Properties

Label 693.4.a.g.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.56155 q^{2} +4.68466 q^{4} +5.68466 q^{5} +7.00000 q^{7} +11.8078 q^{8} +O(q^{10})\) \(q-3.56155 q^{2} +4.68466 q^{4} +5.68466 q^{5} +7.00000 q^{7} +11.8078 q^{8} -20.2462 q^{10} +11.0000 q^{11} -39.3002 q^{13} -24.9309 q^{14} -79.5312 q^{16} +64.2462 q^{17} -82.9157 q^{19} +26.6307 q^{20} -39.1771 q^{22} +11.5076 q^{23} -92.6847 q^{25} +139.970 q^{26} +32.7926 q^{28} -128.501 q^{29} -101.400 q^{31} +188.793 q^{32} -228.816 q^{34} +39.7926 q^{35} +188.086 q^{37} +295.309 q^{38} +67.1231 q^{40} -198.294 q^{41} +231.386 q^{43} +51.5312 q^{44} -40.9848 q^{46} +285.533 q^{47} +49.0000 q^{49} +330.101 q^{50} -184.108 q^{52} -202.570 q^{53} +62.5312 q^{55} +82.6543 q^{56} +457.663 q^{58} -103.762 q^{59} -382.924 q^{61} +361.140 q^{62} -36.1449 q^{64} -223.408 q^{65} -259.348 q^{67} +300.972 q^{68} -141.723 q^{70} -352.553 q^{71} +490.012 q^{73} -669.879 q^{74} -388.432 q^{76} +77.0000 q^{77} +141.633 q^{79} -452.108 q^{80} +706.233 q^{82} +192.847 q^{83} +365.218 q^{85} -824.095 q^{86} +129.885 q^{88} +423.295 q^{89} -275.101 q^{91} +53.9091 q^{92} -1016.94 q^{94} -471.348 q^{95} -1095.89 q^{97} -174.516 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 3 q^{4} - q^{5} + 14 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{2} - 3 q^{4} - q^{5} + 14 q^{7} + 3 q^{8} - 24 q^{10} + 22 q^{11} - 25 q^{13} - 21 q^{14} - 23 q^{16} + 112 q^{17} - 71 q^{19} + 78 q^{20} - 33 q^{22} + 56 q^{23} - 173 q^{25} + 148 q^{26} - 21 q^{28} + 11 q^{29} - 310 q^{31} + 291 q^{32} - 202 q^{34} - 7 q^{35} - 65 q^{37} + 302 q^{38} + 126 q^{40} - 42 q^{41} - 32 q^{43} - 33 q^{44} - 16 q^{46} - 101 q^{47} + 98 q^{49} + 285 q^{50} - 294 q^{52} - 166 q^{53} - 11 q^{55} + 21 q^{56} + 536 q^{58} + 11 q^{59} - 436 q^{61} + 244 q^{62} - 431 q^{64} - 319 q^{65} - 127 q^{67} - 66 q^{68} - 168 q^{70} - 936 q^{71} - 327 q^{73} - 812 q^{74} - 480 q^{76} + 154 q^{77} - 228 q^{79} - 830 q^{80} + 794 q^{82} + 262 q^{83} + 46 q^{85} - 972 q^{86} + 33 q^{88} - 44 q^{89} - 175 q^{91} - 288 q^{92} - 1234 q^{94} - 551 q^{95} - 2266 q^{97} - 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.56155 −1.25920 −0.629600 0.776920i \(-0.716781\pi\)
−0.629600 + 0.776920i \(0.716781\pi\)
\(3\) 0 0
\(4\) 4.68466 0.585582
\(5\) 5.68466 0.508451 0.254226 0.967145i \(-0.418179\pi\)
0.254226 + 0.967145i \(0.418179\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 11.8078 0.521834
\(9\) 0 0
\(10\) −20.2462 −0.640241
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −39.3002 −0.838455 −0.419227 0.907881i \(-0.637699\pi\)
−0.419227 + 0.907881i \(0.637699\pi\)
\(14\) −24.9309 −0.475933
\(15\) 0 0
\(16\) −79.5312 −1.24268
\(17\) 64.2462 0.916588 0.458294 0.888801i \(-0.348461\pi\)
0.458294 + 0.888801i \(0.348461\pi\)
\(18\) 0 0
\(19\) −82.9157 −1.00117 −0.500583 0.865688i \(-0.666881\pi\)
−0.500583 + 0.865688i \(0.666881\pi\)
\(20\) 26.6307 0.297740
\(21\) 0 0
\(22\) −39.1771 −0.379663
\(23\) 11.5076 0.104326 0.0521630 0.998639i \(-0.483388\pi\)
0.0521630 + 0.998639i \(0.483388\pi\)
\(24\) 0 0
\(25\) −92.6847 −0.741477
\(26\) 139.970 1.05578
\(27\) 0 0
\(28\) 32.7926 0.221329
\(29\) −128.501 −0.822828 −0.411414 0.911448i \(-0.634965\pi\)
−0.411414 + 0.911448i \(0.634965\pi\)
\(30\) 0 0
\(31\) −101.400 −0.587481 −0.293740 0.955885i \(-0.594900\pi\)
−0.293740 + 0.955885i \(0.594900\pi\)
\(32\) 188.793 1.04294
\(33\) 0 0
\(34\) −228.816 −1.15417
\(35\) 39.7926 0.192177
\(36\) 0 0
\(37\) 188.086 0.835707 0.417854 0.908514i \(-0.362782\pi\)
0.417854 + 0.908514i \(0.362782\pi\)
\(38\) 295.309 1.26067
\(39\) 0 0
\(40\) 67.1231 0.265327
\(41\) −198.294 −0.755323 −0.377662 0.925944i \(-0.623272\pi\)
−0.377662 + 0.925944i \(0.623272\pi\)
\(42\) 0 0
\(43\) 231.386 0.820607 0.410303 0.911949i \(-0.365423\pi\)
0.410303 + 0.911949i \(0.365423\pi\)
\(44\) 51.5312 0.176560
\(45\) 0 0
\(46\) −40.9848 −0.131367
\(47\) 285.533 0.886155 0.443077 0.896483i \(-0.353887\pi\)
0.443077 + 0.896483i \(0.353887\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 330.101 0.933667
\(51\) 0 0
\(52\) −184.108 −0.490984
\(53\) −202.570 −0.525003 −0.262501 0.964932i \(-0.584547\pi\)
−0.262501 + 0.964932i \(0.584547\pi\)
\(54\) 0 0
\(55\) 62.5312 0.153304
\(56\) 82.6543 0.197235
\(57\) 0 0
\(58\) 457.663 1.03610
\(59\) −103.762 −0.228961 −0.114481 0.993425i \(-0.536520\pi\)
−0.114481 + 0.993425i \(0.536520\pi\)
\(60\) 0 0
\(61\) −382.924 −0.803745 −0.401872 0.915696i \(-0.631640\pi\)
