.1013 −0.127566
\(51\) 0 0
\(52\) −109.892 −0.293063
\(53\) 36.5701 0.0947790 0.0473895 0.998876i \(-0.484910\pi\)
0.0473895 + 0.998876i \(0.484910\pi\)
\(54\) 0 0
\(55\) −73.5312 −0.180272
\(56\) −61.6543 −0.147123
\(57\) 0 0
\(58\) 78.3371 0.177348
\(59\) 114.762 0.253234 0.126617 0.991952i \(-0.459588\pi\)
0.126617 + 0.991952i \(0.459588\pi\)
\(60\) 0 0
\(61\) −53.0758 −0.111404 −0.0557021 0.998447i \(-0.517740\pi\)
−0.0557021 + 0.998447i \(0.517740\pi\)
\(62\) −117.140 −0.239949
\(63\) 0 0
\(64\) −394.855 −0.771201
\(65\) −95.5919 −0.182411
\(66\) 0 0
\(67\) 132.348 0.241326 0.120663 0.992694i \(-0.461498\pi\)
0.120663 + 0.992694i \(0.461498\pi\)
\(68\) −366.972 −0.654439
\(69\) 0 0
\(70\) −26.2765 −0.0448664
\(71\) −583.447 −0.975245 −0.487623 0.873055i \(-0.662136\pi\)
−0.487623 + 0.873055i \(0.662136\pi\)
\(72\) 0 0
\(73\) −817.012 −1.30992 −0.654959 0.755664i \(-0.727314\pi\)
−0.654959 + 0.755664i \(0.727314\pi\)
\(74\) −142.121 −0.223260
\(75\) 0 0
\(76\) −91.5682 −0.138205
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −369.633 −0.526417 −0.263208 0.964739i \(-0.584781\pi\)
−0.263208 + 0.964739i \(0.584781\pi\)
\(80\) −377.892 −0.528120
\(81\) 0 0
\(82\) 87.7671 0.118198
\(83\) 69.1534 0.0914527 0.0457263 0.998954i \(-0.485440\pi\)
0.0457263 + 0.998954i \(0.485440\pi\)
\(84\) 0 0
\(85\) −319.218 −0.407342
\(86\) −147.905 −0.185454
\(87\) 0 0
\(88\) −96.8854 −0.117364
\(89\) −467.295 −0.556553 −0.278276 0.960501i \(-0.589763\pi\)
−0.278276 + 0.960501i \(0.589763\pi\)
\(90\) 0 0
\(91\) 100.101 0.115313
\(92\) −341.909 −0.387462
\(93\) 0 0
\(94\) −217.059 −0.238169
\(95\) −79.6525 −0.0860229
\(96\) 0 0
\(97\) −1170.11 −1.22481 −0.612404 0.790545i \(-0.709798\pi\)
−0.612404 + 0.790545i \(0.709798\pi\)
\(98\) 27.5161 0.0283627
\(99\) 0 0
\(100\) 617.196 0.617196
\(101\) −181.299 −0.178613 −0.0893066 0.996004i \(-0.528465\pi\)
−0.0893066 + 0.996004i \(0.528465\pi\)
\(102\) 0 0
\(103\) −212.324 −0.203115 −0.101558 0.994830i \(-0.532383\pi\)
−0.101558 + 0.994830i \(0.532383\pi\)
\(104\) −125.953 −0.118756
\(105\) 0 0
\(106\) 20.5360 0.0188173
\(107\) −220.111 −0.198868 −0.0994342 0.995044i \(-0.531703\pi\)
−0.0994342 + 0.995044i \(0.531703\pi\)
\(108\) 0 0
\(109\) −247.072 −0.217112 −0.108556 0.994090i \(-0.534623\pi\)
−0.108556 + 0.994090i \(0.534623\pi\)
\(110\) −41.2917 −0.0357910
\(111\) 0 0
\(112\) 395.719 0.333856
\(113\) 139.261 0.115935 0.0579673 0.998318i \(-0.481538\pi\)
0.0579673 + 0.998318i \(0.481538\pi\)
\(114\) 0 0
\(115\) −297.417 −0.241167
\(116\) −1072.02 −0.858054
\(117\) 0 0
\(118\) 64.4451 0.0502767
\(119\) 334.277 0.257505
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −29.8049 −0.0221181
\(123\) 0 0
\(124\) 1603.02 1.16093
\(125\) 1372.46 0.982055
\(126\) 0 0
\(127\) 676.918 0.472967 0.236483 0.971636i \(-0.424005\pi\)
0.236483 + 0.971636i \(0.424005\pi\)
\(128\) −1039.39 −0.717735
\(129\) 0 0
\(130\) −53.6799 −0.0362157
\(131\) −291.042 −0.194110 −0.0970551 0.995279i \(-0.530942\pi\)
−0.0970551 + 0.995279i \(0.530942\pi\)
\(132\) 0 0
\(133\) 83.4100 0.0543802
\(134\) 74.3201 0.0479125
\(135\) 0 0
\(136\) −420.604 −0.265195
\(137\) −2322.41 −1.44830 −0.724148 0.689645i \(-0.757767\pi\)
−0.724148 + 0.689645i \(0.757767\pi\)
\(138\) 0 0
\(139\) 210.436 0.128409 0.0642047 0.997937i \(-0.479549\pi\)
0.0642047 + 0.997937i \(0.479549\pi\)
\(140\) 359.585 0.217075
\(141\) 0 0
\(142\) −327.636 −0.193624
\(143\) 157.302 0.0919878
\(144\) 0 0
\(145\) −932.516 −0.534078
\(146\) −458.796 −0.260070
\(147\) 0 0
\(148\) 1944.88 1.08019
\(149\) 929.815 0.511231 0.255616 0.966779i \(-0.417722\pi\)
0.255616 + 0.966779i \(0.417722\pi\)
\(150\) 0 0
\(151\) 2300.58 1.23986 0.619929 0.784658i \(-0.287161\pi\)
0.619929 + 0.784658i \(0.287161\pi\)
\(152\) −104.951 −0.0560042
\(153\) 0 0
\(154\) 43.2396 0.0226256
\(155\) 1394.42 0.722598
\(156\) 0 0
\(157\) −1947.83 −0.990150 −0.495075 0.868850i \(-0.664859\pi\)
−0.495075 + 0.868850i \(0.664859\pi\)
\(158\) −207.568 −0.104514
\(159\) 0 0
\(160\) −683.221 −0.337584
