Properties

Label 693.4.a.c.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{2} +1.00000 q^{4} +14.0000 q^{5} -7.00000 q^{7} +21.0000 q^{8} -42.0000 q^{10} +11.0000 q^{11} +2.00000 q^{13} +21.0000 q^{14} -71.0000 q^{16} +74.0000 q^{17} +14.0000 q^{20} -33.0000 q^{22} +148.000 q^{23} +71.0000 q^{25} -6.00000 q^{26} -7.00000 q^{28} -26.0000 q^{29} +112.000 q^{31} +45.0000 q^{32} -222.000 q^{34} -98.0000 q^{35} -98.0000 q^{37} +294.000 q^{40} +10.0000 q^{41} +208.000 q^{43} +11.0000 q^{44} -444.000 q^{46} -460.000 q^{47} +49.0000 q^{49} -213.000 q^{50} +2.00000 q^{52} -258.000 q^{53} +154.000 q^{55} -147.000 q^{56} +78.0000 q^{58} +204.000 q^{59} +178.000 q^{61} -336.000 q^{62} +433.000 q^{64} +28.0000 q^{65} -924.000 q^{67} +74.0000 q^{68} +294.000 q^{70} +748.000 q^{71} -230.000 q^{73} +294.000 q^{74} -77.0000 q^{77} -456.000 q^{79} -994.000 q^{80} -30.0000 q^{82} +228.000 q^{83} +1036.00 q^{85} -624.000 q^{86} +231.000 q^{88} +198.000 q^{89} -14.0000 q^{91} +148.000 q^{92} +1380.00 q^{94} +562.000 q^{97} -147.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.00000 −1.06066 −0.530330 0.847791i \(-0.677932\pi\)
−0.530330 + 0.847791i \(0.677932\pi\)
\(3\) 0 0
\(4\) 1.00000 0.125000
\(5\) 14.0000 1.25220 0.626099 0.779744i \(-0.284651\pi\)
0.626099 + 0.779744i \(0.284651\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 21.0000 0.928078
\(9\) 0 0
\(10\) −42.0000 −1.32816
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 2.00000 0.0426692 0.0213346 0.999772i \(-0.493208\pi\)
0.0213346 + 0.999772i \(0.493208\pi\)
\(14\) 21.0000 0.400892
\(15\) 0 0
\(16\) −71.0000 −1.10938
\(17\) 74.0000 1.05574 0.527872 0.849324i \(-0.322990\pi\)
0.527872 + 0.849324i \(0.322990\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 14.0000 0.156525
\(21\) 0 0
\(22\) −33.0000 −0.319801
\(23\) 148.000 1.34174 0.670872 0.741573i \(-0.265920\pi\)
0.670872 + 0.741573i \(0.265920\pi\)
\(24\) 0 0
\(25\) 71.0000 0.568000
\(26\) −6.00000 −0.0452576
\(27\) 0 0
\(28\) −7.00000 −0.0472456
\(29\) −26.0000 −0.166485 −0.0832427 0.996529i \(-0.526528\pi\)
−0.0832427 + 0.996529i \(0.526528\pi\)
\(30\) 0 0
\(31\) 112.000 0.648897 0.324448 0.945903i \(-0.394821\pi\)
0.324448 + 0.945903i \(0.394821\pi\)
\(32\) 45.0000 0.248592
\(33\) 0 0
\(34\) −222.000 −1.11978
\(35\) −98.0000 −0.473286
\(36\) 0 0
\(37\) −98.0000 −0.435435 −0.217718 0.976012i \(-0.569861\pi\)
−0.217718 + 0.976012i \(0.569861\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 294.000 1.16214
\(41\) 10.0000 0.0380912 0.0190456 0.999819i \(-0.493937\pi\)
0.0190456 + 0.999819i \(0.493937\pi\)
\(42\) 0 0
\(43\) 208.000 0.737668 0.368834 0.929495i \(-0.379757\pi\)
0.368834 + 0.929495i \(0.379757\pi\)
\(44\) 11.0000 0.0376889
\(45\) 0 0
\(46\) −444.000 −1.42314
\(47\) −460.000 −1.42761 −0.713807 0.700342i \(-0.753031\pi\)
−0.713807 + 0.700342i \(0.753031\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −213.000 −0.602455
\(51\) 0 0
\(52\) 2.00000 0.00533366
\(53\) −258.000 −0.668661 −0.334330 0.942456i \(-0.608510\pi\)
−0.334330 + 0.942456i \(0.608510\pi\)
\(54\) 0 0
\(55\) 154.000 0.377552
\(56\) −147.000 −0.350780
\(57\) 0 0
\(58\) 78.0000 0.176585
\(59\) 204.000 0.450145 0.225072 0.974342i \(-0.427738\pi\)
0.225072 + 0.974342i \(0.427738\pi\)
\(60\) 0 0
\(61\) 178.000 0.373616 0.186808 0.982396i \(-0.440186\pi\)
0.186808 + 0.982396i \(0.440186\pi\)
\(62\) −336.000 −0.688259
\(63\) 0 0
\(64\) 433.000 0.845703
\(65\) 28.0000 0.0534303
\(66\) 0 0
\(67\) −924.000 −1.68484 −0.842422 0.538818i \(-0.818871\pi\)
−0.842422 + 0.538818i \(0.818871\pi\)
\(68\) 74.0000 0.131968
\(69\) 0 0
\(70\) 294.000 0.501996
\(71\) 748.000 1.25030 0.625150 0.780505i \(-0.285038\pi\)
0.625150 + 0.780505i \(0.285038\pi\)
\(72\) 0 0
\(73\) −230.000 −0.368760 −0.184380 0.982855i \(-0.559028\pi\)
−0.184380 + 0.982855i \(0.559028\pi\)
\(74\) 294.000 0.461849
\(75\) 0 0
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −456.000 −0.649418 −0.324709 0.945814i \(-0.605266\pi\)
−0.324709 + 0.945814i \(0.605266\pi\)
\(80\) −994.000 −1.38916
\(81\) 0 0
\(82\) −30.0000 −0.0404018
\(83\) 228.000 0.301521 0.150761 0.988570i \(-0.451828\pi\)
0.150761 + 0.988570i \(0.451828\pi\)
\(84\) 0 0
\(85\) 1036.00 1.32200
\(86\) −624.000 −0.782415
\(87\) 0 0
\(88\) 231.000 0.279826
\(89\) 198.000 0.235820 0.117910 0.993024i \(-0.462381\pi\)