−0.401872 + 0.915696i \(0.631640\pi\)
\(62\) 361.140 0.739756
\(63\) 0 0
\(64\) −36.1449 −0.0705955
\(65\) −223.408 −0.426313
\(66\) 0 0
\(67\) −259.348 −0.472901 −0.236450 0.971644i \(-0.575984\pi\)
−0.236450 + 0.971644i \(0.575984\pi\)
\(68\) 300.972 0.536738
\(69\) 0 0
\(70\) −141.723 −0.241989
\(71\) −352.553 −0.589301 −0.294650 0.955605i \(-0.595203\pi\)
−0.294650 + 0.955605i \(0.595203\pi\)
\(72\) 0 0
\(73\) 490.012 0.785638 0.392819 0.919616i \(-0.371500\pi\)
0.392819 + 0.919616i \(0.371500\pi\)
\(74\) −669.879 −1.05232
\(75\) 0 0
\(76\) −388.432 −0.586266
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 141.633 0.201708 0.100854 0.994901i \(-0.467843\pi\)
0.100854 + 0.994901i \(0.467843\pi\)
\(80\) −452.108 −0.631840
\(81\) 0 0
\(82\) 706.233 0.951102
\(83\) 192.847 0.255032 0.127516 0.991837i \(-0.459300\pi\)
0.127516 + 0.991837i \(0.459300\pi\)
\(84\) 0 0
\(85\) 365.218 0.466040
\(86\) −824.095 −1.03331
\(87\) 0 0
\(88\) 129.885 0.157339
\(89\) 423.295 0.504149 0.252074 0.967708i \(-0.418887\pi\)
0.252074 + 0.967708i \(0.418887\pi\)
\(90\) 0 0
\(91\) −275.101 −0.316906
\(92\) 53.9091 0.0610914
\(93\) 0 0
\(94\) −1016.94 −1.11585
\(95\) −471.348 −0.509045
\(96\) 0 0
\(97\) −1095.89 −1.14712 −0.573562 0.819162i \(-0.694439\pi\)
−0.573562 + 0.819162i \(0.694439\pi\)
\(98\) −174.516 −0.179886
\(99\) 0 0
\(100\) −434.196 −0.434196
\(101\) 1781.30 1.75491 0.877455 0.479659i \(-0.159240\pi\)
0.877455 + 0.479659i \(0.159240\pi\)
\(102\) 0 0
\(103\) 10.3239 0.00987611 0.00493806 0.999988i \(-0.498428\pi\)
0.00493806 + 0.999988i \(0.498428\pi\)
\(104\) −464.047 −0.437534
\(105\) 0 0
\(106\) 721.464 0.661083
\(107\) −1518.89 −1.37230 −0.686152 0.727458i \(-0.740702\pi\)
−0.686152 + 0.727458i \(0.740702\pi\)
\(108\) 0 0
\(109\) −1648.93 −1.44898 −0.724489 0.689286i \(-0.757924\pi\)
−0.724489 + 0.689286i \(0.757924\pi\)
\(110\) −222.708 −0.193040
\(111\) 0 0
\(112\) −556.719 −0.469687
\(113\) 188.739 0.157124 0.0785621 0.996909i \(-0.474967\pi\)
0.0785621 + 0.996909i \(0.474967\pi\)
\(114\) 0 0
\(115\) 65.4166 0.0530446
\(116\) −601.983 −0.481834
\(117\) 0 0
\(118\) 369.555 0.288308
\(119\) 449.723 0.346438
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1363.80 1.01207
\(123\) 0 0
\(124\) −475.023 −0.344018
\(125\) −1237.46 −0.885456
\(126\) 0 0
\(127\) −2398.92 −1.67614 −0.838069 0.545564i \(-0.816316\pi\)
−0.838069 + 0.545564i \(0.816316\pi\)
\(128\) −1381.61 −0.954048
\(129\) 0 0
\(130\) 795.680 0.536813
\(131\) −1560.96 −1.04108 −0.520540 0.853837i \(-0.674269\pi\)
−0.520540 + 0.853837i \(0.674269\pi\)
\(132\) 0 0
\(133\) −580.410 −0.378405
\(134\) 923.680 0.595476
\(135\) 0 0
\(136\) 758.604 0.478307
\(137\) −821.595 −0.512362 −0.256181 0.966629i \(-0.582464\pi\)
−0.256181 + 0.966629i \(0.582464\pi\)
\(138\) 0 0
\(139\) −1158.44 −0.706886 −0.353443 0.935456i \(-0.614989\pi\)
−0.353443 + 0.935456i \(0.614989\pi\)
\(140\) 186.415 0.112535
\(141\) 0 0
\(142\) 1255.64 0.742047
\(143\) −432.302 −0.252804
\(144\) 0 0
\(145\) −730.484 −0.418368
\(146\) −1745.20 −0.989275
\(147\) 0 0
\(148\) 881.119 0.489375
\(149\) −1234.82 −0.678926 −0.339463 0.940619i \(-0.610245\pi\)
−0.339463 + 0.940619i \(0.610245\pi\)
\(150\) 0 0
\(151\) −1154.58 −0.622242 −0.311121 0.950370i \(-0.600704\pi\)
−0.311121 + 0.950370i \(0.600704\pi\)
\(152\) −979.049 −0.522443
\(153\) 0 0
\(154\) −274.240 −0.143499
\(155\) −576.422 −0.298705
\(156\) 0 0
\(157\) −2830.17 −1.43868 −0.719339 0.694660i \(-0.755555\pi\)
−0.719339 + 0.694660i \(0.755555\pi\)
\(158\) −504.432 −0.253990
\(159\) 0 0
\(160\) 1073.22 0.530285
\(161\) 80.5530 0.0394315
\(162\) 0 0
\(163\) 3418.64 1.64275 0.821377 0.570386i \(-0.193206\pi\)
0.821377 + 0.570386i \(0.193206\pi\)
\(164\) −928.938 −0.442304
\(165\) 0 0
\(166\) −686.833 −0.321136
\(167\) −1575.50 −0.730033 −0.365017 0.931001i \(-0.618937\pi\)
−0.365017 + 0.931001i \(0.618937\pi\)
\(168\) 0 0
\(169\) −652.495 −0.296994
\(170\) −1300.74 −0.586838
\(171\) 0 0
\(172\) 1083.97 0.480533
\(173\) −3597.33 −1.58092 −0.790462 0.612510i \(-0.790160\pi\)
−0.790462 + 0.612510i \(0.790160\pi\)
\(174\) 0 0
\(175\) −648.793 −0.280252
\(176\) −874.844 −0.374681
\(177\) 0 0
\(178\) −1507.59 −0.634823
\(179\) −1812.71 −0.756917 −0.378459 0.925618i \(-0.623546\pi\)
−0.378459 + 0.925618i \(0.623546\pi\)
\(180\) 0 0
\(181\) 2239.16 0.919535 0.459767 0.888039i \(-0.347933\pi\)
0.459767 + 0.888039i \(0.347933\pi\)
\(182\) 979.788 0.399048
\(183\) 0 0
\(184\) 135.879 0.0544408
\(185\) 1069.21 0.424917
\(186\) 0 0
\(187\) 706.708 0.276362