\(161\) 311.447 0.152456
\(162\) 0 0
\(163\) −2753.64 −1.32320 −0.661601 0.749856i \(-0.730123\pi\)
−0.661601 + 0.749856i \(0.730123\pi\)
\(164\) −1201.06 −0.571873
\(165\) 0 0
\(166\) 38.8333 0.0181569
\(167\) 3883.50 1.79948 0.899742 0.436422i \(-0.143754\pi\)
0.899742 + 0.436422i \(0.143754\pi\)
\(168\) 0 0
\(169\) −1992.50 −0.906921
\(170\) −179.258 −0.0808731
\(171\) 0 0
\(172\) 2024.03 0.897274
\(173\) 3123.33 1.37262 0.686308 0.727311i \(-0.259230\pi\)
0.686308 + 0.727311i \(0.259230\pi\)
\(174\) 0 0
\(175\) −562.207 −0.242851
\(176\) 621.844 0.266325
\(177\) 0 0
\(178\) −262.411 −0.110497
\(179\) −1631.29 −0.681165 −0.340582 0.940215i \(-0.610624\pi\)
−0.340582 + 0.940215i \(0.610624\pi\)
\(180\) 0 0
\(181\) −853.165 −0.350360 −0.175180 0.984536i \(-0.556051\pi\)
−0.175180 + 0.984536i \(0.556051\pi\)
\(182\) 56.2122 0.0228941
\(183\) 0 0
\(184\) −391.879 −0.157009
\(185\) 1691.79 0.672342
\(186\) 0 0
\(187\) 525.292 0.205418
\(188\) 2970.37 1.15232
\(189\) 0 0
\(190\) −44.7291 −0.0170789
\(191\) −2826.32 −1.07071 −0.535354 0.844628i \(-0.679822\pi\)
−0.535354 + 0.844628i \(0.679822\pi\)
\(192\) 0 0
\(193\) 2442.22 0.910856 0.455428 0.890273i \(-0.349486\pi\)
0.455428 + 0.890273i \(0.349486\pi\)
\(194\) −657.077 −0.243172
\(195\) 0 0
\(196\) −376.548 −0.137226
\(197\) −2772.18 −1.00259 −0.501294 0.865277i \(-0.667142\pi\)
−0.501294 + 0.865277i \(0.667142\pi\)
\(198\) 0 0
\(199\) −5579.98 −1.98771 −0.993855 0.110688i \(-0.964694\pi\)
−0.993855 + 0.110688i \(0.964694\pi\)
\(200\) 707.399 0.250103
\(201\) 0 0
\(202\) −101.809 −0.0354617
\(203\) 976.507 0.337622
\(204\) 0 0
\(205\) −1044.77 −0.355950
\(206\) −119.231 −0.0403263
\(207\) 0 0
\(208\) 808.407 0.269485
\(209\) 131.073 0.0433804
\(210\) 0 0
\(211\) 1573.05 0.513237 0.256619 0.966513i \(-0.417392\pi\)
0.256619 + 0.966513i \(0.417392\pi\)
\(212\) −281.028 −0.0910430
\(213\) 0 0
\(214\) −123.604 −0.0394831
\(215\) 1760.65 0.558489
\(216\) 0 0
\(217\) −1460.20 −0.456797
\(218\) −138.744 −0.0431052
\(219\) 0 0
\(220\) 565.062 0.173166
\(221\) 682.888 0.207855
\(222\) 0 0
\(223\) 732.945 0.220097 0.110048 0.993926i \(-0.464899\pi\)
0.110048 + 0.993926i \(0.464899\pi\)
\(224\) 715.452 0.213407
\(225\) 0 0
\(226\) 78.2026 0.0230175
\(227\) −6548.97 −1.91485 −0.957423 0.288687i \(-0.906781\pi\)
−0.957423 + 0.288687i \(0.906781\pi\)
\(228\) 0 0
\(229\) −2326.27 −0.671285 −0.335643 0.941989i \(-0.608953\pi\)
−0.335643 + 0.941989i \(0.608953\pi\)
\(230\) −167.015 −0.0478811
\(231\) 0 0
\(232\) −1228.69 −0.347705
\(233\) 3859.26 1.08510 0.542551 0.840023i \(-0.317459\pi\)
0.542551 + 0.840023i \(0.317459\pi\)
\(234\) 0 0
\(235\) 2583.84 0.717239
\(236\) −881.909 −0.243252
\(237\) 0 0
\(238\) 187.714 0.0511247
\(239\) 3688.00 0.998147 0.499074 0.866560i \(-0.333674\pi\)
0.499074 + 0.866560i \(0.333674\pi\)
\(240\) 0 0
\(241\) −1818.30 −0.486004 −0.243002 0.970026i \(-0.578132\pi\)
−0.243002 + 0.970026i \(0.578132\pi\)
\(242\) 67.9479 0.0180490
\(243\) 0 0
\(244\) 407.869 0.107013
\(245\) −327.548 −0.0854134
\(246\) 0 0
\(247\) 170.397 0.0438951
\(248\) 1837.30 0.470439
\(249\) 0 0
\(250\) 770.710 0.194976
\(251\) −215.497 −0.0541915 −0.0270957 0.999633i \(-0.508626\pi\)
−0.0270957 + 0.999633i \(0.508626\pi\)
\(252\) 0 0
\(253\) 489.417 0.121618
\(254\) 380.125 0.0939023
\(255\) 0 0
\(256\) 2575.17 0.628703
\(257\) −4699.31 −1.14060 −0.570301 0.821436i \(-0.693174\pi\)
−0.570301 + 0.821436i \(0.693174\pi\)
\(258\) 0 0
\(259\) −1771.60 −0.425027
\(260\) 734.591 0.175221
\(261\) 0 0
\(262\) −163.435 −0.0385384
\(263\) −7504.38 −1.75947 −0.879734 0.475466i \(-0.842279\pi\)
−0.879734 + 0.475466i \(0.842279\pi\)
\(264\) 0 0
\(265\) −244.458 −0.0566678
\(266\) 46.8391 0.0107966
\(267\) 0 0
\(268\) −1017.05 −0.231813
\(269\) 2513.64 0.569736 0.284868 0.958567i \(-0.408050\pi\)
0.284868 + 0.958567i \(0.408050\pi\)
\(270\) 0 0
\(271\) 6385.39 1.43131 0.715654 0.698455i \(-0.246129\pi\)
0.715654 + 0.698455i \(0.246129\pi\)
\(272\) 2699.58 0.601787
\(273\) 0 0
\(274\) −1304.15 −0.287543