0.117910 + 0.993024i \(0.462381\pi\)
\(90\) 0 0
\(91\) −14.0000 −0.0161275
\(92\) 148.000 0.167718
\(93\) 0 0
\(94\) 1380.00 1.51421
\(95\) 0 0
\(96\) 0 0
\(97\) 562.000 0.588273 0.294136 0.955763i \(-0.404968\pi\)
0.294136 + 0.955763i \(0.404968\pi\)
\(98\) −147.000 −0.151523
\(99\) 0 0
\(100\) 71.0000 0.0710000
\(101\) 414.000 0.407867 0.203933 0.978985i \(-0.434627\pi\)
0.203933 + 0.978985i \(0.434627\pi\)
\(102\) 0 0
\(103\) 984.000 0.941324 0.470662 0.882314i \(-0.344015\pi\)
0.470662 + 0.882314i \(0.344015\pi\)
\(104\) 42.0000 0.0396004
\(105\) 0 0
\(106\) 774.000 0.709222
\(107\) 1916.00 1.73109 0.865545 0.500831i \(-0.166972\pi\)
0.865545 + 0.500831i \(0.166972\pi\)
\(108\) 0 0
\(109\) −494.000 −0.434097 −0.217049 0.976161i \(-0.569643\pi\)
−0.217049 + 0.976161i \(0.569643\pi\)
\(110\) −462.000 −0.400454
\(111\) 0 0
\(112\) 497.000 0.419304
\(113\) 1238.00 1.03063 0.515315 0.857001i \(-0.327675\pi\)
0.515315 + 0.857001i \(0.327675\pi\)
\(114\) 0 0
\(115\) 2072.00 1.68013
\(116\) −26.0000 −0.0208107
\(117\) 0 0
\(118\) −612.000 −0.477451
\(119\) −518.000 −0.399033
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −534.000 −0.396279
\(123\) 0 0
\(124\) 112.000 0.0811121
\(125\) −756.000 −0.540950
\(126\) 0 0
\(127\) 1016.00 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1659.00 −1.14560
\(129\) 0 0
\(130\) −84.0000 −0.0566714
\(131\) 2556.00 1.70472 0.852362 0.522953i \(-0.175170\pi\)
0.852362 + 0.522953i \(0.175170\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2772.00 1.78705
\(135\) 0 0
\(136\) 1554.00 0.979812
\(137\) −1626.00 −1.01400 −0.507002 0.861945i \(-0.669246\pi\)
−0.507002 + 0.861945i \(0.669246\pi\)
\(138\) 0 0
\(139\) 536.000 0.327071 0.163536 0.986537i \(-0.447710\pi\)
0.163536 + 0.986537i \(0.447710\pi\)
\(140\) −98.0000 −0.0591608
\(141\) 0 0
\(142\) −2244.00 −1.32614
\(143\) 22.0000 0.0128653
\(144\) 0 0
\(145\) −364.000 −0.208473
\(146\) 690.000 0.391129
\(147\) 0 0
\(148\) −98.0000 −0.0544294
\(149\) 3470.00 1.90788 0.953938 0.300004i \(-0.0969881\pi\)
0.953938 + 0.300004i \(0.0969881\pi\)
\(150\) 0 0
\(151\) 1392.00 0.750194 0.375097 0.926985i \(-0.377609\pi\)
0.375097 + 0.926985i \(0.377609\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 231.000 0.120873
\(155\) 1568.00 0.812547
\(156\) 0 0
\(157\) 2758.00 1.40199 0.700995 0.713166i \(-0.252740\pi\)
0.700995 + 0.713166i \(0.252740\pi\)
\(158\) 1368.00 0.688812
\(159\) 0 0
\(160\) 630.000 0.311287
\(161\) −1036.00 −0.507132
\(162\) 0 0
\(163\) −1388.00 −0.666973 −0.333486 0.942755i \(-0.608225\pi\)
−0.333486 + 0.942755i \(0.608225\pi\)
\(164\) 10.0000 0.00476140
\(165\) 0 0
\(166\) −684.000 −0.319811
\(167\) −1688.00 −0.782164 −0.391082 0.920356i \(-0.627899\pi\)
−0.391082 + 0.920356i \(0.627899\pi\)
\(168\) 0 0
\(169\) −2193.00 −0.998179
\(170\) −3108.00 −1.40219
\(171\) 0 0
\(172\) 208.000 0.0922084
\(173\) 118.000 0.0518577 0.0259288 0.999664i \(-0.491746\pi\)
0.0259288 + 0.999664i \(0.491746\pi\)
\(174\) 0 0
\(175\) −497.000 −0.214684
\(176\) −781.000 −0.334489
\(177\) 0 0
\(178\) −594.000 −0.250125
\(179\) 3004.00 1.25435 0.627177 0.778876i \(-0.284210\pi\)
0.627177 + 0.778876i \(0.284210\pi\)
\(180\) 0 0
\(181\) 782.000 0.321136 0.160568 0.987025i \(-0.448667\pi\)
0.160568 + 0.987025i \(0.448667\pi\)
\(182\) 42.0000 0.0171058
\(183\) 0 0
\(184\) 3108.00 1.24524
\(185\) −1372.00 −0.545251
\(186\) 0 0
\(187\) 814.000 0.318319
\(188\) −460.000 −0.178452
\(189\) 0 0
\(190\) 0 0
\(191\) 4940.00 1.87144 0.935722 0.352738i \(-0.114749\pi\)
0.935722 + 0.352738i \(0.114749\pi\)
\(192\) 0 0
\(193\) 3290.00 1.22704 0.613522 0.789678i \(-0.289752\pi\)
0.613522 + 0.789678i \(0.289752\pi\)
\(194\) −1686.00 −0.623957
\(195\) 0 0
\(196\) 49.0000 0.0178571
\(197\) −66.0000 −0.0238696 −0.0119348 0.999929i \(-0.503799\pi\)
−0.0119348 + 0.999929i \(0.503799\pi\)
\(198\) 0 0
\(199\) −2672.00 −0.951824 −0.475912 0.879493i \(-0.657882\pi\)
−0.475912 + 0.879493i \(0.657882\pi\)
\(200\) 1491.00 0.527148
\(201\) 0 0
\(202\) −1242.00 −0.432608
\(203\) 182.000 0.0629256
\(204\) 0 0
\(205\) 140.000 0.0476977
\(206\) −2952.00 −0.998425
\(207\) 0 0
\(208\) −142.000 −0.0473362
\(209\) 0 0
\(210\) 0 0
\(211\) 2992.00 0.976198 0.488099 0.872788i \(-0.337690\pi\)
0.488099 + 0.872788i \(0.337690\pi\)
\(212\) −258.000 −0.0835826