\(188\) 1337.63 0.518917
\(189\) 0 0
\(190\) 1678.73 0.640988
\(191\) 3960.32 1.50031 0.750153 0.661264i \(-0.229980\pi\)
0.750153 + 0.661264i \(0.229980\pi\)
\(192\) 0 0
\(193\) −4740.22 −1.76792 −0.883961 0.467561i \(-0.845133\pi\)
−0.883961 + 0.467561i \(0.845133\pi\)
\(194\) 3903.08 1.44446
\(195\) 0 0
\(196\) 229.548 0.0836546
\(197\) 5144.18 1.86045 0.930223 0.366996i \(-0.119614\pi\)
0.930223 + 0.366996i \(0.119614\pi\)
\(198\) 0 0
\(199\) −2232.02 −0.795094 −0.397547 0.917582i \(-0.630138\pi\)
−0.397547 + 0.917582i \(0.630138\pi\)
\(200\) −1094.40 −0.386928
\(201\) 0 0
\(202\) −6344.19 −2.20978
\(203\) −899.507 −0.311000
\(204\) 0 0
\(205\) −1127.23 −0.384045
\(206\) −36.7689 −0.0124360
\(207\) 0 0
\(208\) 3125.59 1.04193
\(209\) −912.073 −0.301863
\(210\) 0 0
\(211\) −3119.05 −1.01765 −0.508825 0.860870i \(-0.669920\pi\)
−0.508825 + 0.860870i \(0.669920\pi\)
\(212\) −948.972 −0.307432
\(213\) 0 0
\(214\) 5409.60 1.72800
\(215\) 1315.35 0.417239
\(216\) 0 0
\(217\) −709.797 −0.222047
\(218\) 5872.74 1.82455
\(219\) 0 0
\(220\) 292.938 0.0897720
\(221\) −2524.89 −0.768517
\(222\) 0 0
\(223\) −1138.94 −0.342015 −0.171008 0.985270i \(-0.554702\pi\)
−0.171008 + 0.985270i \(0.554702\pi\)
\(224\) 1321.55 0.394195
\(225\) 0 0
\(226\) −672.203 −0.197851
\(227\) 1754.97 0.513133 0.256567 0.966527i \(-0.417409\pi\)
0.256567 + 0.966527i \(0.417409\pi\)
\(228\) 0 0
\(229\) 304.271 0.0878025 0.0439013 0.999036i \(-0.486021\pi\)
0.0439013 + 0.999036i \(0.486021\pi\)
\(230\) −232.985 −0.0667938
\(231\) 0 0
\(232\) −1517.31 −0.429380
\(233\) 3908.74 1.09901 0.549506 0.835490i \(-0.314816\pi\)
0.549506 + 0.835490i \(0.314816\pi\)
\(234\) 0 0
\(235\) 1623.16 0.450567
\(236\) −486.091 −0.134076
\(237\) 0 0
\(238\) −1601.71 −0.436234
\(239\) 170.995 0.0462794 0.0231397 0.999732i \(-0.492634\pi\)
0.0231397 + 0.999732i \(0.492634\pi\)
\(240\) 0 0
\(241\) −6654.70 −1.77870 −0.889351 0.457226i \(-0.848843\pi\)
−0.889351 + 0.457226i \(0.848843\pi\)
\(242\) −430.948 −0.114473
\(243\) 0 0
\(244\) −1793.87 −0.470659
\(245\) 278.548 0.0726359
\(246\) 0 0
\(247\) 3258.60 0.839433
\(248\) −1197.30 −0.306568
\(249\) 0 0
\(250\) 4407.29 1.11497
\(251\) −1019.50 −0.256376 −0.128188 0.991750i \(-0.540916\pi\)
−0.128188 + 0.991750i \(0.540916\pi\)
\(252\) 0 0
\(253\) 126.583 0.0314554
\(254\) 8543.87 2.11059
\(255\) 0 0
\(256\) 5209.83 1.27193
\(257\) 6742.31 1.63647 0.818237 0.574881i \(-0.194952\pi\)
0.818237 + 0.574881i \(0.194952\pi\)
\(258\) 0 0
\(259\) 1316.60 0.315868
\(260\) −1046.59 −0.249642
\(261\) 0 0
\(262\) 5559.44 1.31093
\(263\) −1282.62 −0.300721 −0.150360 0.988631i \(-0.548043\pi\)
−0.150360 + 0.988631i \(0.548043\pi\)
\(264\) 0 0
\(265\) −1151.54 −0.266938
\(266\) 2067.16 0.476488
\(267\) 0 0
\(268\) −1214.95 −0.276922
\(269\) 930.364 0.210875 0.105437 0.994426i \(-0.466376\pi\)
0.105437 + 0.994426i \(0.466376\pi\)
\(270\) 0 0
\(271\) 8335.61 1.86846 0.934230 0.356672i \(-0.116089\pi\)
0.934230 + 0.356672i \(0.116089\pi\)
\(272\) −5109.58 −1.13902
\(273\) 0 0
\(274\) 2926.15 0.645166
\(275\) −1019.53 −0.223564
\(276\) 0 0
\(277\) 3493.35 0.757744 0.378872 0.925449i \(-0.376312\pi\)
0.378872 + 0.925449i \(0.376312\pi\)
\(278\) 4125.83 0.890111
\(279\) 0 0
\(280\) 469.862 0.100284
\(281\) 1031.25 0.218929 0.109465 0.993991i \(-0.465086\pi\)
0.109465 + 0.993991i \(0.465086\pi\)
\(282\) 0 0
\(283\) −2380.71 −0.500066 −0.250033 0.968237i \(-0.580441\pi\)
−0.250033 + 0.968237i \(0.580441\pi\)
\(284\) −1651.59 −0.345084
\(285\) 0 0
\(286\) 1539.67 0.318330
\(287\) −1388.05 −0.285485
\(288\) 0 0
\(289\) −785.424 −0.159867
\(290\) 2601.66 0.526809
\(291\) 0 0
\(292\) 2295.54 0.460056
\(293\) −7189.97 −1.43359 −0.716796 0.697283i \(-0.754392\pi\)
−0.716796 + 0.697283i \(0.754392\pi\)
\(294\) 0 0
\(295\) −589.853 −0.116416
\(296\) 2220.88 0.436101
\(297\) 0 0
\(298\) 4397.86 0.854903
\(299\) −452.250 −0.0874725
\(300\) 0 0
\(301\) 1619.70 0.310160
\(302\) 4112.10 0.783526
\(303\) 0 0
\(304\) 6594.39 1.24413
\(305\) −2176.79 −0.408665
\(306\) 0 0
\(307\) −805.946 −0.149830 −0.0749150 0.997190i \(-0.523869\pi\)
−0.0749150 + 0.997190i \(0.523869\pi\)
\(308\) 360.719 0.0667333
\(309\) 0 0
\(310\) 2052.96 0.376130
\(311\) −1526.61 −0.278348 −0.139174 0.990268i \(-0.544445\pi\)
−0.139174 + 0.990268i \(0.544445\pi\)
\(312\) 0 0
\(313\) 5698.67 1.02910 0.514550 0.857461i \(-0.327959\pi\)
0.514550 + 0.857461i \(0.327959\pi\)
\(314\) 10079.8 1.81158
\(315\) 0 0
\(316\) 663.500 0.118116
\(317\) 4036.30 0.715146 0.357573 0.933885i \(-0.383604\pi\)