\(275\) −883.469 −0.193728
\(276\) 0 0
\(277\) 120.650 0.0261702 0.0130851 0.999914i \(-0.495835\pi\)
0.0130851 + 0.999914i \(0.495835\pi\)
\(278\) 118.171 0.0254943
\(279\) 0 0
\(280\) 412.138 0.0879642
\(281\) 2387.75 0.506908 0.253454 0.967347i \(-0.418433\pi\)
0.253454 + 0.967347i \(0.418433\pi\)
\(282\) 0 0
\(283\) 781.711 0.164198 0.0820988 0.996624i \(-0.473838\pi\)
0.0820988 + 0.996624i \(0.473838\pi\)
\(284\) 4483.59 0.936803
\(285\) 0 0
\(286\) 88.3334 0.0182632
\(287\) 1094.05 0.225017
\(288\) 0 0
\(289\) −2632.58 −0.535839
\(290\) −523.657 −0.106035
\(291\) 0 0
\(292\) 6278.46 1.25828
\(293\) −2168.03 −0.432278 −0.216139 0.976363i \(-0.569347\pi\)
−0.216139 + 0.976363i \(0.569347\pi\)
\(294\) 0 0
\(295\) −767.147 −0.151407
\(296\) 2229.12 0.437720
\(297\) 0 0
\(298\) 522.140 0.101499
\(299\) 636.250 0.123061
\(300\) 0 0
\(301\) −1843.70 −0.353054
\(302\) 1291.90 0.246160
\(303\) 0 0
\(304\) 673.610 0.127086
\(305\) 354.793 0.0666079
\(306\) 0 0
\(307\) 10309.9 1.91668 0.958338 0.285636i \(-0.0922047\pi\)
0.958338 + 0.285636i \(0.0922047\pi\)
\(308\) −591.719 −0.109469
\(309\) 0 0
\(310\) 783.042 0.143464
\(311\) 6686.61 1.21917 0.609587 0.792719i \(-0.291335\pi\)
0.609587 + 0.792719i \(0.291335\pi\)
\(312\) 0 0
\(313\) 6457.33 1.16610 0.583051 0.812436i \(-0.301859\pi\)
0.583051 + 0.812436i \(0.301859\pi\)
\(314\) −1093.81 −0.196583
\(315\) 0 0
\(316\) 2840.50 0.505666
\(317\) −7170.30 −1.27042 −0.635212 0.772338i \(-0.719087\pi\)
−0.635212 + 0.772338i \(0.719087\pi\)
\(318\) 0 0
\(319\) 1534.51 0.269329
\(320\) 2639.47 0.461097
\(321\) 0 0
\(322\) 174.894 0.0302685
\(323\) 569.021 0.0980221
\(324\) 0 0
\(325\) −1148.52 −0.196027
\(326\) −1546.32 −0.262707
\(327\) 0 0
\(328\) −1376.60 −0.231737
\(329\) −2705.73 −0.453410
\(330\) 0 0
\(331\) 5849.52 0.971355 0.485678 0.874138i \(-0.338573\pi\)
0.485678 + 0.874138i \(0.338573\pi\)
\(332\) −531.420 −0.0878478
\(333\) 0 0
\(334\) 2180.79 0.357268
\(335\) −884.698 −0.144287
\(336\) 0 0
\(337\) 9784.35 1.58157 0.790783 0.612097i \(-0.209674\pi\)
0.790783 + 0.612097i \(0.209674\pi\)
\(338\) −1118.90 −0.180059
\(339\) 0 0
\(340\) 2453.08 0.391285
\(341\) −2294.60 −0.364398
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 2319.84 0.363598
\(345\) 0 0
\(346\) 1753.92 0.272518
\(347\) −9431.05 −1.45904 −0.729518 0.683962i \(-0.760255\pi\)
−0.729518 + 0.683962i \(0.760255\pi\)
\(348\) 0 0
\(349\) 3933.02 0.603238 0.301619 0.953429i \(-0.402473\pi\)
0.301619 + 0.953429i \(0.402473\pi\)
\(350\) −315.709 −0.0482153
\(351\) 0 0
\(352\) 1124.28 0.170240
\(353\) 6544.48 0.986764 0.493382 0.869813i \(-0.335760\pi\)
0.493382 + 0.869813i \(0.335760\pi\)
\(354\) 0 0
\(355\) 3900.14 0.583093
\(356\) 3591.01 0.534615
\(357\) 0 0
\(358\) −916.056 −0.135238
\(359\) −11013.2 −1.61910 −0.809548 0.587053i \(-0.800288\pi\)
−0.809548 + 0.587053i \(0.800288\pi\)
\(360\) 0 0
\(361\) −6717.02 −0.979300
\(362\) −479.097 −0.0695602
\(363\) 0 0
\(364\) −769.244 −0.110767
\(365\) 5461.45 0.783192
\(366\) 0 0
\(367\) −7733.24 −1.09992 −0.549962 0.835190i \(-0.685358\pi\)
−0.549962 + 0.835190i \(0.685358\pi\)
\(368\) 2515.21 0.356289
\(369\) 0 0
\(370\) 950.032 0.133486
\(371\) 255.990 0.0358231
\(372\) 0 0
\(373\) 2225.01 0.308865 0.154433 0.988003i \(-0.450645\pi\)
0.154433 + 0.988003i \(0.450645\pi\)
\(374\) 294.979 0.0407834
\(375\) 0 0
\(376\) 3404.49 0.466950
\(377\) 1994.89 0.272525
\(378\) 0 0
\(379\) −1141.43 −0.154700 −0.0773500 0.997004i \(-0.524646\pi\)
−0.0773500 + 0.997004i \(0.524646\pi\)
\(380\) 612.102 0.0826320
\(381\) 0 0
\(382\) −1587.13 −0.212577
\(383\) 5445.56 0.726515 0.363257 0.931689i \(-0.381665\pi\)
0.363257 + 0.931689i \(0.381665\pi\)
\(384\) 0 0
\(385\) −514.719 −0.0681363
\(386\) 1371.44 0.180840
\(387\) 0 0
\(388\) 8991.88 1.17653
\(389\) −7194.64 −0.937745 −0.468872 0.883266i \(-0.655340\pi\)
−0.468872 + 0.883266i \(0.655340\pi\)
\(390\) 0 0
\(391\) 2124.68 0.274808
\(392\) −431.580 −0.0556074
\(393\) 0 0
\(394\) −1556.73 −0.199053
\(395\) 2470.87 0.314741