\(213\) 0 0
\(214\) −5748.00 −1.83610
\(215\) 2912.00 0.923706
\(216\) 0 0
\(217\) −784.000 −0.245260
\(218\) 1482.00 0.460430
\(219\) 0 0
\(220\) 154.000 0.0471940
\(221\) 148.000 0.0450478
\(222\) 0 0
\(223\) −2408.00 −0.723101 −0.361551 0.932352i \(-0.617753\pi\)
−0.361551 + 0.932352i \(0.617753\pi\)
\(224\) −315.000 −0.0939590
\(225\) 0 0
\(226\) −3714.00 −1.09315
\(227\) 2380.00 0.695886 0.347943 0.937516i \(-0.386880\pi\)
0.347943 + 0.937516i \(0.386880\pi\)
\(228\) 0 0
\(229\) −4498.00 −1.29797 −0.648987 0.760799i \(-0.724807\pi\)
−0.648987 + 0.760799i \(0.724807\pi\)
\(230\) −6216.00 −1.78205
\(231\) 0 0
\(232\) −546.000 −0.154511
\(233\) 5010.00 1.40865 0.704326 0.709876i \(-0.251249\pi\)
0.704326 + 0.709876i \(0.251249\pi\)
\(234\) 0 0
\(235\) −6440.00 −1.78766
\(236\) 204.000 0.0562681
\(237\) 0 0
\(238\) 1554.00 0.423239
\(239\) −704.000 −0.190535 −0.0952677 0.995452i \(-0.530371\pi\)
−0.0952677 + 0.995452i \(0.530371\pi\)
\(240\) 0 0
\(241\) −6102.00 −1.63097 −0.815486 0.578776i \(-0.803530\pi\)
−0.815486 + 0.578776i \(0.803530\pi\)
\(242\) −363.000 −0.0964237
\(243\) 0 0
\(244\) 178.000 0.0467020
\(245\) 686.000 0.178885
\(246\) 0 0
\(247\) 0 0
\(248\) 2352.00 0.602226
\(249\) 0 0
\(250\) 2268.00 0.573764
\(251\) −6156.00 −1.54806 −0.774030 0.633148i \(-0.781762\pi\)
−0.774030 + 0.633148i \(0.781762\pi\)
\(252\) 0 0
\(253\) 1628.00 0.404551
\(254\) −3048.00 −0.752947
\(255\) 0 0
\(256\) 1513.00 0.369385
\(257\) 3054.00 0.741258 0.370629 0.928781i \(-0.379142\pi\)
0.370629 + 0.928781i \(0.379142\pi\)
\(258\) 0 0
\(259\) 686.000 0.164579
\(260\) 28.0000 0.00667879
\(261\) 0 0
\(262\) −7668.00 −1.80813
\(263\) 4944.00 1.15916 0.579582 0.814914i \(-0.303216\pi\)
0.579582 + 0.814914i \(0.303216\pi\)
\(264\) 0 0
\(265\) −3612.00 −0.837296
\(266\) 0 0
\(267\) 0 0
\(268\) −924.000 −0.210606
\(269\) −7602.00 −1.72306 −0.861528 0.507710i \(-0.830492\pi\)
−0.861528 + 0.507710i \(0.830492\pi\)
\(270\) 0 0
\(271\) 4552.00 1.02035 0.510174 0.860071i \(-0.329581\pi\)
0.510174 + 0.860071i \(0.329581\pi\)
\(272\) −5254.00 −1.17122
\(273\) 0 0
\(274\) 4878.00 1.07551
\(275\) 781.000 0.171258
\(276\) 0 0
\(277\) −3294.00 −0.714503 −0.357251 0.934008i \(-0.616286\pi\)
−0.357251 + 0.934008i \(0.616286\pi\)
\(278\) −1608.00 −0.346912
\(279\) 0 0
\(280\) −2058.00 −0.439247
\(281\) −3454.00 −0.733268 −0.366634 0.930365i \(-0.619490\pi\)
−0.366634 + 0.930365i \(0.619490\pi\)
\(282\) 0 0
\(283\) 8520.00 1.78962 0.894808 0.446451i \(-0.147312\pi\)
0.894808 + 0.446451i \(0.147312\pi\)
\(284\) 748.000 0.156287
\(285\) 0 0
\(286\) −66.0000 −0.0136457
\(287\) −70.0000 −0.0143971
\(288\) 0 0
\(289\) 563.000 0.114594
\(290\) 1092.00 0.221119
\(291\) 0 0
\(292\) −230.000 −0.0460950
\(293\) −5682.00 −1.13292 −0.566461 0.824089i \(-0.691688\pi\)
−0.566461 + 0.824089i \(0.691688\pi\)
\(294\) 0 0
\(295\) 2856.00 0.563670
\(296\) −2058.00 −0.404118
\(297\) 0 0
\(298\) −10410.0 −2.02361
\(299\) 296.000 0.0572512
\(300\) 0 0
\(301\) −1456.00 −0.278812
\(302\) −4176.00 −0.795701
\(303\) 0 0
\(304\) 0 0
\(305\) 2492.00 0.467841
\(306\) 0 0
\(307\) 1040.00 0.193342 0.0966709 0.995316i \(-0.469181\pi\)
0.0966709 + 0.995316i \(0.469181\pi\)
\(308\) −77.0000 −0.0142451
\(309\) 0 0
\(310\) −4704.00 −0.861836
\(311\) −7972.00 −1.45354 −0.726770 0.686881i \(-0.758979\pi\)
−0.726770 + 0.686881i \(0.758979\pi\)
\(312\) 0 0
\(313\) −3158.00 −0.570290 −0.285145 0.958484i \(-0.592042\pi\)
−0.285145 + 0.958484i \(0.592042\pi\)
\(314\) −8274.00 −1.48703
\(315\) 0 0
\(316\) −456.000 −0.0811772
\(317\) 6246.00 1.10666 0.553329 0.832963i \(-0.313357\pi\)
0.553329 + 0.832963i \(0.313357\pi\)
\(318\) 0 0
\(319\) −286.000 −0.0501973
\(320\) 6062.00 1.05899
\(321\) 0 0
\(322\) 3108.00 0.537895
\(323\) 0 0
\(324\) 0 0
\(325\) 142.000 0.0242361
\(326\) 4164.00 0.707431
\(327\) 0 0
\(328\) 210.000 0.0353516
\(329\) 3220.00 0.539588
\(330\) 0 0
\(331\) 7900.00 1.31185 0.655926 0.754825i \(-0.272278\pi\)
0.655926 + 0.754825i \(0.272278\pi\)
\(332\) 228.000 0.0376901
\(333\) 0 0
\(334\) 5064.00 0.829610
\(335\) −12936.0 −2.10976
\(336\) 0 0
\(337\) 4890.00 0.790431 0.395216 0.918588i \(-0.370670\pi\)
0.395216 + 0.918588i \(0.370670\pi\)
\(338\) 6579.00 1.05873
\(339\) 0 0
\(340\) 1036.00 0.165250
\(341\) 1232.00 0.195650