0.357573 + 0.933885i \(0.383604\pi\)
\(318\) 0 0
\(319\) −1413.51 −0.248092
\(320\) −205.471 −0.0358944
\(321\) 0 0
\(322\) −286.894 −0.0496521
\(323\) −5327.02 −0.917657
\(324\) 0 0
\(325\) 3642.52 0.621695
\(326\) −12175.7 −2.06855
\(327\) 0 0
\(328\) −2341.40 −0.394154
\(329\) 1998.73 0.334935
\(330\) 0 0
\(331\) 2666.48 0.442789 0.221394 0.975184i \(-0.428939\pi\)
0.221394 + 0.975184i \(0.428939\pi\)
\(332\) 903.420 0.149342
\(333\) 0 0
\(334\) 5611.21 0.919257
\(335\) −1474.30 −0.240447
\(336\) 0 0
\(337\) 2057.65 0.332603 0.166302 0.986075i \(-0.446817\pi\)
0.166302 + 0.986075i \(0.446817\pi\)
\(338\) 2323.90 0.373974
\(339\) 0 0
\(340\) 1710.92 0.272905
\(341\) −1115.40 −0.177132
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 2732.16 0.428221
\(345\) 0 0
\(346\) 12812.1 1.99070
\(347\) −8556.95 −1.32381 −0.661904 0.749589i \(-0.730251\pi\)
−0.661904 + 0.749589i \(0.730251\pi\)
\(348\) 0 0
\(349\) −9298.02 −1.42611 −0.713054 0.701109i \(-0.752689\pi\)
−0.713054 + 0.701109i \(0.752689\pi\)
\(350\) 2310.71 0.352893
\(351\) 0 0
\(352\) 2076.72 0.314459
\(353\) −6315.48 −0.952236 −0.476118 0.879381i \(-0.657956\pi\)
−0.476118 + 0.879381i \(0.657956\pi\)
\(354\) 0 0
\(355\) −2004.14 −0.299631
\(356\) 1982.99 0.295220
\(357\) 0 0
\(358\) 6456.06 0.953109
\(359\) −4366.78 −0.641977 −0.320988 0.947083i \(-0.604015\pi\)
−0.320988 + 0.947083i \(0.604015\pi\)
\(360\) 0 0
\(361\) 16.0157 0.00233500
\(362\) −7974.90 −1.15788
\(363\) 0 0
\(364\) −1288.76 −0.185575
\(365\) 2785.55 0.399459
\(366\) 0 0
\(367\) 455.244 0.0647508 0.0323754 0.999476i \(-0.489693\pi\)
0.0323754 + 0.999476i \(0.489693\pi\)
\(368\) −915.212 −0.129643
\(369\) 0 0
\(370\) −3808.03 −0.535054
\(371\) −1417.99 −0.198432
\(372\) 0 0
\(373\) −5345.01 −0.741968 −0.370984 0.928639i \(-0.620980\pi\)
−0.370984 + 0.928639i \(0.620980\pi\)
\(374\) −2516.98 −0.347994
\(375\) 0 0
\(376\) 3371.51 0.462426
\(377\) 5050.11 0.689904
\(378\) 0 0
\(379\) 9772.43 1.32448 0.662238 0.749294i \(-0.269607\pi\)
0.662238 + 0.749294i \(0.269607\pi\)
\(380\) −2208.10 −0.298087
\(381\) 0 0
\(382\) −14104.9 −1.88918
\(383\) −821.560 −0.109608 −0.0548039 0.998497i \(-0.517453\pi\)
−0.0548039 + 0.998497i \(0.517453\pi\)
\(384\) 0 0
\(385\) 437.719 0.0579434
\(386\) 16882.6 2.22617
\(387\) 0 0
\(388\) −5133.88 −0.671735
\(389\) 3632.64 0.473476 0.236738 0.971574i \(-0.423922\pi\)
0.236738 + 0.971574i \(0.423922\pi\)
\(390\) 0 0
\(391\) 739.318 0.0956239
\(392\) 578.580 0.0745478
\(393\) 0 0
\(394\) −18321.3 −2.34267
\(395\) 805.133 0.102559
\(396\) 0 0
\(397\) 4985.80 0.630302 0.315151 0.949041i \(-0.397945\pi\)
0.315151 + 0.949041i \(0.397945\pi\)
\(398\) 7949.45 1.00118
\(399\) 0 0
\(400\) 7371.33 0.921416
\(401\) 5585.37 0.695562 0.347781 0.937576i \(-0.386935\pi\)
0.347781 + 0.937576i \(0.386935\pi\)
\(402\) 0 0
\(403\) 3985.02 0.492576
\(404\) 8344.78 1.02764
\(405\) 0 0
\(406\) 3203.64 0.391611
\(407\) 2068.95 0.251975
\(408\) 0 0
\(409\) −5307.38 −0.641645 −0.320823 0.947139i \(-0.603959\pi\)
−0.320823 + 0.947139i \(0.603959\pi\)
\(410\) 4014.69 0.483589
\(411\) 0 0
\(412\) 48.3637 0.00578328
\(413\) −726.336 −0.0865391
\(414\) 0 0
\(415\) 1096.27 0.129671
\(416\) −7419.58 −0.874459
\(417\) 0 0
\(418\) 3248.40 0.380106
\(419\) −12248.3 −1.42808 −0.714041 0.700104i \(-0.753137\pi\)
−0.714041 + 0.700104i \(0.753137\pi\)
\(420\) 0 0
\(421\) −6958.41 −0.805539 −0.402770 0.915301i \(-0.631952\pi\)
−0.402770 + 0.915301i \(0.631952\pi\)
\(422\) 11108.7 1.28142
\(423\) 0 0
\(424\) −2391.90 −0.273964
\(425\) −5954.64 −0.679629
\(426\) 0 0
\(427\) −2680.47 −0.303787
\(428\) −7115.48 −0.803597
\(429\) 0 0
\(430\) −4684.70 −0.525386
\(431\) −6245.52 −0.697996 −0.348998 0.937123i \(-0.613478\pi\)
−0.348998 + 0.937123i \(0.613478\pi\)
\(432\) 0 0
\(433\) 8035.72 0.891853 0.445926 0.895070i \(-0.352874\pi\)
0.445926 + 0.895070i \(0.352874\pi\)
\(434\) 2527.98 0.279601
\(435\) 0 0
\(436\) −7724.66 −0.848496
\(437\) −954.159 −0.104448
\(438\) 0 0
\(439\) 10775.4 1.17148 0.585742 0.810497i \(-0.300803\pi\)
0.585742 + 0.810497i \(0.300803\pi\)
\(440\) 738.354 0.0799992
\(441\) 0 0
\(442\) 8992.52 0.967716
\(443\) −3395.81 −0.364198 −0.182099 0.983280i \(-0.558289\pi\)
−0.182099 + 0.983280i \(0.558289\pi\)
\(444\) 0 0
\(445\) 2406.29 0.256335
\(446\) 4056.41 0.430665
\(447\) 0 0
\(448\) −253.014 −0.0266826
\(449\) 10625.6 1.11682 0.558409 0.829566i \(-0.311412\pi\)
0.558409 + 0.829566i \(0.311412\pi\)
\(450\) 0 0
\(451\) −2181.23 −0.227738