\(396\) 0 0
\(397\) 846.201 0.106976 0.0534882 0.998568i \(-0.482966\pi\)
0.0534882 + 0.998568i \(0.482966\pi\)
\(398\) −3133.45 −0.394638
\(399\) 0 0
\(400\) −4540.33 −0.567541
\(401\) −4219.37 −0.525450 −0.262725 0.964871i \(-0.584621\pi\)
−0.262725 + 0.964871i \(0.584621\pi\)
\(402\) 0 0
\(403\) −2983.02 −0.368722
\(404\) 1393.22 0.171573
\(405\) 0 0
\(406\) 548.360 0.0670312
\(407\) −2783.95 −0.339054
\(408\) 0 0
\(409\) −8028.62 −0.970636 −0.485318 0.874338i \(-0.661296\pi\)
−0.485318 + 0.874338i \(0.661296\pi\)
\(410\) −586.693 −0.0706700
\(411\) 0 0
\(412\) 1631.64 0.195109
\(413\) 803.336 0.0957133
\(414\) 0 0
\(415\) −462.267 −0.0546790
\(416\) 1461.58 0.172260
\(417\) 0 0
\(418\) 73.6043 0.00861269
\(419\) 11381.3 1.32699 0.663497 0.748179i \(-0.269071\pi\)
0.663497 + 0.748179i \(0.269071\pi\)
\(420\) 0 0
\(421\) −2476.59 −0.286702 −0.143351 0.989672i \(-0.545788\pi\)
−0.143351 + 0.989672i \(0.545788\pi\)
\(422\) 883.349 0.101898
\(423\) 0 0
\(424\) −322.100 −0.0368929
\(425\) −3835.36 −0.437747
\(426\) 0 0
\(427\) −371.530 −0.0421068
\(428\) 1691.48 0.191029
\(429\) 0 0
\(430\) 988.697 0.110882
\(431\) 9698.52 1.08390 0.541951 0.840410i \(-0.317686\pi\)
0.541951 + 0.840410i \(0.317686\pi\)
\(432\) 0 0
\(433\) −14385.7 −1.59661 −0.798307 0.602251i \(-0.794271\pi\)
−0.798307 + 0.602251i \(0.794271\pi\)
\(434\) −819.981 −0.0906920
\(435\) 0 0
\(436\) 1898.66 0.208554
\(437\) 530.159 0.0580342
\(438\) 0 0
\(439\) −806.402 −0.0876708 −0.0438354 0.999039i \(-0.513958\pi\)
−0.0438354 + 0.999039i \(0.513958\pi\)
\(440\) 647.646 0.0701711
\(441\) 0 0
\(442\) 383.478 0.0412674
\(443\) −4748.19 −0.509240 −0.254620 0.967041i \(-0.581950\pi\)
−0.254620 + 0.967041i \(0.581950\pi\)
\(444\) 0 0
\(445\) 3123.71 0.332760
\(446\) 411.587 0.0436978
\(447\) 0 0
\(448\) −2763.99 −0.291487
\(449\) 7104.43 0.746724 0.373362 0.927686i \(-0.378205\pi\)
0.373362 + 0.927686i \(0.378205\pi\)
\(450\) 0 0
\(451\) 1719.23 0.179502
\(452\) −1070.18 −0.111365
\(453\) 0 0
\(454\) −3677.59 −0.380172
\(455\) −669.143 −0.0689449
\(456\) 0 0
\(457\) 4600.05 0.470856 0.235428 0.971892i \(-0.424351\pi\)
0.235428 + 0.971892i \(0.424351\pi\)
\(458\) −1306.32 −0.133276
\(459\) 0 0
\(460\) 2285.55 0.231661
\(461\) −7098.21 −0.717130 −0.358565 0.933505i \(-0.616734\pi\)
−0.358565 + 0.933505i \(0.616734\pi\)
\(462\) 0 0
\(463\) 10036.0 1.00737 0.503684 0.863888i \(-0.331978\pi\)
0.503684 + 0.863888i \(0.331978\pi\)
\(464\) 7886.16 0.789021
\(465\) 0 0
\(466\) 2167.18 0.215435
\(467\) −255.074 −0.0252750 −0.0126375 0.999920i \(-0.504023\pi\)
−0.0126375 + 0.999920i \(0.504023\pi\)
\(468\) 0 0
\(469\) 926.433 0.0912125
\(470\) 1450.96 0.142400
\(471\) 0 0
\(472\) −1010.80 −0.0985716
\(473\) −2897.25 −0.281640
\(474\) 0 0
\(475\) −957.015 −0.0924439
\(476\) −2568.80 −0.247355
\(477\) 0 0
\(478\) 2071.01 0.198171
\(479\) 2390.02 0.227981 0.113991 0.993482i \(-0.463637\pi\)
0.113991 + 0.993482i \(0.463637\pi\)
\(480\) 0 0
\(481\) −3619.18 −0.343078
\(482\) −1021.07 −0.0964907
\(483\) 0 0
\(484\) −929.844 −0.0873257
\(485\) 7821.77 0.732306
\(486\) 0 0
\(487\) −16853.6 −1.56819 −0.784095 0.620641i \(-0.786872\pi\)
−0.784095 + 0.620641i \(0.786872\pi\)
\(488\) 467.479 0.0433643
\(489\) 0 0
\(490\) −183.936 −0.0169579
\(491\) −16965.7 −1.55938 −0.779688 0.626168i \(-0.784622\pi\)
−0.779688 + 0.626168i \(0.784622\pi\)
\(492\) 0 0
\(493\) 6661.70 0.608576
\(494\) 95.6869 0.00871489
\(495\) 0 0
\(496\) −11792.4 −1.06753
\(497\) −4084.13 −0.368608
\(498\) 0 0
\(499\) −18186.3 −1.63153 −0.815763 0.578386i \(-0.803683\pi\)
−0.815763 + 0.578386i \(0.803683\pi\)
\(500\) −10546.9 −0.943344
\(501\) 0 0
\(502\) −121.013 −0.0107591
\(503\) 484.954 0.0429881 0.0214941 0.999769i \(-0.493158\pi\)
0.0214941 + 0.999769i \(0.493158\pi\)
\(504\) 0 0
\(505\) 1211.92 0.106792
\(506\) 274.833 0.0241459
\(507\) 0 0
\(508\) −5201.89 −0.454324
\(509\) 7573.95 0.659547 0.329773 0.944060i \(-0.393028\pi\)
0.329773 + 0.944060i \(0.393028\pi\)
\(510\) 0 0
\(511\) −5719.09 −0.495103