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 4368.00 0.684613
\(345\) 0 0
\(346\) −354.000 −0.0550033
\(347\) −10732.0 −1.66030 −0.830150 0.557540i \(-0.811745\pi\)
−0.830150 + 0.557540i \(0.811745\pi\)
\(348\) 0 0
\(349\) 7370.00 1.13039 0.565196 0.824956i \(-0.308800\pi\)
0.565196 + 0.824956i \(0.308800\pi\)
\(350\) 1491.00 0.227707
\(351\) 0 0
\(352\) 495.000 0.0749534
\(353\) 2526.00 0.380865 0.190433 0.981700i \(-0.439011\pi\)
0.190433 + 0.981700i \(0.439011\pi\)
\(354\) 0 0
\(355\) 10472.0 1.56562
\(356\) 198.000 0.0294775
\(357\) 0 0
\(358\) −9012.00 −1.33044
\(359\) −8080.00 −1.18787 −0.593936 0.804512i \(-0.702427\pi\)
−0.593936 + 0.804512i \(0.702427\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) −2346.00 −0.340616
\(363\) 0 0
\(364\) −14.0000 −0.00201593
\(365\) −3220.00 −0.461760
\(366\) 0 0
\(367\) −152.000 −0.0216194 −0.0108097 0.999942i \(-0.503441\pi\)
−0.0108097 + 0.999942i \(0.503441\pi\)
\(368\) −10508.0 −1.48850
\(369\) 0 0
\(370\) 4116.00 0.578326
\(371\) 1806.00 0.252730
\(372\) 0 0
\(373\) 1106.00 0.153530 0.0767648 0.997049i \(-0.475541\pi\)
0.0767648 + 0.997049i \(0.475541\pi\)
\(374\) −2442.00 −0.337628
\(375\) 0 0
\(376\) −9660.00 −1.32494
\(377\) −52.0000 −0.00710381
\(378\) 0 0
\(379\) −3428.00 −0.464603 −0.232301 0.972644i \(-0.574626\pi\)
−0.232301 + 0.972644i \(0.574626\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −14820.0 −1.98497
\(383\) 4052.00 0.540594 0.270297 0.962777i \(-0.412878\pi\)
0.270297 + 0.962777i \(0.412878\pi\)
\(384\) 0 0
\(385\) −1078.00 −0.142701
\(386\) −9870.00 −1.30148
\(387\) 0 0
\(388\) 562.000 0.0735341
\(389\) −4554.00 −0.593565 −0.296783 0.954945i \(-0.595914\pi\)
−0.296783 + 0.954945i \(0.595914\pi\)
\(390\) 0 0
\(391\) 10952.0 1.41654
\(392\) 1029.00 0.132583
\(393\) 0 0
\(394\) 198.000 0.0253175
\(395\) −6384.00 −0.813200
\(396\) 0 0
\(397\) −6666.00 −0.842713 −0.421356 0.906895i \(-0.638446\pi\)
−0.421356 + 0.906895i \(0.638446\pi\)
\(398\) 8016.00 1.00956
\(399\) 0 0
\(400\) −5041.00 −0.630125
\(401\) −12210.0 −1.52054 −0.760272 0.649605i \(-0.774934\pi\)
−0.760272 + 0.649605i \(0.774934\pi\)
\(402\) 0 0
\(403\) 224.000 0.0276879
\(404\) 414.000 0.0509833
\(405\) 0 0
\(406\) −546.000 −0.0667427
\(407\) −1078.00 −0.131289
\(408\) 0 0
\(409\) −10190.0 −1.23194 −0.615970 0.787770i \(-0.711236\pi\)
−0.615970 + 0.787770i \(0.711236\pi\)
\(410\) −420.000 −0.0505910
\(411\) 0 0
\(412\) 984.000 0.117666
\(413\) −1428.00 −0.170139
\(414\) 0 0
\(415\) 3192.00 0.377564
\(416\) 90.0000 0.0106072
\(417\) 0 0
\(418\) 0 0
\(419\) 16780.0 1.95646 0.978230 0.207524i \(-0.0665406\pi\)
0.978230 + 0.207524i \(0.0665406\pi\)
\(420\) 0 0
\(421\) 9214.00 1.06666 0.533329 0.845908i \(-0.320941\pi\)
0.533329 + 0.845908i \(0.320941\pi\)
\(422\) −8976.00 −1.03541
\(423\) 0 0
\(424\) −5418.00 −0.620569
\(425\) 5254.00 0.599662
\(426\) 0 0
\(427\) −1246.00 −0.141214
\(428\) 1916.00 0.216386
\(429\) 0 0
\(430\) −8736.00 −0.979738
\(431\) −9896.00 −1.10597 −0.552986 0.833191i \(-0.686512\pi\)
−0.552986 + 0.833191i \(0.686512\pi\)
\(432\) 0 0
\(433\) −8878.00 −0.985334 −0.492667 0.870218i \(-0.663978\pi\)
−0.492667 + 0.870218i \(0.663978\pi\)
\(434\) 2352.00 0.260137
\(435\) 0 0
\(436\) −494.000 −0.0542622
\(437\) 0 0
\(438\) 0 0
\(439\) 5464.00 0.594038 0.297019 0.954872i \(-0.404008\pi\)
0.297019 + 0.954872i \(0.404008\pi\)
\(440\) 3234.00 0.350398
\(441\) 0 0
\(442\) −444.000 −0.0477804
\(443\) −1668.00 −0.178892 −0.0894459 0.995992i \(-0.528510\pi\)
−0.0894459 + 0.995992i \(0.528510\pi\)
\(444\) 0 0
\(445\) 2772.00 0.295293
\(446\) 7224.00 0.766965
\(447\) 0 0
\(448\) −3031.00 −0.319646
\(449\) 10374.0 1.09038 0.545189 0.838313i \(-0.316458\pi\)
0.545189 + 0.838313i \(0.316458\pi\)
\(450\) 0 0
\(451\) 110.000 0.0114849
\(452\) 1238.00 0.128829
\(453\) 0 0
\(454\) −7140.00 −0.738099
\(455\) −196.000 −0.0201948
\(456\) 0 0
\(457\) −3046.00 −0.311785 −0.155893 0.987774i \(-0.549825\pi\)
−0.155893 + 0.987774i \(0.549825\pi\)
\(458\) 13494.0 1.37671
\(459\) 0 0
\(460\) 2072.00 0.210016
\(461\) −1770.00 −0.178822 −0.0894112 0.995995i \(-0.528499\pi\)
−0.0894112 + 0.995995i \(0.528499\pi\)
\(462\) 0 0
\(463\) 12088.0 1.21334 0.606671 0.794953i \(-0.292505\pi\)
0.606671 + 0.794953i \(0.292505\pi\)
\(464\) 1846.00 0.184695
\(465\) 0 0
\(466\) −15030.0 −1.49410
\(467\) 19836.0 1.96553 0.982763 0.184870i \(-0.0591864\pi\)