\(452\) 884.176 0.0920092
\(453\) 0 0
\(454\) −6250.41 −0.646137
\(455\) −1563.86 −0.161131
\(456\) 0 0
\(457\) 3189.95 0.326520 0.163260 0.986583i \(-0.447799\pi\)
0.163260 + 0.986583i \(0.447799\pi\)
\(458\) −1083.68 −0.110561
\(459\) 0 0
\(460\) 306.455 0.0310620
\(461\) −11839.8 −1.19617 −0.598084 0.801433i \(-0.704071\pi\)
−0.598084 + 0.801433i \(0.704071\pi\)
\(462\) 0 0
\(463\) −14847.0 −1.49027 −0.745137 0.666911i \(-0.767616\pi\)
−0.745137 + 0.666911i \(0.767616\pi\)
\(464\) 10219.8 1.02251
\(465\) 0 0
\(466\) −13921.2 −1.38388
\(467\) 5678.07 0.562634 0.281317 0.959615i \(-0.409229\pi\)
0.281317 + 0.959615i \(0.409229\pi\)
\(468\) 0 0
\(469\) −1815.43 −0.178740
\(470\) −5780.96 −0.567353
\(471\) 0 0
\(472\) −1225.20 −0.119480
\(473\) 2545.25 0.247422
\(474\) 0 0
\(475\) 7685.01 0.742342
\(476\) 2106.80 0.202868
\(477\) 0 0
\(478\) −609.009 −0.0582750
\(479\) −224.024 −0.0213694 −0.0106847 0.999943i \(-0.503401\pi\)
−0.0106847 + 0.999943i \(0.503401\pi\)
\(480\) 0 0
\(481\) −7391.82 −0.700703
\(482\) 23701.1 2.23974
\(483\) 0 0
\(484\) 566.844 0.0532348
\(485\) −6229.77 −0.583256
\(486\) 0 0
\(487\) −6298.42 −0.586055 −0.293028 0.956104i \(-0.594663\pi\)
−0.293028 + 0.956104i \(0.594663\pi\)
\(488\) −4521.48 −0.419422
\(489\) 0 0
\(490\) −992.064 −0.0914631
\(491\) −7973.25 −0.732847 −0.366424 0.930448i \(-0.619418\pi\)
−0.366424 + 0.930448i \(0.619418\pi\)
\(492\) 0 0
\(493\) −8255.70 −0.754195
\(494\) −11605.7 −1.05701
\(495\) 0 0
\(496\) 8064.44 0.730048
\(497\) −2467.87 −0.222735
\(498\) 0 0
\(499\) −15518.7 −1.39221 −0.696104 0.717941i \(-0.745085\pi\)
−0.696104 + 0.717941i \(0.745085\pi\)
\(500\) −5797.09 −0.518508
\(501\) 0 0
\(502\) 3631.01 0.322829
\(503\) −8420.95 −0.746465 −0.373232 0.927738i \(-0.621751\pi\)
−0.373232 + 0.927738i \(0.621751\pi\)
\(504\) 0 0
\(505\) 10126.1 0.892286
\(506\) −450.833 −0.0396087
\(507\) 0 0
\(508\) −11238.1 −0.981517
\(509\) 22582.1 1.96647 0.983234 0.182350i \(-0.0583704\pi\)
0.983234 + 0.182350i \(0.0583704\pi\)
\(510\) 0 0
\(511\) 3430.09 0.296943
\(512\) −7502.22 −0.647567
\(513\) 0 0
\(514\) −24013.1 −2.06065
\(515\) 58.6876 0.00502152
\(516\) 0 0
\(517\) 3140.86 0.267186
\(518\) −4689.15 −0.397740
\(519\) 0 0
\(520\) −2637.95 −0.222465
\(521\) −2072.11 −0.174243 −0.0871215 0.996198i \(-0.527767\pi\)
−0.0871215 + 0.996198i \(0.527767\pi\)
\(522\) 0 0
\(523\) −10531.2 −0.880491 −0.440245 0.897877i \(-0.645109\pi\)
−0.440245 + 0.897877i \(0.645109\pi\)
\(524\) −7312.56 −0.609638
\(525\) 0 0
\(526\) 4568.11 0.378667
\(527\) −6514.54 −0.538478
\(528\) 0 0
\(529\) −12034.6 −0.989116
\(530\) 4101.28 0.336128
\(531\) 0 0
\(532\) −2719.02 −0.221588
\(533\) 7792.97 0.633304
\(534\) 0 0
\(535\) −8634.37 −0.697750
\(536\) −3062.31 −0.246776
\(537\) 0 0
\(538\) −3313.54 −0.265533
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 17730.0 1.40900 0.704502 0.709702i \(-0.251170\pi\)
0.704502 + 0.709702i \(0.251170\pi\)
\(542\) −29687.7 −2.35276
\(543\) 0 0
\(544\) 12129.2 0.955948
\(545\) −9373.59 −0.736735
\(546\) 0 0
\(547\) −18082.8 −1.41346 −0.706730 0.707483i \(-0.749831\pi\)
−0.706730 + 0.707483i \(0.749831\pi\)
\(548\) −3848.89 −0.300030
\(549\) 0 0
\(550\) 3631.11 0.281511
\(551\) 10654.7 0.823789
\(552\) 0 0
\(553\) 991.428 0.0762383
\(554\) −12441.8 −0.954150
\(555\) 0 0
\(556\) −5426.87 −0.413940
\(557\) −18748.2 −1.42619 −0.713095 0.701068i \(-0.752707\pi\)
−0.713095 + 0.701068i \(0.752707\pi\)
\(558\) 0 0
\(559\) −9093.53 −0.688041
\(560\) −3164.76 −0.238813
\(561\) 0 0
\(562\) −3672.85 −0.275676
\(563\) 9033.83 0.676253 0.338127 0.941101i \(-0.390207\pi\)
0.338127 + 0.941101i \(0.390207\pi\)
\(564\) 0 0
\(565\) 1072.91 0.0798900
\(566\) 8479.03 0.629682
\(567\) 0 0
\(568\) −4162.86 −0.307517
\(569\) −5852.87 −0.431222 −0.215611 0.976479i \(-0.569174\pi\)
−0.215611 + 0.976479i \(0.569174\pi\)
\(570\) 0 0
\(571\) 6521.25 0.477944 0.238972 0.971026i \(-0.423190\pi\)
0.238972 + 0.971026i \(0.423190\pi\)
\(572\) −2025.19 −0.148037
\(573\) 0 0
\(574\) 4943.63 0.359483
\(575\) −1066.58 −0.0773553
\(576\) 0 0
\(577\) 10542.3 0.760627 0.380314 0.924858i \(-0.375816\pi\)
0.380314 + 0.924858i \(0.375816\pi\)
\(578\) 2797.33 0.201304
\(579\) 0 0
\(580\) −3422.07 −0.244989
\(581\) 1349.93 0.0963931
\(582\) 0 0
\(583\) −2228.27 −0.158294
\(584\) 5785.95 0.409973
\(585\) 0 0
\(586\) 25607.5 1.80518
\(587\) −20713.3 −1.45644 −0.728218 0.685346i \(-0.759651\pi\)
−0.728218 + 0.685346i \(0.759651\pi\)
\(588\) 0 0
\(589\) 8407.62 0.588166
\(590\) 2100.79 0.146590