\(512\) 9761.22 0.842557
\(513\) 0 0
\(514\) −2638.91 −0.226454
\(515\) 1419.31 0.121442
\(516\) 0 0
\(517\) −4251.86 −0.361696
\(518\) −994.849 −0.0843844
\(519\) 0 0
\(520\) 841.951 0.0710038
\(521\) 8619.11 0.724779 0.362390 0.932027i \(-0.381961\pi\)
0.362390 + 0.932027i \(0.381961\pi\)
\(522\) 0 0
\(523\) 10682.2 0.893116 0.446558 0.894755i \(-0.352650\pi\)
0.446558 + 0.894755i \(0.352650\pi\)
\(524\) 2236.56 0.186459
\(525\) 0 0
\(526\) −4214.11 −0.349323
\(527\) −9961.46 −0.823393
\(528\) 0 0
\(529\) −10187.4 −0.837300
\(530\) −137.276 −0.0112508
\(531\) 0 0
\(532\) −640.977 −0.0522366
\(533\) 2235.03 0.181632
\(534\) 0 0
\(535\) 1471.37 0.118902
\(536\) −1165.69 −0.0939365
\(537\) 0 0
\(538\) 1411.54 0.113115
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −16632.0 −1.32175 −0.660873 0.750498i \(-0.729814\pi\)
−0.660873 + 0.750498i \(0.729814\pi\)
\(542\) 3585.73 0.284170
\(543\) 0 0
\(544\) 4880.79 0.384673
\(545\) 1651.59 0.129810
\(546\) 0 0
\(547\) 5814.76 0.454518 0.227259 0.973834i \(-0.427024\pi\)
0.227259 + 0.973834i \(0.427024\pi\)
\(548\) 17846.9 1.39121
\(549\) 0 0
\(550\) −496.114 −0.0384625
\(551\) 1662.25 0.128520
\(552\) 0 0
\(553\) −2587.43 −0.198967
\(554\) 67.7512 0.00519580
\(555\) 0 0
\(556\) −1617.13 −0.123348
\(557\) 14323.2 1.08958 0.544788 0.838574i \(-0.316610\pi\)
0.544788 + 0.838574i \(0.316610\pi\)
\(558\) 0 0
\(559\) −3766.47 −0.284982
\(560\) −2645.24 −0.199611
\(561\) 0 0
\(562\) 1340.85 0.100641
\(563\) −12389.8 −0.927476 −0.463738 0.885972i \(-0.653492\pi\)
−0.463738 + 0.885972i \(0.653492\pi\)
\(564\) 0 0
\(565\) −930.915 −0.0693166
\(566\) 438.972 0.0325996
\(567\) 0 0
\(568\) 5138.86 0.379616
\(569\) −11823.1 −0.871092 −0.435546 0.900166i \(-0.643445\pi\)
−0.435546 + 0.900166i \(0.643445\pi\)
\(570\) 0 0
\(571\) −26117.3 −1.91414 −0.957069 0.289860i \(-0.906391\pi\)
−0.957069 + 0.289860i \(0.906391\pi\)
\(572\) −1208.81 −0.0883619
\(573\) 0 0
\(574\) 614.370 0.0446747
\(575\) −3573.42 −0.259169
\(576\) 0 0
\(577\) 11861.7 0.855821 0.427911 0.903821i \(-0.359250\pi\)
0.427911 + 0.903821i \(0.359250\pi\)
\(578\) −1478.33 −0.106385
\(579\) 0 0
\(580\) 7166.07 0.513025
\(581\) 484.074 0.0345659
\(582\) 0 0
\(583\) 402.271 0.0285769
\(584\) 7196.05 0.509888
\(585\) 0 0
\(586\) −1217.46 −0.0858241
\(587\) −365.737 −0.0257165 −0.0128582 0.999917i \(-0.504093\pi\)
−0.0128582 + 0.999917i \(0.504093\pi\)
\(588\) 0 0
\(589\) −2485.62 −0.173885
\(590\) −430.793 −0.0300601
\(591\) 0 0
\(592\) −14307.3 −0.993286
\(593\) 17264.3 1.19554 0.597772 0.801666i \(-0.296053\pi\)
0.597772 + 0.801666i \(0.296053\pi\)
\(594\) 0 0
\(595\) −2234.52 −0.153961
\(596\) −7145.31 −0.491080
\(597\) 0 0
\(598\) 357.288 0.0244324
\(599\) 53.8079 0.00367033 0.00183517 0.999998i \(-0.499416\pi\)
0.00183517 + 0.999998i \(0.499416\pi\)
\(600\) 0 0
\(601\) 3018.63 0.204879 0.102440 0.994739i \(-0.467335\pi\)
0.102440 + 0.994739i \(0.467335\pi\)
\(602\) −1035.34 −0.0700950
\(603\) 0 0
\(604\) −17679.2 −1.19099
\(605\) −808.844 −0.0543540
\(606\) 0 0
\(607\) −8991.00 −0.601208 −0.300604 0.953749i \(-0.597188\pi\)
−0.300604 + 0.953749i \(0.597188\pi\)
\(608\) 1217.87 0.0812357
\(609\) 0 0
\(610\) 199.235 0.0132243
\(611\) −5527.50 −0.365988
\(612\) 0 0
\(613\) −16880.3 −1.11222 −0.556110 0.831109i \(-0.687707\pi\)
−0.556110 + 0.831109i \(0.687707\pi\)
\(614\) 5789.58 0.380535
\(615\) 0 0
\(616\) −678.198 −0.0443594
\(617\) −23828.4 −1.55477 −0.777387 0.629022i \(-0.783455\pi\)
−0.777387 + 0.629022i \(0.783455\pi\)
\(618\) 0 0
\(619\) 12588.4 0.817402 0.408701 0.912668i \(-0.365982\pi\)
0.408701 + 0.912668i \(0.365982\pi\)
\(620\) −10715.7 −0.694115
\(621\) 0 0
\(622\) 3754.89 0.242053
\(623\) −3271.07 −0.210357
\(624\) 0 0
\(625\) 864.972 0.0553582
\(626\) 3626.13 0.231516
\(627\) 0 0
\(628\) 14968.4 0.951121
\(629\) −12085.8 −0.766126
\(630\) 0 0
\(631\) −11576.5 −0.730354 −0.365177 0.930938i \(-0.618992\pi\)
−0.365177 + 0.930938i \(0.618992\pi\)
\(632\) 3255.64 0.204909
\(633\) 0 0
\(634\) −4026.50 −0.252228