0.982763 + 0.184870i \(0.0591864\pi\)
\(468\) 0 0
\(469\) 6468.00 0.636811
\(470\) 19320.0 1.89610
\(471\) 0 0
\(472\) 4284.00 0.417769
\(473\) 2288.00 0.222415
\(474\) 0 0
\(475\) 0 0
\(476\) −518.000 −0.0498792
\(477\) 0 0
\(478\) 2112.00 0.202093
\(479\) 4520.00 0.431157 0.215578 0.976487i \(-0.430836\pi\)
0.215578 + 0.976487i \(0.430836\pi\)
\(480\) 0 0
\(481\) −196.000 −0.0185797
\(482\) 18306.0 1.72991
\(483\) 0 0
\(484\) 121.000 0.0113636
\(485\) 7868.00 0.736634
\(486\) 0 0
\(487\) −1768.00 −0.164509 −0.0822543 0.996611i \(-0.526212\pi\)
−0.0822543 + 0.996611i \(0.526212\pi\)
\(488\) 3738.00 0.346744
\(489\) 0 0
\(490\) −2058.00 −0.189737
\(491\) −17988.0 −1.65333 −0.826667 0.562691i \(-0.809766\pi\)
−0.826667 + 0.562691i \(0.809766\pi\)
\(492\) 0 0
\(493\) −1924.00 −0.175766
\(494\) 0 0
\(495\) 0 0
\(496\) −7952.00 −0.719870
\(497\) −5236.00 −0.472569
\(498\) 0 0
\(499\) 1916.00 0.171888 0.0859438 0.996300i \(-0.472609\pi\)
0.0859438 + 0.996300i \(0.472609\pi\)
\(500\) −756.000 −0.0676187
\(501\) 0 0
\(502\) 18468.0 1.64197
\(503\) 18552.0 1.64452 0.822259 0.569113i \(-0.192713\pi\)
0.822259 + 0.569113i \(0.192713\pi\)
\(504\) 0 0
\(505\) 5796.00 0.510730
\(506\) −4884.00 −0.429091
\(507\) 0 0
\(508\) 1016.00 0.0887357
\(509\) 9326.00 0.812117 0.406059 0.913847i \(-0.366903\pi\)
0.406059 + 0.913847i \(0.366903\pi\)
\(510\) 0 0
\(511\) 1610.00 0.139378
\(512\) 8733.00 0.753804
\(513\) 0 0
\(514\) −9162.00 −0.786223
\(515\) 13776.0 1.17872
\(516\) 0 0
\(517\) −5060.00 −0.430442
\(518\) −2058.00 −0.174562
\(519\) 0 0
\(520\) 588.000 0.0495875
\(521\) 14038.0 1.18045 0.590226 0.807238i \(-0.299038\pi\)
0.590226 + 0.807238i \(0.299038\pi\)
\(522\) 0 0
\(523\) 5384.00 0.450145 0.225073 0.974342i \(-0.427738\pi\)
0.225073 + 0.974342i \(0.427738\pi\)
\(524\) 2556.00 0.213090
\(525\) 0 0
\(526\) −14832.0 −1.22948
\(527\) 8288.00 0.685068
\(528\) 0 0
\(529\) 9737.00 0.800279
\(530\) 10836.0 0.888086
\(531\) 0 0
\(532\) 0 0
\(533\) 20.0000 0.00162532
\(534\) 0 0
\(535\) 26824.0 2.16767
\(536\) −19404.0 −1.56367
\(537\) 0 0
\(538\) 22806.0 1.82758
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −8398.00 −0.667390 −0.333695 0.942681i \(-0.608296\pi\)
−0.333695 + 0.942681i \(0.608296\pi\)
\(542\) −13656.0 −1.08224
\(543\) 0 0
\(544\) 3330.00 0.262450
\(545\) −6916.00 −0.543576
\(546\) 0 0
\(547\) 21312.0 1.66588 0.832939 0.553365i \(-0.186656\pi\)
0.832939 + 0.553365i \(0.186656\pi\)
\(548\) −1626.00 −0.126751
\(549\) 0 0
\(550\) −2343.00 −0.181647
\(551\) 0 0
\(552\) 0 0
\(553\) 3192.00 0.245457
\(554\) 9882.00 0.757845
\(555\) 0 0
\(556\) 536.000 0.0408839
\(557\) −12778.0 −0.972031 −0.486015 0.873950i \(-0.661550\pi\)
−0.486015 + 0.873950i \(0.661550\pi\)
\(558\) 0 0
\(559\) 416.000 0.0314757
\(560\) 6958.00 0.525052
\(561\) 0 0
\(562\) 10362.0 0.777748
\(563\) −22444.0 −1.68011 −0.840055 0.542501i \(-0.817477\pi\)
−0.840055 + 0.542501i \(0.817477\pi\)
\(564\) 0 0
\(565\) 17332.0 1.29055
\(566\) −25560.0 −1.89817
\(567\) 0 0
\(568\) 15708.0 1.16038
\(569\) 26874.0 1.97999 0.989997 0.141088i \(-0.0450600\pi\)
0.989997 + 0.141088i \(0.0450600\pi\)
\(570\) 0 0
\(571\) 12712.0 0.931665 0.465832 0.884873i \(-0.345755\pi\)
0.465832 + 0.884873i \(0.345755\pi\)
\(572\) 22.0000 0.00160816
\(573\) 0 0
\(574\) 210.000 0.0152704
\(575\) 10508.0 0.762111
\(576\) 0 0
\(577\) −17470.0 −1.26046 −0.630230 0.776408i \(-0.717039\pi\)
−0.630230 + 0.776408i \(0.717039\pi\)
\(578\) −1689.00 −0.121545
\(579\) 0 0
\(580\) −364.000 −0.0260591
\(581\) −1596.00 −0.113964
\(582\) 0 0
\(583\) −2838.00 −0.201609
\(584\) −4830.00 −0.342238
\(585\) 0 0
\(586\) 17046.0 1.20164
\(587\) −8340.00 −0.586420 −0.293210 0.956048i \(-0.594724\pi\)
−0.293210 + 0.956048i \(0.594724\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −8568.00 −0.597863
\(591\) 0 0
\(592\) 6958.00 0.483061
\(593\) 10818.0 0.749143 0.374572 0.927198i \(-0.377790\pi\)
0.374572 + 0.927198i \(0.377790\pi\)
\(594\) 0 0
\(595\) −7252.00 −0.499669
\(596\) 3470.00 0.238484
\(597\) 0 0
\(598\) −888.000 −0.0607241
\(599\) 3348.00 0.228373 0.114187 0.993459i \(-0.463574\pi\)
0.114187 + 0.993459i \(0.463574\pi\)
\(600\) 0 0
\(601\) −9934.00 −0.674237 −0.337118 0.941462i \(-0.609452\pi\)
−0.337118 + 0.941462i \(0.609452\pi\)
\(602\) 4368.00 0.295725