\(591\) 0 0
\(592\) −14958.7 −1.03851
\(593\) −7202.25 −0.498754 −0.249377 0.968406i \(-0.580226\pi\)
−0.249377 + 0.968406i \(0.580226\pi\)
\(594\) 0 0
\(595\) 2556.52 0.176147
\(596\) −5784.69 −0.397567
\(597\) 0 0
\(598\) 1610.71 0.110145
\(599\) 19894.2 1.35702 0.678510 0.734591i \(-0.262626\pi\)
0.678510 + 0.734591i \(0.262626\pi\)
\(600\) 0 0
\(601\) 10378.4 0.704397 0.352199 0.935925i \(-0.385434\pi\)
0.352199 + 0.935925i \(0.385434\pi\)
\(602\) −5768.66 −0.390553
\(603\) 0 0
\(604\) −5408.82 −0.364374
\(605\) 687.844 0.0462228
\(606\) 0 0
\(607\) 15224.0 1.01800 0.508998 0.860768i \(-0.330016\pi\)
0.508998 + 0.860768i \(0.330016\pi\)
\(608\) −15653.9 −1.04416
\(609\) 0 0
\(610\) 7752.76 0.514591
\(611\) −11221.5 −0.743001
\(612\) 0 0
\(613\) −25967.7 −1.71097 −0.855485 0.517828i \(-0.826741\pi\)
−0.855485 + 0.517828i \(0.826741\pi\)
\(614\) 2870.42 0.188666
\(615\) 0 0
\(616\) 909.198 0.0594685
\(617\) 25500.4 1.66387 0.831935 0.554873i \(-0.187233\pi\)
0.831935 + 0.554873i \(0.187233\pi\)
\(618\) 0 0
\(619\) −19794.4 −1.28531 −0.642654 0.766157i \(-0.722167\pi\)
−0.642654 + 0.766157i \(0.722167\pi\)
\(620\) −2700.34 −0.174917
\(621\) 0 0
\(622\) 5437.11 0.350496
\(623\) 2963.07 0.190550
\(624\) 0 0
\(625\) 4551.03 0.291266
\(626\) −20296.1 −1.29584
\(627\) 0 0
\(628\) −13258.4 −0.842464
\(629\) 12083.8 0.765999
\(630\) 0 0
\(631\) 19940.5 1.25803 0.629017 0.777392i \(-0.283458\pi\)
0.629017 + 0.777392i \(0.283458\pi\)
\(632\) 1672.36 0.105258
\(633\) 0 0
\(634\) −14375.5 −0.900511
\(635\) −13637.0 −0.852235
\(636\) 0 0
\(637\) −1925.71 −0.119779
\(638\) 5034.29 0.312397
\(639\) 0 0
\(640\) −7853.97 −0.485087
\(641\) 22527.9 1.38814 0.694070 0.719907i \(-0.255816\pi\)
0.694070 + 0.719907i \(0.255816\pi\)
\(642\) 0 0
\(643\) −11676.3 −0.716125 −0.358062 0.933698i \(-0.616562\pi\)
−0.358062 + 0.933698i \(0.616562\pi\)
\(644\) 377.363 0.0230904
\(645\) 0 0
\(646\) 18972.5 1.15551
\(647\) 9749.45 0.592412 0.296206 0.955124i \(-0.404279\pi\)
0.296206 + 0.955124i \(0.404279\pi\)
\(648\) 0 0
\(649\) −1141.39 −0.0690343
\(650\) −12973.0 −0.782838
\(651\) 0 0
\(652\) 16015.2 0.961968
\(653\) −3439.33 −0.206112 −0.103056 0.994676i \(-0.532862\pi\)
−0.103056 + 0.994676i \(0.532862\pi\)
\(654\) 0 0
\(655\) −8873.51 −0.529339
\(656\) 15770.5 0.938622
\(657\) 0 0
\(658\) −7118.59 −0.421750
\(659\) −16400.6 −0.969463 −0.484732 0.874663i \(-0.661083\pi\)
−0.484732 + 0.874663i \(0.661083\pi\)
\(660\) 0 0
\(661\) −7571.56 −0.445537 −0.222768 0.974871i \(-0.571509\pi\)
−0.222768 + 0.974871i \(0.571509\pi\)
\(662\) −9496.81 −0.557559
\(663\) 0 0
\(664\) 2277.09 0.133085
\(665\) −3299.43 −0.192401
\(666\) 0 0
\(667\) −1478.73 −0.0858423
\(668\) −7380.66 −0.427494
\(669\) 0 0
\(670\) 5250.80 0.302771
\(671\) −4212.17 −0.242338
\(672\) 0 0
\(673\) −5876.65 −0.336595 −0.168297 0.985736i \(-0.553827\pi\)
−0.168297 + 0.985736i \(0.553827\pi\)
\(674\) −7328.43 −0.418814
\(675\) 0 0
\(676\) −3056.72 −0.173914
\(677\) 9870.55 0.560348 0.280174 0.959949i \(-0.409608\pi\)
0.280174 + 0.959949i \(0.409608\pi\)
\(678\) 0 0
\(679\) −7671.24 −0.433572
\(680\) 4312.41 0.243196
\(681\) 0 0
\(682\) 3972.54 0.223045
\(683\) 9551.67 0.535116 0.267558 0.963542i \(-0.413783\pi\)
0.267558 + 0.963542i \(0.413783\pi\)
\(684\) 0 0
\(685\) −4670.49 −0.260511
\(686\) −1221.61 −0.0679904
\(687\) 0 0
\(688\) −18402.4 −1.01975
\(689\) 7961.04 0.440191
\(690\) 0 0
\(691\) −10329.4 −0.568665 −0.284333 0.958726i \(-0.591772\pi\)
−0.284333 + 0.958726i \(0.591772\pi\)
\(692\) −16852.3 −0.925762
\(693\) 0 0
\(694\) 30476.0 1.66694
\(695\) −6585.31 −0.359417
\(696\) 0 0
\(697\) −12739.6 −0.692320
\(698\) 33115.4 1.79575
\(699\) 0 0
\(700\) −3039.37 −0.164111
\(701\) 33570.9 1.80878 0.904390 0.426708i \(-0.140327\pi\)
0.904390 + 0.426708i \(0.140327\pi\)
\(702\) 0 0
\(703\) −15595.3 −0.836682
\(704\) −397.594 −0.0212853
\(705\) 0 0
\(706\) 22492.9 1.19905
\(707\) 12469.1 0.663294
\(708\) 0 0
\(709\) 22424.4 1.18782 0.593911 0.804531i \(-0.297583\pi\)
0.593911 + 0.804531i \(0.297583\pi\)
\(710\) 7137.86 0.377295
\(711\) 0 0
\(712\) 4998.17 0.263082
\(713\) −1166.86 −0.0612895
\(714\) 0 0
\(715\) −2457.49 −0.128538
\(716\) −8491.92 −0.443237
\(717\) 0 0
\(718\) 15552.5 0.808377
\(719\) 12475.8 0.647107 0.323553 0.946210i \(-0.395122\pi\)
0.323553 + 0.946210i \(0.395122\pi\)
\(720\) 0 0
\(721\) 72.2670 0.00373282
\(722\) −57.0409 −0.00294023
\(723\) 0 0
\(724\) 10489.7 0.538463
\(725\) 11910.1 0.610109
\(726\) 0 0
\(727\) 35619.7 1.81714 0.908569 0.417734i \(-0.137176\pi\)
