Properties

Label 693.4.a.a.1.1
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000 q^{2} +17.0000 q^{4} +6.00000 q^{5} +7.00000 q^{7} -45.0000 q^{8} +O(q^{10})\) \(q-5.00000 q^{2} +17.0000 q^{4} +6.00000 q^{5} +7.00000 q^{7} -45.0000 q^{8} -30.0000 q^{10} +11.0000 q^{11} +70.0000 q^{13} -35.0000 q^{14} +89.0000 q^{16} -126.000 q^{17} -80.0000 q^{19} +102.000 q^{20} -55.0000 q^{22} +200.000 q^{23} -89.0000 q^{25} -350.000 q^{26} +119.000 q^{28} -134.000 q^{29} -244.000 q^{31} -85.0000 q^{32} +630.000 q^{34} +42.0000 q^{35} -314.000 q^{37} +400.000 q^{38} -270.000 q^{40} -278.000 q^{41} -372.000 q^{43} +187.000 q^{44} -1000.00 q^{46} +84.0000 q^{47} +49.0000 q^{49} +445.000 q^{50} +1190.00 q^{52} -182.000 q^{53} +66.0000 q^{55} -315.000 q^{56} +670.000 q^{58} +756.000 q^{59} +694.000 q^{61} +1220.00 q^{62} -287.000 q^{64} +420.000 q^{65} +820.000 q^{67} -2142.00 q^{68} -210.000 q^{70} -160.000 q^{71} -2.00000 q^{73} +1570.00 q^{74} -1360.00 q^{76} +77.0000 q^{77} +40.0000 q^{79} +534.000 q^{80} +1390.00 q^{82} -760.000 q^{83} -756.000 q^{85} +1860.00 q^{86} -495.000 q^{88} +102.000 q^{89} +490.000 q^{91} +3400.00 q^{92} -420.000 q^{94} -480.000 q^{95} -862.000 q^{97} -245.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.00000 −1.76777 −0.883883 0.467707i \(-0.845080\pi\)
−0.883883 + 0.467707i \(0.845080\pi\)
\(3\) 0 0
\(4\) 17.0000 2.12500
\(5\) 6.00000 0.536656 0.268328 0.963328i \(-0.413529\pi\)
0.268328 + 0.963328i \(0.413529\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −45.0000 −1.98874
\(9\) 0 0
\(10\) −30.0000 −0.948683
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 70.0000 1.49342 0.746712 0.665148i \(-0.231631\pi\)
0.746712 + 0.665148i \(0.231631\pi\)
\(14\) −35.0000 −0.668153
\(15\) 0 0
\(16\) 89.0000 1.39062
\(17\) −126.000 −1.79762 −0.898808 0.438342i \(-0.855566\pi\)
−0.898808 + 0.438342i \(0.855566\pi\)
\(18\) 0 0
\(19\) −80.0000 −0.965961 −0.482980 0.875631i \(-0.660446\pi\)
−0.482980 + 0.875631i \(0.660446\pi\)
\(20\) 102.000 1.14039
\(21\) 0 0
\(22\) −55.0000 −0.533002
\(23\) 200.000 1.81317 0.906584 0.422025i \(-0.138680\pi\)
0.906584 + 0.422025i \(0.138680\pi\)
\(24\) 0 0
\(25\) −89.0000 −0.712000
\(26\) −350.000 −2.64002
\(27\) 0 0
\(28\) 119.000 0.803175
\(29\) −134.000 −0.858041 −0.429020 0.903295i \(-0.641141\pi\)
−0.429020 + 0.903295i \(0.641141\pi\)
\(30\) 0 0
\(31\) −244.000 −1.41367 −0.706834 0.707380i \(-0.749877\pi\)
−0.706834 + 0.707380i \(0.749877\pi\)
\(32\) −85.0000 −0.469563
\(33\) 0 0