\(603\) 0 0
\(604\) 1392.00 0.0937743
\(605\) 1694.00 0.113836
\(606\) 0 0
\(607\) 19640.0 1.31328 0.656642 0.754203i \(-0.271976\pi\)
0.656642 + 0.754203i \(0.271976\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −7476.00 −0.496220
\(611\) −920.000 −0.0609152
\(612\) 0 0
\(613\) 10042.0 0.661652 0.330826 0.943692i \(-0.392673\pi\)
0.330826 + 0.943692i \(0.392673\pi\)
\(614\) −3120.00 −0.205070
\(615\) 0 0
\(616\) −1617.00 −0.105764
\(617\) −26226.0 −1.71121 −0.855607 0.517626i \(-0.826816\pi\)
−0.855607 + 0.517626i \(0.826816\pi\)
\(618\) 0 0
\(619\) −29932.0 −1.94357 −0.971784 0.235872i \(-0.924205\pi\)
−0.971784 + 0.235872i \(0.924205\pi\)
\(620\) 1568.00 0.101568
\(621\) 0 0
\(622\) 23916.0 1.54171
\(623\) −1386.00 −0.0891315
\(624\) 0 0
\(625\) −19459.0 −1.24538
\(626\) 9474.00 0.604884
\(627\) 0 0
\(628\) 2758.00 0.175249
\(629\) −7252.00 −0.459708
\(630\) 0 0
\(631\) −1920.00 −0.121132 −0.0605658 0.998164i \(-0.519290\pi\)
−0.0605658 + 0.998164i \(0.519290\pi\)
\(632\) −9576.00 −0.602710
\(633\) 0 0
\(634\) −18738.0 −1.17379
\(635\) 14224.0 0.888917
\(636\) 0 0
\(637\) 98.0000 0.00609561
\(638\) 858.000 0.0532422
\(639\) 0 0
\(640\) −23226.0 −1.43451
\(641\) 2550.00 0.157128 0.0785639 0.996909i \(-0.474967\pi\)
0.0785639 + 0.996909i \(0.474967\pi\)
\(642\) 0 0
\(643\) −24500.0 −1.50262 −0.751311 0.659949i \(-0.770578\pi\)
−0.751311 + 0.659949i \(0.770578\pi\)
\(644\) −1036.00 −0.0633915
\(645\) 0 0
\(646\) 0 0
\(647\) −20436.0 −1.24177 −0.620883 0.783904i \(-0.713226\pi\)
−0.620883 + 0.783904i \(0.713226\pi\)
\(648\) 0 0
\(649\) 2244.00 0.135724
\(650\) −426.000 −0.0257063
\(651\) 0 0
\(652\) −1388.00 −0.0833716
\(653\) 20062.0 1.20228 0.601138 0.799145i \(-0.294714\pi\)
0.601138 + 0.799145i \(0.294714\pi\)
\(654\) 0 0
\(655\) 35784.0 2.13465
\(656\) −710.000 −0.0422574
\(657\) 0 0
\(658\) −9660.00 −0.572319
\(659\) 13324.0 0.787601 0.393801 0.919196i \(-0.371160\pi\)
0.393801 + 0.919196i \(0.371160\pi\)
\(660\) 0 0
\(661\) 4958.00 0.291746 0.145873 0.989303i \(-0.453401\pi\)
0.145873 + 0.989303i \(0.453401\pi\)
\(662\) −23700.0 −1.39143
\(663\) 0 0
\(664\) 4788.00 0.279835
\(665\) 0 0
\(666\) 0 0
\(667\) −3848.00 −0.223381
\(668\) −1688.00 −0.0977705
\(669\) 0 0
\(670\) 38808.0 2.23774
\(671\) 1958.00 0.112649
\(672\) 0 0
\(673\) 2458.00 0.140786 0.0703930 0.997519i \(-0.477575\pi\)
0.0703930 + 0.997519i \(0.477575\pi\)
\(674\) −14670.0 −0.838379
\(675\) 0 0
\(676\) −2193.00 −0.124772
\(677\) −18658.0 −1.05921 −0.529605 0.848244i \(-0.677660\pi\)
−0.529605 + 0.848244i \(0.677660\pi\)
\(678\) 0 0
\(679\) −3934.00 −0.222346
\(680\) 21756.0 1.22692
\(681\) 0 0
\(682\) −3696.00 −0.207518
\(683\) −28092.0 −1.57381 −0.786904 0.617076i \(-0.788317\pi\)
−0.786904 + 0.617076i \(0.788317\pi\)
\(684\) 0 0
\(685\) −22764.0 −1.26973
\(686\) 1029.00 0.0572703
\(687\) 0 0
\(688\) −14768.0 −0.818350
\(689\) −516.000 −0.0285313
\(690\) 0 0
\(691\) 25596.0 1.40914 0.704571 0.709633i \(-0.251139\pi\)
0.704571 + 0.709633i \(0.251139\pi\)
\(692\) 118.000 0.00648221
\(693\) 0 0
\(694\) 32196.0 1.76101
\(695\) 7504.00 0.409558
\(696\) 0 0
\(697\) 740.000 0.0402145
\(698\) −22110.0 −1.19896
\(699\) 0 0
\(700\) −497.000 −0.0268355
\(701\) −21498.0 −1.15830 −0.579150 0.815221i \(-0.696615\pi\)
−0.579150 + 0.815221i \(0.696615\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 4763.00 0.254989
\(705\) 0 0
\(706\) −7578.00 −0.403969
\(707\) −2898.00 −0.154159
\(708\) 0 0
\(709\) −17706.0 −0.937888 −0.468944 0.883228i \(-0.655365\pi\)
−0.468944 + 0.883228i \(0.655365\pi\)
\(710\) −31416.0 −1.66059
\(711\) 0 0
\(712\) 4158.00 0.218859
\(713\) 16576.0 0.870654
\(714\) 0 0
\(715\) 308.000 0.0161099
\(716\) 3004.00 0.156794
\(717\) 0 0
\(718\) 24240.0 1.25993
\(719\) −31796.0 −1.64922 −0.824611 0.565700i \(-0.808606\pi\)
−0.824611 + 0.565700i \(0.808606\pi\)
\(720\) 0 0
\(721\) −6888.00 −0.355787
\(722\) 20577.0 1.06066
\(723\) 0 0
\(724\) 782.000 0.0401420
\(725\) −1846.00 −0.0945638
\(726\) 0 0
\(727\) −9952.00 −0.507702 −0.253851 0.967243i \(-0.581697\pi\)
−0.253851 + 0.967243i \(0.581697\pi\)
\(728\) −294.000 −0.0149675
\(729\) 0 0
\(730\) 9660.00 0.489771
\(731\) 15392.0 0.778788
\(732\) 0 0
\(733\) 22850.0 1.15141 0.575705 0.817657i \(-0.304728\pi\)
0.575705 + 0.817657i \(0.304728\pi\)
\(734\) 456.000 0.0229309
\(735\) 0 0