0.908569 + 0.417734i \(0.137176\pi\)
\(728\) −3248.33 −0.165372
\(729\) 0 0
\(730\) −9920.89 −0.502998
\(731\) 14865.7 0.752158
\(732\) 0 0
\(733\) −23587.0 −1.18855 −0.594274 0.804263i \(-0.702560\pi\)
−0.594274 + 0.804263i \(0.702560\pi\)
\(734\) −1621.38 −0.0815341
\(735\) 0 0
\(736\) 2172.55 0.108806
\(737\) −2852.82 −0.142585
\(738\) 0 0
\(739\) 21418.0 1.06613 0.533067 0.846073i \(-0.321039\pi\)
0.533067 + 0.846073i \(0.321039\pi\)
\(740\) 5008.86 0.248824
\(741\) 0 0
\(742\) 5050.25 0.249866
\(743\) −25868.0 −1.27726 −0.638630 0.769514i \(-0.720499\pi\)
−0.638630 + 0.769514i \(0.720499\pi\)
\(744\) 0 0
\(745\) −7019.50 −0.345201
\(746\) 19036.5 0.934286
\(747\) 0 0
\(748\) 3310.69 0.161832
\(749\) −10632.2 −0.518682
\(750\) 0 0
\(751\) −28345.7 −1.37730 −0.688648 0.725096i \(-0.741796\pi\)
−0.688648 + 0.725096i \(0.741796\pi\)
\(752\) −22708.8 −1.10120
\(753\) 0 0
\(754\) −17986.2 −0.868727
\(755\) −6563.40 −0.316380
\(756\) 0 0
\(757\) 5065.33 0.243200 0.121600 0.992579i \(-0.461197\pi\)
0.121600 + 0.992579i \(0.461197\pi\)
\(758\) −34805.0 −1.66778
\(759\) 0 0
\(760\) −5565.56 −0.265637
\(761\) 24301.0 1.15757 0.578784 0.815481i \(-0.303527\pi\)
0.578784 + 0.815481i \(0.303527\pi\)
\(762\) 0 0
\(763\) −11542.5 −0.547662
\(764\) 18552.7 0.878553
\(765\) 0 0
\(766\) 2926.03 0.138018
\(767\) 4077.88 0.191973
\(768\) 0 0
\(769\) −1579.45 −0.0740656 −0.0370328 0.999314i \(-0.511791\pi\)
−0.0370328 + 0.999314i \(0.511791\pi\)
\(770\) −1558.96 −0.0729623
\(771\) 0 0
\(772\) −22206.3 −1.03526
\(773\) −7349.54 −0.341973 −0.170986 0.985273i \(-0.554695\pi\)
−0.170986 + 0.985273i \(0.554695\pi\)
\(774\) 0 0
\(775\) 9398.19 0.435604
\(776\) −12940.0 −0.598608
\(777\) 0 0
\(778\) −12937.8 −0.596200
\(779\) 16441.7 0.756204
\(780\) 0 0
\(781\) −3878.08 −0.177681
\(782\) −2633.12 −0.120409
\(783\) 0 0
\(784\) −3897.03 −0.177525
\(785\) −16088.6 −0.731497
\(786\) 0 0
\(787\) 6878.56 0.311555 0.155778 0.987792i \(-0.450212\pi\)
0.155778 + 0.987792i \(0.450212\pi\)
\(788\) 24098.7 1.08944
\(789\) 0 0
\(790\) −2867.52 −0.129142
\(791\) 1321.17 0.0593874
\(792\) 0 0
\(793\) 15049.0 0.673903
\(794\) −17757.2 −0.793676
\(795\) 0 0
\(796\) −10456.2 −0.465593
\(797\) −4830.47 −0.214685 −0.107343 0.994222i \(-0.534234\pi\)
−0.107343 + 0.994222i \(0.534234\pi\)
\(798\) 0 0
\(799\) 18344.4 0.812239
\(800\) −17498.2 −0.773318
\(801\) 0 0
\(802\) −19892.6 −0.875851
\(803\) 5390.13 0.236879
\(804\) 0 0
\(805\) 457.917 0.0200490
\(806\) −14192.9 −0.620251
\(807\) 0 0
\(808\) 21033.2 0.915772
\(809\) 44538.0 1.93557 0.967783 0.251786i \(-0.0810178\pi\)
0.967783 + 0.251786i \(0.0810178\pi\)
\(810\) 0 0
\(811\) 40738.9 1.76391 0.881957 0.471329i \(-0.156226\pi\)
0.881957 + 0.471329i \(0.156226\pi\)
\(812\) −4213.88 −0.182116
\(813\) 0 0
\(814\) −7368.67 −0.317287
\(815\) 19433.8 0.835260
\(816\) 0 0
\(817\) −19185.6 −0.821564
\(818\) 18902.5 0.807959
\(819\) 0 0
\(820\) −5280.69 −0.224890
\(821\) −29805.1 −1.26700 −0.633498 0.773744i \(-0.718382\pi\)
−0.633498 + 0.773744i \(0.718382\pi\)
\(822\) 0 0
\(823\) 3453.87 0.146287 0.0731435 0.997321i \(-0.476697\pi\)
0.0731435 + 0.997321i \(0.476697\pi\)
\(824\) 121.902 0.00515369
\(825\) 0 0
\(826\) 2586.88 0.108970
\(827\) 10258.1 0.431328 0.215664 0.976468i \(-0.430808\pi\)
0.215664 + 0.976468i \(0.430808\pi\)
\(828\) 0 0
\(829\) 33599.2 1.40766 0.703830 0.710369i \(-0.251472\pi\)
0.703830 + 0.710369i \(0.251472\pi\)
\(830\) −3904.41 −0.163282
\(831\) 0 0
\(832\) 1420.50 0.0591911
\(833\) 3148.06 0.130941
\(834\) 0 0
\(835\) −8956.16 −0.371186
\(836\) −4272.75 −0.176766
\(837\) 0 0
\(838\) 43622.8 1.79824
\(839\) 24363.0 1.00251 0.501254 0.865300i \(-0.332872\pi\)
0.501254 + 0.865300i \(0.332872\pi\)
\(840\) 0 0
\(841\) −7876.51 −0.322953
\(842\) 24782.7 1.01433
\(843\) 0 0
\(844\) −14611.7 −0.595918
\(845\) −3709.21 −0.151007
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 16110.6 0.652408
\(849\) 0 0
\(850\) 21207.8 0.855788
\(851\) 2164.42 0.0871859
\(852\) 0 0
\(853\) 12928.0 0.518928 0.259464 0.965753i \(-0.416454\pi\)
0.259464 + 0.965753i \(0.416454\pi\)
\(854\) 9546.63 0.382528
\(855\) 0 0
\(856\) −17934.7 −0.716116
\(857\) 40734.2 1.62363 0.811817 0.583911i \(-0.198478\pi\)
0.811817 + 0.583911i \(0.198478\pi\)
\(858\) 0 0
\(859\) 32796.6 1.30269 0.651343 0.758784i \(-0.274206\pi\)
0.651343 + 0.758784i \(0.274206\pi\)
\(860\) 6161.98 0.244327
\(861\) 0 0
\(862\) 22243.8 0.878916
\(863\) 879.506 0.0346915 0.0173457 0.999850i \(-0.494478\pi\)