\(34\) 630.000 3.17777
\(35\) 42.0000 0.202837
\(36\) 0 0
\(37\) −314.000 −1.39517 −0.697585 0.716502i \(-0.745742\pi\)
−0.697585 + 0.716502i \(0.745742\pi\)
\(38\) 400.000 1.70759
\(39\) 0 0
\(40\) −270.000 −1.06727
\(41\) −278.000 −1.05893 −0.529467 0.848330i \(-0.677608\pi\)
−0.529467 + 0.848330i \(0.677608\pi\)
\(42\) 0 0
\(43\) −372.000 −1.31929 −0.659645 0.751577i \(-0.729293\pi\)
−0.659645 + 0.751577i \(0.729293\pi\)
\(44\) 187.000 0.640712
\(45\) 0 0
\(46\) −1000.00 −3.20526
\(47\) 84.0000 0.260695 0.130347 0.991468i \(-0.458391\pi\)
0.130347 + 0.991468i \(0.458391\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 445.000 1.25865
\(51\) 0 0
\(52\) 1190.00 3.17353
\(53\) −182.000 −0.471691 −0.235845 0.971791i \(-0.575786\pi\)
−0.235845 + 0.971791i \(0.575786\pi\)
\(54\) 0 0
\(55\) 66.0000 0.161808
\(56\) −315.000 −0.751672
\(57\) 0 0
\(58\) 670.000 1.51682
\(59\) 756.000 1.66818 0.834092 0.551626i \(-0.185992\pi\)
0.834092 + 0.551626i \(0.185992\pi\)
\(60\) 0 0
\(61\) 694.000 1.45668 0.728341 0.685215i \(-0.240292\pi\)
0.728341 + 0.685215i \(0.240292\pi\)
\(62\) 1220.00 2.49903
\(63\) 0 0
\(64\) −287.000 −0.560547
\(65\) 420.000 0.801455
\(66\) 0 0
\(67\) 820.000 1.49521 0.747604 0.664145i \(-0.231204\pi\)
0.747604 + 0.664145i \(0.231204\pi\)
\(68\) −2142.00 −3.81994
\(69\) 0 0
\(70\) −210.000 −0.358569
\(71\) −160.000 −0.267444 −0.133722 0.991019i \(-0.542693\pi\)
−0.133722 + 0.991019i \(0.542693\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.00320661 −0.00160330 0.999999i \(-0.500510\pi\)
−0.00160330 + 0.999999i \(0.500510\pi\)
\(74\) 1570.00 2.46634
\(75\) 0 0
\(76\) −1360.00 −2.05267
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) 40.0000 0.0569665 0.0284832 0.999594i \(-0.490932\pi\)
0.0284832 + 0.999594i \(0.490932\pi\)
\(80\) 534.000 0.746288
\(81\) 0 0
\(82\) 1390.00 1.87195
\(83\) −760.000 −1.00507 −0.502535 0.864557i \(-0.667599\pi\)
−0.502535 + 0.864557i \(0.667599\pi\)
\(84\) 0 0
\(85\) −756.000 −0.964703
\(86\) 1860.00 2.33220
\(87\) 0 0
\(88\) −495.000 −0.599627
\(89\) 102.000 0.121483 0.0607415 0.998154i \(-0.480653\pi\)
0.0607415 + 0.998154i \(0.480653\pi\)
\(90\) 0 0
\(91\) 490.000 0.564461
\(92\) 3400.00 3.85298
\(93\) 0 0
\(94\) −420.000 −0.460848
\(95\) −480.000 −0.518389
\(96\) 0 0
\(97\) −862.000 −0.902297 −0.451149 0.892449i \(-0.648986\pi\)
−0.451149 + 0.892449i \(0.648986\pi\)
\(98\) −245.000 −0.252538
\(99\) 0 0
\(100\) −1513.00 −1.51300