\(736\) 6660.00 0.333547
\(737\) −10164.0 −0.508000
\(738\) 0 0
\(739\) −33144.0 −1.64983 −0.824913 0.565259i \(-0.808776\pi\)
−0.824913 + 0.565259i \(0.808776\pi\)
\(740\) −1372.00 −0.0681564
\(741\) 0 0
\(742\) −5418.00 −0.268061
\(743\) 15408.0 0.760787 0.380393 0.924825i \(-0.375789\pi\)
0.380393 + 0.924825i \(0.375789\pi\)
\(744\) 0 0
\(745\) 48580.0 2.38904
\(746\) −3318.00 −0.162843
\(747\) 0 0
\(748\) 814.000 0.0397898
\(749\) −13412.0 −0.654291
\(750\) 0 0
\(751\) −23288.0 −1.13155 −0.565773 0.824561i \(-0.691422\pi\)
−0.565773 + 0.824561i \(0.691422\pi\)
\(752\) 32660.0 1.58376
\(753\) 0 0
\(754\) 156.000 0.00753473
\(755\) 19488.0 0.939392
\(756\) 0 0
\(757\) −34018.0 −1.63330 −0.816648 0.577136i \(-0.804170\pi\)
−0.816648 + 0.577136i \(0.804170\pi\)
\(758\) 10284.0 0.492786
\(759\) 0 0
\(760\) 0 0
\(761\) −17118.0 −0.815410 −0.407705 0.913114i \(-0.633671\pi\)
−0.407705 + 0.913114i \(0.633671\pi\)
\(762\) 0 0
\(763\) 3458.00 0.164073
\(764\) 4940.00 0.233931
\(765\) 0 0
\(766\) −12156.0 −0.573387
\(767\) 408.000 0.0192073
\(768\) 0 0
\(769\) −10622.0 −0.498100 −0.249050 0.968491i \(-0.580118\pi\)
−0.249050 + 0.968491i \(0.580118\pi\)
\(770\) 3234.00 0.151357
\(771\) 0 0
\(772\) 3290.00 0.153380
\(773\) 12870.0 0.598838 0.299419 0.954122i \(-0.403207\pi\)
0.299419 + 0.954122i \(0.403207\pi\)
\(774\) 0 0
\(775\) 7952.00 0.368573
\(776\) 11802.0 0.545963
\(777\) 0 0
\(778\) 13662.0 0.629571
\(779\) 0 0
\(780\) 0 0
\(781\) 8228.00 0.376979
\(782\) −32856.0 −1.50247
\(783\) 0 0
\(784\) −3479.00 −0.158482
\(785\) 38612.0 1.75557
\(786\) 0 0
\(787\) 20288.0 0.918919 0.459459 0.888199i \(-0.348043\pi\)
0.459459 + 0.888199i \(0.348043\pi\)
\(788\) −66.0000 −0.00298370
\(789\) 0 0
\(790\) 19152.0 0.862529
\(791\) −8666.00 −0.389542
\(792\) 0 0
\(793\) 356.000 0.0159419
\(794\) 19998.0 0.893832
\(795\) 0 0
\(796\) −2672.00 −0.118978
\(797\) −9754.00 −0.433506 −0.216753 0.976226i \(-0.569547\pi\)
−0.216753 + 0.976226i \(0.569547\pi\)
\(798\) 0 0
\(799\) −34040.0 −1.50719
\(800\) 3195.00 0.141200
\(801\) 0 0
\(802\) 36630.0 1.61278
\(803\) −2530.00 −0.111185
\(804\) 0 0
\(805\) −14504.0 −0.635030
\(806\) −672.000 −0.0293675
\(807\) 0 0
\(808\) 8694.00 0.378532
\(809\) 4554.00 0.197911 0.0989556 0.995092i \(-0.468450\pi\)
0.0989556 + 0.995092i \(0.468450\pi\)
\(810\) 0 0
\(811\) −5584.00 −0.241777 −0.120888 0.992666i \(-0.538574\pi\)
−0.120888 + 0.992666i \(0.538574\pi\)
\(812\) 182.000 0.00786570
\(813\) 0 0
\(814\) 3234.00 0.139253
\(815\) −19432.0 −0.835182
\(816\) 0 0
\(817\) 0 0
\(818\) 30570.0 1.30667
\(819\) 0 0
\(820\) 140.000 0.00596221
\(821\) −29490.0 −1.25360 −0.626802 0.779179i \(-0.715636\pi\)
−0.626802 + 0.779179i \(0.715636\pi\)
\(822\) 0 0
\(823\) −5032.00 −0.213128 −0.106564 0.994306i \(-0.533985\pi\)
−0.106564 + 0.994306i \(0.533985\pi\)
\(824\) 20664.0 0.873622
\(825\) 0 0
\(826\) 4284.00 0.180459
\(827\) −36604.0 −1.53911 −0.769556 0.638579i \(-0.779522\pi\)
−0.769556 + 0.638579i \(0.779522\pi\)
\(828\) 0 0
\(829\) −37154.0 −1.55659 −0.778294 0.627900i \(-0.783915\pi\)
−0.778294 + 0.627900i \(0.783915\pi\)
\(830\) −9576.00 −0.400467
\(831\) 0 0
\(832\) 866.000 0.0360855
\(833\) 3626.00 0.150820
\(834\) 0 0
\(835\) −23632.0 −0.979424
\(836\) 0 0
\(837\) 0 0
\(838\) −50340.0 −2.07514
\(839\) −3852.00 −0.158505 −0.0792526 0.996855i \(-0.525253\pi\)
−0.0792526 + 0.996855i \(0.525253\pi\)
\(840\) 0 0
\(841\) −23713.0 −0.972283
\(842\) −27642.0 −1.13136
\(843\) 0 0
\(844\) 2992.00 0.122025
\(845\) −30702.0 −1.24992
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 18318.0 0.741796
\(849\) 0 0
\(850\) −15762.0 −0.636038
\(851\) −14504.0 −0.584243
\(852\) 0 0
\(853\) −9622.00 −0.386226 −0.193113 0.981176i \(-0.561858\pi\)
−0.193113 + 0.981176i \(0.561858\pi\)
\(854\) 3738.00 0.149780
\(855\) 0 0
\(856\) 40236.0 1.60659
\(857\) 25202.0 1.00453 0.502266 0.864713i \(-0.332500\pi\)
0.502266 + 0.864713i \(0.332500\pi\)
\(858\) 0 0
\(859\) 20188.0 0.801869 0.400935 0.916107i \(-0.368685\pi\)
0.400935 + 0.916107i \(0.368685\pi\)
\(860\) 2912.00 0.115463
\(861\) 0 0
\(862\) 29688.0 1.17306
\(863\) −26876.0 −1.06010 −0.530052 0.847965i \(-0.677828\pi\)
−0.530052 + 0.847965i \(0.677828\pi\)
\(864\) 0 0
\(865\) 1652.00 0.0649361
\(866\) 26634.0 1.04510
\(867\) 0 0
\(868\) −784.000 −0.0306575
\(869\) −5016.00 −0.195807