\(635\) −4524.97 −0.282784
\(636\) 0 0
\(637\) 700.709 0.0435842
\(638\) 861.709 0.0534724
\(639\) 0 0
\(640\) 6947.97 0.429129
\(641\) 9004.11 0.554822 0.277411 0.960751i \(-0.410524\pi\)
0.277411 + 0.960751i \(0.410524\pi\)
\(642\) 0 0
\(643\) 19692.3 1.20776 0.603879 0.797076i \(-0.293621\pi\)
0.603879 + 0.797076i \(0.293621\pi\)
\(644\) −2393.36 −0.146447
\(645\) 0 0
\(646\) 319.535 0.0194612
\(647\) −25548.5 −1.55242 −0.776208 0.630477i \(-0.782859\pi\)
−0.776208 + 0.630477i \(0.782859\pi\)
\(648\) 0 0
\(649\) 1262.39 0.0763528
\(650\) −644.957 −0.0389189
\(651\) 0 0
\(652\) 21160.8 1.27105
\(653\) −15206.7 −0.911306 −0.455653 0.890157i \(-0.650594\pi\)
−0.455653 + 0.890157i \(0.650594\pi\)
\(654\) 0 0
\(655\) 1945.51 0.116057
\(656\) 8835.47 0.525864
\(657\) 0 0
\(658\) −1519.41 −0.0900195
\(659\) −30126.4 −1.78082 −0.890408 0.455162i \(-0.849581\pi\)
−0.890408 + 0.455162i \(0.849581\pi\)
\(660\) 0 0
\(661\) −5122.44 −0.301422 −0.150711 0.988578i \(-0.548156\pi\)
−0.150711 + 0.988578i \(0.548156\pi\)
\(662\) 3284.81 0.192852
\(663\) 0 0
\(664\) −609.087 −0.0355981
\(665\) −557.567 −0.0325136
\(666\) 0 0
\(667\) 6206.73 0.360308
\(668\) −29843.3 −1.72855
\(669\) 0 0
\(670\) −496.805 −0.0286466
\(671\) −583.834 −0.0335896
\(672\) 0 0
\(673\) 9238.65 0.529159 0.264579 0.964364i \(-0.414767\pi\)
0.264579 + 0.964364i \(0.414767\pi\)
\(674\) 5494.43 0.314002
\(675\) 0 0
\(676\) 15311.7 0.871172
\(677\) 12245.5 0.695171 0.347586 0.937648i \(-0.387002\pi\)
0.347586 + 0.937648i \(0.387002\pi\)
\(678\) 0 0
\(679\) −8190.76 −0.462934
\(680\) 2811.59 0.158558
\(681\) 0 0
\(682\) −1288.54 −0.0723472
\(683\) 3210.33 0.179853 0.0899267 0.995948i \(-0.471337\pi\)
0.0899267 + 0.995948i \(0.471337\pi\)
\(684\) 0 0
\(685\) 15524.5 0.865927
\(686\) 192.613 0.0107201
\(687\) 0 0
\(688\) −14889.6 −0.825086
\(689\) 522.959 0.0289160
\(690\) 0 0
\(691\) 15819.4 0.870908 0.435454 0.900211i \(-0.356588\pi\)
0.435454 + 0.900211i \(0.356588\pi\)
\(692\) −24001.7 −1.31851
\(693\) 0 0
\(694\) −5296.03 −0.289675
\(695\) −1406.69 −0.0767752
\(696\) 0 0
\(697\) 7463.61 0.405602
\(698\) 2208.60 0.119766
\(699\) 0 0
\(700\) 4320.37 0.233278
\(701\) 13417.1 0.722907 0.361454 0.932390i \(-0.382281\pi\)
0.361454 + 0.932390i \(0.382281\pi\)
\(702\) 0 0
\(703\) −3015.70 −0.161791
\(704\) −4343.41 −0.232526
\(705\) 0 0
\(706\) 3675.07 0.195911
\(707\) −1269.09 −0.0675095
\(708\) 0 0
\(709\) −25127.4 −1.33100 −0.665500 0.746398i \(-0.731782\pi\)
−0.665500 + 0.746398i \(0.731782\pi\)
\(710\) 2190.14 0.115767
\(711\) 0 0
\(712\) 4115.83 0.216639
\(713\) −9281.14 −0.487491
\(714\) 0 0
\(715\) −1051.51 −0.0549990
\(716\) 12535.9 0.654315
\(717\) 0 0
\(718\) −6184.51 −0.321454
\(719\) −4894.82 −0.253889 −0.126944 0.991910i \(-0.540517\pi\)
−0.126944 + 0.991910i \(0.540517\pi\)
\(720\) 0 0
\(721\) −1486.27 −0.0767704
\(722\) −3771.96 −0.194429
\(723\) 0 0
\(724\) 6556.28 0.336550
\(725\) −11204.1 −0.573943
\(726\) 0 0
\(727\) 19968.3 1.01869 0.509343 0.860564i \(-0.329888\pi\)
0.509343 + 0.860564i \(0.329888\pi\)
\(728\) −881.669 −0.0448857
\(729\) 0 0
\(730\) 3066.89 0.155494
\(731\) −12577.7 −0.636392
\(732\) 0 0
\(733\) −3961.01 −0.199595 −0.0997975 0.995008i \(-0.531820\pi\)
−0.0997975 + 0.995008i \(0.531820\pi\)
\(734\) −4342.62 −0.218378
\(735\) 0 0
\(736\) 4547.45 0.227746
\(737\) 1455.82 0.0727624
\(738\) 0 0
\(739\) −30962.0 −1.54121 −0.770605 0.637313i \(-0.780046\pi\)
−0.770605 + 0.637313i \(0.780046\pi\)
\(740\) −13000.9 −0.645839
\(741\) 0 0
\(742\) 143.752 0.00711227
\(743\) 9800.99 0.483935 0.241967 0.970284i \(-0.422207\pi\)
0.241967 + 0.970284i \(0.422207\pi\)
\(744\) 0 0
\(745\) −6215.50 −0.305662
\(746\) 1249.46 0.0613217
\(747\) 0 0
\(748\) −4036.69 −0.197321
\(749\) −1540.78 −0.0751652
\(750\) 0 0
\(751\) 6366.71 0.309354 0.154677 0.987965i \(-0.450566\pi\)
0.154677 + 0.987965i \(0.450566\pi\)
\(752\) −21851.2 −1.05962
\(753\) 0 0
\(754\) 1120.24 0.0541069
\(755\) −15378.6 −0.741304
\(756\) 0 0
\(757\) 18741.7 0.899838 0.449919 0.893069i \(-0.351453\pi\)