0.0173457 + 0.999850i \(0.494478\pi\)
\(864\) 0 0
\(865\) −20449.6 −0.803823
\(866\) −28619.7 −1.12302
\(867\) 0 0
\(868\) −3325.16 −0.130027
\(869\) 1557.96 0.0608172
\(870\) 0 0
\(871\) 10192.4 0.396506
\(872\) −19470.2 −0.756127
\(873\) 0 0
\(874\) 3398.29 0.131520
\(875\) −8662.24 −0.334671
\(876\) 0 0
\(877\) 17607.7 0.677957 0.338978 0.940794i \(-0.389919\pi\)
0.338978 + 0.940794i \(0.389919\pi\)
\(878\) −38377.2 −1.47513
\(879\) 0 0
\(880\) −4973.19 −0.190507
\(881\) 24818.3 0.949093 0.474546 0.880230i \(-0.342612\pi\)
0.474546 + 0.880230i \(0.342612\pi\)
\(882\) 0 0
\(883\) 18274.6 0.696477 0.348238 0.937406i \(-0.386780\pi\)
0.348238 + 0.937406i \(0.386780\pi\)
\(884\) −11828.2 −0.450030
\(885\) 0 0
\(886\) 12094.4 0.458598
\(887\) 21922.4 0.829856 0.414928 0.909854i \(-0.363807\pi\)
0.414928 + 0.909854i \(0.363807\pi\)
\(888\) 0 0
\(889\) −16792.4 −0.633521
\(890\) −8570.13 −0.322777
\(891\) 0 0
\(892\) −5335.57 −0.200278
\(893\) −23675.2 −0.887189
\(894\) 0 0
\(895\) −10304.6 −0.384856
\(896\) −9671.26 −0.360596
\(897\) 0 0
\(898\) −37843.5 −1.40630
\(899\) 13029.9 0.483396
\(900\) 0 0
\(901\) −13014.4 −0.481211
\(902\) 7768.56 0.286768
\(903\) 0 0
\(904\) 2228.58 0.0819928
\(905\) 12728.9 0.467539
\(906\) 0 0
\(907\) −9704.52 −0.355274 −0.177637 0.984096i \(-0.556845\pi\)
−0.177637 + 0.984096i \(0.556845\pi\)
\(908\) 8221.42 0.300482
\(909\) 0 0
\(910\) 5569.76 0.202896
\(911\) −40557.0 −1.47499 −0.737494 0.675354i \(-0.763991\pi\)
−0.737494 + 0.675354i \(0.763991\pi\)
\(912\) 0 0
\(913\) 2121.31 0.0768951
\(914\) −11361.2 −0.411153
\(915\) 0 0
\(916\) 1425.40 0.0514156
\(917\) −10926.7 −0.393491
\(918\) 0 0
\(919\) −10182.1 −0.365482 −0.182741 0.983161i \(-0.558497\pi\)
−0.182741 + 0.983161i \(0.558497\pi\)
\(920\) 772.424 0.0276805
\(921\) 0 0
\(922\) 42168.0 1.50621
\(923\) 13855.4 0.494102
\(924\) 0 0
\(925\) −17432.7 −0.619658
\(926\) 52878.3 1.87655
\(927\) 0 0
\(928\) −24260.0 −0.858162
\(929\) −35454.0 −1.25211 −0.626053 0.779780i \(-0.715331\pi\)
−0.626053 + 0.779780i \(0.715331\pi\)
\(930\) 0 0
\(931\) −4062.87 −0.143024
\(932\) 18311.1 0.643562
\(933\) 0 0
\(934\) −20222.8 −0.708468
\(935\) 4017.40 0.140516
\(936\) 0 0
\(937\) 35786.9 1.24771 0.623856 0.781539i \(-0.285565\pi\)
0.623856 + 0.781539i \(0.285565\pi\)
\(938\) 6465.76 0.225069
\(939\) 0 0
\(940\) 7603.94 0.263844
\(941\) 53299.3 1.84645 0.923223 0.384264i \(-0.125545\pi\)
0.923223 + 0.384264i \(0.125545\pi\)
\(942\) 0 0
\(943\) −2281.88 −0.0787998
\(944\) 8252.34 0.284524
\(945\) 0 0
\(946\) −9065.04 −0.311554
\(947\) 2396.55 0.0822359 0.0411180 0.999154i \(-0.486908\pi\)
0.0411180 + 0.999154i \(0.486908\pi\)
\(948\) 0 0
\(949\) −19257.6 −0.658722
\(950\) −27370.6 −0.934757
\(951\) 0 0
\(952\) 5310.23 0.180783
\(953\) −49723.2 −1.69013 −0.845064 0.534665i \(-0.820438\pi\)
−0.845064 + 0.534665i \(0.820438\pi\)
\(954\) 0 0
\(955\) 22513.0 0.762832
\(956\) 801.055 0.0271004
\(957\) 0 0
\(958\) 797.875 0.0269083
\(959\) −5751.16 −0.193655
\(960\) 0 0
\(961\) −19509.1 −0.654866
\(962\) 26326.4 0.882324
\(963\) 0 0
\(964\) −31175.0 −1.04158
\(965\) −26946.6 −0.898902
\(966\) 0 0
\(967\) −34465.6 −1.14616 −0.573081 0.819499i \(-0.694252\pi\)
−0.573081 + 0.819499i \(0.694252\pi\)
\(968\) 1428.74 0.0474395
\(969\) 0 0
\(970\) 22187.7 0.734436
\(971\) 29569.6 0.977276 0.488638 0.872487i \(-0.337494\pi\)
0.488638 + 0.872487i \(0.337494\pi\)
\(972\) 0 0
\(973\) −8109.05 −0.267178
\(974\) 22432.2 0.737960
\(975\) 0 0
\(976\) 30454.4 0.998794
\(977\) −49863.2 −1.63282 −0.816411 0.577472i \(-0.804039\pi\)
−0.816411 + 0.577472i \(0.804039\pi\)
\(978\) 0 0
\(979\) 4656.25 0.152007
\(980\) 1304.90 0.0425343
\(981\) 0 0
\(982\) 28397.2 0.922800
\(983\) −45383.3 −1.47254 −0.736268 0.676690i \(-0.763414\pi\)
−0.736268 + 0.676690i \(0.763414\pi\)
\(984\) 0 0
\(985\) 29242.9 0.945946
\(986\) 29403.1 0.949681
\(987\) 0 0
\(988\) 15265.4 0.491557
\(989\) 2662.70 0.0856105
\(990\) 0 0
\(991\) −54822.7 −1.75732 −0.878658 0.477451i \(-0.841561\pi\)
−0.878658 + 0.477451i \(0.841561\pi\)
\(992\) −19143.5 −0.612708
\(993\) 0 0
\(994\) 8789.45 0.280467
\(995\) −12688.3 −0.404266
\(996\) 0 0
\(997\) 29649.9 0.941849 0.470924 0.882174i \(-0.343920\pi\)
0.470924 + 0.882174i \(0.343920\pi\)
\(998\) 55270.6 1.75307
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.g.1.1 2
3.2 odd 2 231.4.a.h.1.2 2
21.20 even 2 1617.4.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.h.1.2 2 3.2 odd 2
693.4.a.g.1.1 2 1.1 even 1 trivial
1617.4.a.m.1.2 2 21.20 even 2