\(870\) 0 0
\(871\) −1848.00 −0.0718910
\(872\) −10374.0 −0.402876
\(873\) 0 0
\(874\) 0 0
\(875\) 5292.00 0.204460
\(876\) 0 0
\(877\) −38198.0 −1.47076 −0.735379 0.677656i \(-0.762996\pi\)
−0.735379 + 0.677656i \(0.762996\pi\)
\(878\) −16392.0 −0.630072
\(879\) 0 0
\(880\) −10934.0 −0.418847
\(881\) 27222.0 1.04101 0.520507 0.853858i \(-0.325743\pi\)
0.520507 + 0.853858i \(0.325743\pi\)
\(882\) 0 0
\(883\) −34316.0 −1.30784 −0.653921 0.756562i \(-0.726877\pi\)
−0.653921 + 0.756562i \(0.726877\pi\)
\(884\) 148.000 0.00563097
\(885\) 0 0
\(886\) 5004.00 0.189743
\(887\) 8944.00 0.338568 0.169284 0.985567i \(-0.445854\pi\)
0.169284 + 0.985567i \(0.445854\pi\)
\(888\) 0 0
\(889\) −7112.00 −0.268311
\(890\) −8316.00 −0.313206
\(891\) 0 0
\(892\) −2408.00 −0.0903877
\(893\) 0 0
\(894\) 0 0
\(895\) 42056.0 1.57070
\(896\) 11613.0 0.432995
\(897\) 0 0
\(898\) −31122.0 −1.15652
\(899\) −2912.00 −0.108032
\(900\) 0 0
\(901\) −19092.0 −0.705934
\(902\) −330.000 −0.0121816
\(903\) 0 0
\(904\) 25998.0 0.956505
\(905\) 10948.0 0.402126
\(906\) 0 0
\(907\) −19948.0 −0.730278 −0.365139 0.930953i \(-0.618979\pi\)
−0.365139 + 0.930953i \(0.618979\pi\)
\(908\) 2380.00 0.0869858
\(909\) 0 0
\(910\) 588.000 0.0214198
\(911\) 7812.00 0.284109 0.142054 0.989859i \(-0.454629\pi\)
0.142054 + 0.989859i \(0.454629\pi\)
\(912\) 0 0
\(913\) 2508.00 0.0909120
\(914\) 9138.00 0.330698
\(915\) 0 0
\(916\) −4498.00 −0.162247
\(917\) −17892.0 −0.644325
\(918\) 0 0
\(919\) −36000.0 −1.29220 −0.646099 0.763253i \(-0.723601\pi\)
−0.646099 + 0.763253i \(0.723601\pi\)
\(920\) 43512.0 1.55929
\(921\) 0 0
\(922\) 5310.00 0.189670
\(923\) 1496.00 0.0533493
\(924\) 0 0
\(925\) −6958.00 −0.247327
\(926\) −36264.0 −1.28694
\(927\) 0 0
\(928\) −1170.00 −0.0413870
\(929\) 15246.0 0.538434 0.269217 0.963080i \(-0.413235\pi\)
0.269217 + 0.963080i \(0.413235\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 5010.00 0.176082
\(933\) 0 0
\(934\) −59508.0 −2.08476
\(935\) 11396.0 0.398598
\(936\) 0 0
\(937\) 32706.0 1.14030 0.570149 0.821542i \(-0.306886\pi\)
0.570149 + 0.821542i \(0.306886\pi\)
\(938\) −19404.0 −0.675440
\(939\) 0 0
\(940\) −6440.00 −0.223457
\(941\) 10006.0 0.346638 0.173319 0.984866i \(-0.444551\pi\)
0.173319 + 0.984866i \(0.444551\pi\)
\(942\) 0 0
\(943\) 1480.00 0.0511086
\(944\) −14484.0 −0.499379
\(945\) 0 0
\(946\) −6864.00 −0.235907
\(947\) 5540.00 0.190101 0.0950506 0.995472i \(-0.469699\pi\)
0.0950506 + 0.995472i \(0.469699\pi\)
\(948\) 0 0
\(949\) −460.000 −0.0157347
\(950\) 0 0
\(951\) 0 0
\(952\) −10878.0 −0.370334
\(953\) 32522.0 1.10545 0.552723 0.833365i \(-0.313589\pi\)
0.552723 + 0.833365i \(0.313589\pi\)
\(954\) 0 0
\(955\) 69160.0 2.34342
\(956\) −704.000 −0.0238169
\(957\) 0 0
\(958\) −13560.0 −0.457311
\(959\) 11382.0 0.383258
\(960\) 0 0
\(961\) −17247.0 −0.578933
\(962\) 588.000 0.0197067
\(963\) 0 0
\(964\) −6102.00 −0.203872
\(965\) 46060.0 1.53650
\(966\) 0 0
\(967\) −6976.00 −0.231989 −0.115994 0.993250i \(-0.537005\pi\)
−0.115994 + 0.993250i \(0.537005\pi\)
\(968\) 2541.00 0.0843707
\(969\) 0 0
\(970\) −23604.0 −0.781318
\(971\) −46660.0 −1.54211 −0.771056 0.636767i \(-0.780271\pi\)
−0.771056 + 0.636767i \(0.780271\pi\)
\(972\) 0 0
\(973\) −3752.00 −0.123621
\(974\) 5304.00 0.174488
\(975\) 0 0
\(976\) −12638.0 −0.414480
\(977\) −11506.0 −0.376775 −0.188388 0.982095i \(-0.560326\pi\)
−0.188388 + 0.982095i \(0.560326\pi\)
\(978\) 0 0
\(979\) 2178.00 0.0711023
\(980\) 686.000 0.0223607
\(981\) 0 0
\(982\) 53964.0 1.75363
\(983\) 14844.0 0.481638 0.240819 0.970570i \(-0.422584\pi\)
0.240819 + 0.970570i \(0.422584\pi\)
\(984\) 0 0
\(985\) −924.000 −0.0298894
\(986\) 5772.00 0.186428
\(987\) 0 0
\(988\) 0 0
\(989\) 30784.0 0.989762
\(990\) 0 0
\(991\) −4616.00 −0.147964 −0.0739819 0.997260i \(-0.523571\pi\)
−0.0739819 + 0.997260i \(0.523571\pi\)
\(992\) 5040.00 0.161311
\(993\) 0 0
\(994\) 15708.0 0.501235
\(995\) −37408.0 −1.19187
\(996\) 0 0
\(997\) 41298.0 1.31186 0.655928 0.754823i \(-0.272277\pi\)
0.655928 + 0.754823i \(0.272277\pi\)
\(998\) −5748.00 −0.182314
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.c.1.1 1
3.2 odd 2 231.4.a.d.1.1 1
21.20 even 2 1617.4.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.d.1.1 1 3.2 odd 2
693.4.a.c.1.1 1 1.1 even 1 trivial
1617.4.a.f.1.1 1 21.20 even 2