0.449919 + 0.893069i \(0.351453\pi\)
\(758\) −640.973 −0.0307140
\(759\) 0 0
\(760\) 701.560 0.0334846
\(761\) 31269.0 1.48949 0.744745 0.667350i \(-0.232571\pi\)
0.744745 + 0.667350i \(0.232571\pi\)
\(762\) 0 0
\(763\) −1729.50 −0.0820606
\(764\) 21719.3 1.02850
\(765\) 0 0
\(766\) 3057.97 0.144241
\(767\) 1641.12 0.0772588
\(768\) 0 0
\(769\) 6522.45 0.305859 0.152930 0.988237i \(-0.451129\pi\)
0.152930 + 0.988237i \(0.451129\pi\)
\(770\) −289.042 −0.0135277
\(771\) 0 0
\(772\) −18767.7 −0.874952
\(773\) 27552.5 1.28201 0.641007 0.767535i \(-0.278517\pi\)
0.641007 + 0.767535i \(0.278517\pi\)
\(774\) 0 0
\(775\) 16753.8 0.776535
\(776\) 10306.0 0.476759
\(777\) 0 0
\(778\) −4040.17 −0.186179
\(779\) 1862.35 0.0856554
\(780\) 0 0
\(781\) −6417.92 −0.294048
\(782\) 1193.12 0.0545600
\(783\) 0 0
\(784\) 2770.03 0.126186
\(785\) 13020.6 0.592005
\(786\) 0 0
\(787\) −31775.6 −1.43923 −0.719616 0.694372i \(-0.755682\pi\)
−0.719616 + 0.694372i \(0.755682\pi\)
\(788\) 21303.3 0.963068
\(789\) 0 0
\(790\) 1387.52 0.0624884
\(791\) 974.830 0.0438192
\(792\) 0 0
\(793\) −758.993 −0.0339882
\(794\) 475.187 0.0212390
\(795\) 0 0
\(796\) 42880.2 1.90936
\(797\) 26583.5 1.18147 0.590737 0.806864i \(-0.298837\pi\)
0.590737 + 0.806864i \(0.298837\pi\)
\(798\) 0 0
\(799\) −18458.4 −0.817287
\(800\) −8208.82 −0.362782
\(801\) 0 0
\(802\) −2369.40 −0.104322
\(803\) −8987.13 −0.394955
\(804\) 0 0
\(805\) −2081.92 −0.0911527
\(806\) −1675.13 −0.0732057
\(807\) 0 0
\(808\) 1596.84 0.0695255
\(809\) 4580.99 0.199084 0.0995421 0.995033i \(-0.468262\pi\)
0.0995421 + 0.995033i \(0.468262\pi\)
\(810\) 0 0
\(811\) −11867.9 −0.513855 −0.256928 0.966431i \(-0.582710\pi\)
−0.256928 + 0.966431i \(0.582710\pi\)
\(812\) −7504.12 −0.324314
\(813\) 0 0
\(814\) −1563.33 −0.0673155
\(815\) 18407.2 0.791135
\(816\) 0 0
\(817\) −3138.44 −0.134394
\(818\) −4508.50 −0.192709
\(819\) 0 0
\(820\) 8028.69 0.341920
\(821\) −6389.94 −0.271633 −0.135816 0.990734i \(-0.543366\pi\)
−0.135816 + 0.990734i \(0.543366\pi\)
\(822\) 0 0
\(823\) −35488.9 −1.50312 −0.751558 0.659667i \(-0.770697\pi\)
−0.751558 + 0.659667i \(0.770697\pi\)
\(824\) 1870.10 0.0790631
\(825\) 0 0
\(826\) 451.116 0.0190028
\(827\) 506.928 0.0213151 0.0106576 0.999943i \(-0.496608\pi\)
0.0106576 + 0.999943i \(0.496608\pi\)
\(828\) 0 0
\(829\) −18129.2 −0.759535 −0.379768 0.925082i \(-0.623996\pi\)
−0.379768 + 0.925082i \(0.623996\pi\)
\(830\) −259.587 −0.0108559
\(831\) 0 0
\(832\) −5646.50 −0.235285
\(833\) 2339.94 0.0973277
\(834\) 0 0
\(835\) −25959.8 −1.07590
\(836\) −1007.25 −0.0416704
\(837\) 0 0
\(838\) 6391.18 0.263460
\(839\) 4031.98 0.165911 0.0829556 0.996553i \(-0.473564\pi\)
0.0829556 + 0.996553i \(0.473564\pi\)
\(840\) 0 0
\(841\) −4928.49 −0.202078
\(842\) −1390.74 −0.0569216
\(843\) 0 0
\(844\) −12088.3 −0.493006
\(845\) 13319.2 0.542242
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 2067.35 0.0837183
\(849\) 0 0
\(850\) −2153.76 −0.0869098
\(851\) −11260.4 −0.453586
\(852\) 0 0
\(853\) 20432.0 0.820140 0.410070 0.912054i \(-0.365504\pi\)
0.410070 + 0.912054i \(0.365504\pi\)
\(854\) −208.634 −0.00835984
\(855\) 0 0
\(856\) 1938.68 0.0774099
\(857\) −27874.2 −1.11105 −0.555523 0.831501i \(-0.687482\pi\)
−0.555523 + 0.831501i \(0.687482\pi\)
\(858\) 0 0
\(859\) −7972.63 −0.316674 −0.158337 0.987385i \(-0.550613\pi\)
−0.158337 + 0.987385i \(0.550613\pi\)
\(860\) −13530.0 −0.536475
\(861\) 0 0
\(862\) 5446.23 0.215197
\(863\) 45524.5 1.79568 0.897840 0.440322i \(-0.145136\pi\)
0.897840 + 0.440322i \(0.145136\pi\)
\(864\) 0 0
\(865\) −20878.4 −0.820679
\(866\) −8078.34 −0.316990
\(867\) 0 0
\(868\) 11221.2 0.438791
\(869\) −4065.96 −0.158721
\(870\) 0 0
\(871\) 1892.59 0.0736258
\(872\) 2176.15 0.0845113
\(873\) 0 0
\(874\) 297.712 0.0115220
\(875\) 9607.24 0.371182
\(876\) 0 0
\(877\) 24262.3 0.934186 0.467093 0.884208i \(-0.345301\pi\)
0.467093 + 0.884208i \(0.345301\pi\)
\(878\) −452.837 −0.0174061
\(879\) 0 0
\(880\) −4156.81 −0.159234
\(881\) 6944.67 0.265575 0.132788 0.991145i \(-0.457607\pi\)
0.132788 + 0.991145i \(0.457607\pi\)
\(882\) 0 0
\(883\) −11539.6 −0.439794 −0.219897 0.975523i \(-0.570572\pi\)
−0.219897 + 0.975523i \(0.570572\pi\)
\(884\) −5247.76 −0.199662
\(885\) 0 0
\(886\) −2666.36 −0.101104
\(887\) 259.602 0.00982702 0.00491351 0.999988i \(-0.498436\pi\)
0.00491351 + 0.999988i \(0.498436\pi\)
\(888\) 0 0
\(889\) 4738.43 0.178765
\(890\) 1754.13 0.0660657
\(891\) 0 0
\(892\) −5632.43 −0.211421
\(893\) −4605.82 −0.172596
\(894\) 0 0
\(895\) 10904.6 0.407264
\(896\) −7275.74 −0.271278
\(897\) 0 0
\(898\) 3989.51 0.148254
\(899\) −29099.9 −1.07957
\(900\) 0 0
\(901\) 1746.36 0.0645723
\(902\) 965.438 0.0356381
\(903\) 0 0
\(904\) −1226.58 −0.0451277
\(905\) 5703.11 0.209478
\(906\) 0 0
\(907\) −20655.5 −0.756179 −0.378089 0.925769i \(-0.623419\pi\)
−0.378089 + 0.925769i \(0.623419\pi\)
\(908\) 50326.6 1.83937
\(909\) 0 0
\(910\) −375.759 −0.0136882
\(911\) 14371.0 0.522648 0.261324 0.965251i \(-0.415841\pi\)
0.261324 + 0.965251i \(0.415841\pi\)
\(912\) 0 0
\(913\) 760.688 0.0275740
\(914\) 2583.17 0.0934833
\(915\) 0 0
\(916\) 17876.6 0.644825
\(917\) −2037.29 −0.0733668
\(918\) 0 0
\(919\) 12066.1 0.433107 0.216553 0.976271i \(-0.430518\pi\)
0.216553 + 0.976271i \(0.430518\pi\)
\(920\) 2619.58 0.0938748
\(921\) 0 0
\(922\) −3986.02 −0.142378
\(923\) −8343.40 −0.297537
\(924\) 0 0
\(925\) 20326.7 0.722527
\(926\) 5635.73 0.200002
\(927\) 0 0
\(928\) 14258.0 0.504356
\(929\) 53667.0 1.89532 0.947662 0.319275i \(-0.103439\pi\)
0.947662 + 0.319275i \(0.103439\pi\)
\(930\) 0 0
\(931\) 583.870 0.0205538
\(932\) −29657.1 −1.04233
\(933\) 0 0
\(934\) −143.238 −0.00501808
\(935\) −3511.40 −0.122818
\(936\) 0 0
\(937\) 26617.1 0.928007 0.464004 0.885833i \(-0.346412\pi\)
0.464004 + 0.885833i \(0.346412\pi\)
\(938\) 520.241 0.0181092
\(939\) 0 0
\(940\) −19855.9 −0.688967
\(941\) 39750.7 1.37709 0.688543 0.725196i \(-0.258251\pi\)
0.688543 + 0.725196i \(0.258251\pi\)
\(942\) 0 0
\(943\) 6953.88 0.240137
\(944\) 6487.66 0.223681
\(945\) 0 0
\(946\) −1626.96 −0.0559165
\(947\) −18606.6 −0.638471 −0.319235 0.947675i \(-0.603426\pi\)
−0.319235 + 0.947675i \(0.603426\pi\)
\(948\) 0 0
\(949\) −11683.4 −0.399642
\(950\) −537.414 −0.0183537
\(951\) 0 0
\(952\) −2944.23 −0.100234
\(953\) 46514.2 1.58105 0.790526 0.612428i \(-0.209807\pi\)
0.790526 + 0.612428i \(0.209807\pi\)
\(954\) 0 0
\(955\) 18893.0 0.640169
\(956\) −28341.1 −0.958803
\(957\) 0 0
\(958\) 1342.12 0.0452631
\(959\) −16256.8 −0.547404
\(960\) 0 0
\(961\) 13723.1 0.460646
\(962\) −2032.36 −0.0681143
\(963\) 0 0
\(964\) 13973.0 0.466847
\(965\) −16325.4 −0.544595
\(966\) 0 0
\(967\) 34299.6 1.14064 0.570321 0.821422i \(-0.306819\pi\)
0.570321 + 0.821422i \(0.306819\pi\)
\(968\) −1065.74 −0.0353865
\(969\) 0 0
\(970\) 4392.34 0.145391
\(971\) 27751.4 0.917182 0.458591 0.888648i \(-0.348354\pi\)
0.458591 + 0.888648i \(0.348354\pi\)
\(972\) 0 0
\(973\) 1473.05 0.0485342
\(974\) −9464.17 −0.311347
\(975\) 0 0
\(976\) −3000.44 −0.0984034
\(977\) 4009.25 0.131287 0.0656434 0.997843i \(-0.479090\pi\)
0.0656434 + 0.997843i \(0.479090\pi\)
\(978\) 0 0
\(979\) −5140.25 −0.167807
\(980\) 2517.10 0.0820466
\(981\) 0 0
\(982\) −9527.16 −0.309597
\(983\) −9792.68 −0.317739 −0.158870 0.987300i \(-0.550785\pi\)
−0.158870 + 0.987300i \(0.550785\pi\)
\(984\) 0 0
\(985\) 18531.1 0.599441
\(986\) 3740.90 0.120826
\(987\) 0 0
\(988\) −1309.44 −0.0421649
\(989\) −11718.7 −0.376777
\(990\) 0 0
\(991\) 51763.7 1.65926 0.829631 0.558312i \(-0.188551\pi\)
0.829631 + 0.558312i \(0.188551\pi\)
\(992\) −21320.5 −0.682386
\(993\) 0 0
\(994\) −2293.45 −0.0731830
\(995\) 37300.3 1.18844
\(996\) 0 0
\(997\) −17369.9 −0.551767 −0.275884 0.961191i \(-0.588970\pi\)
−0.275884 + 0.961191i \(0.588970\pi\)
\(998\) −10212.6 −0.323921
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.g.1.2 2
3.2 odd 2 231.4.a.h.1.1 2
21.20 even 2 1617.4.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.h.1.1 2 3.2 odd 2
693.4.a.g.1.2 2 1.1 even 1 trivial
1617.4.a.m.1.1 2 21.20 even 2