\(101\) 202.000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 140.000 0.133928 0.0669641 0.997755i \(-0.478669\pi\)
0.0669641 + 0.997755i \(0.478669\pi\)
\(104\) −3150.00 −2.97003
\(105\) 0 0
\(106\) 910.000 0.833840
\(107\) −1556.00 −1.40583 −0.702917 0.711272i \(-0.748119\pi\)
−0.702917 + 0.711272i \(0.748119\pi\)
\(108\) 0 0
\(109\) −394.000 −0.346223 −0.173112 0.984902i \(-0.555382\pi\)
−0.173112 + 0.984902i \(0.555382\pi\)
\(110\) −330.000 −0.286039
\(111\) 0 0
\(112\) 623.000 0.525607
\(113\) −1554.00 −1.29370 −0.646850 0.762618i \(-0.723914\pi\)
−0.646850 + 0.762618i \(0.723914\pi\)
\(114\) 0 0
\(115\) 1200.00 0.973048
\(116\) −2278.00 −1.82334
\(117\) 0 0
\(118\) −3780.00 −2.94896
\(119\) −882.000 −0.679435
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −3470.00 −2.57507
\(123\) 0 0
\(124\) −4148.00 −3.00404
\(125\) −1284.00 −0.918756
\(126\) 0 0
\(127\) −232.000 −0.162100 −0.0810499 0.996710i \(-0.525827\pi\)
−0.0810499 + 0.996710i \(0.525827\pi\)
\(128\) 2115.00 1.46048
\(129\) 0 0
\(130\) −2100.00 −1.41679
\(131\) −112.000 −0.0746984 −0.0373492 0.999302i \(-0.511891\pi\)
−0.0373492 + 0.999302i \(0.511891\pi\)
\(132\) 0 0
\(133\) −560.000 −0.365099
\(134\) −4100.00 −2.64318
\(135\) 0 0
\(136\) 5670.00 3.57499
\(137\) 182.000 0.113499 0.0567493 0.998388i \(-0.481926\pi\)
0.0567493 + 0.998388i \(0.481926\pi\)
\(138\) 0 0
\(139\) −1504.00 −0.917753 −0.458876 0.888500i \(-0.651748\pi\)
−0.458876 + 0.888500i \(0.651748\pi\)
\(140\) 714.000 0.431029
\(141\) 0 0
\(142\) 800.000 0.472778
\(143\) 770.000 0.450284
\(144\) 0 0
\(145\) −804.000 −0.460473
\(146\) 10.0000 0.00566853
\(147\) 0 0
\(148\) −5338.00 −2.96474
\(149\) 3138.00 1.72534 0.862668 0.505771i \(-0.168792\pi\)
0.862668 + 0.505771i \(0.168792\pi\)
\(150\) 0 0
\(151\) −2680.00 −1.44434 −0.722170 0.691716i \(-0.756855\pi\)
−0.722170 + 0.691716i \(0.756855\pi\)
\(152\) 3600.00 1.92104
\(153\) 0 0
\(154\) −385.000 −0.201456
\(155\) −1464.00 −0.758654
\(156\) 0 0
\(157\) 2002.00 1.01769 0.508844 0.860859i \(-0.330073\pi\)
0.508844 + 0.860859i \(0.330073\pi\)
\(158\) −200.000 −0.100703
\(159\) 0 0
\(160\) −510.000 −0.251994
\(161\) 1400.00 0.685313
\(162\) 0 0
\(163\) −740.000 −0.355591 −0.177795 0.984067i \(-0.556896\pi\)
−0.177795 + 0.984067i \(0.556896\pi\)
\(164\) −4726.00 −2.25024
\(165\) 0 0
\(166\) 3800.00 1.77673
\(167\) −3408.00 −1.57916 −0.789578 0.613651i \(-0.789700\pi\)
−0.789578 + 0.613651i \(0.789700\pi\)
\(168\) 0 0
\(169\) 2703.00 1.23031
\(170\) 3780.00 1.70537
\(171\) 0 0
\(172\) −6324.00 −2.80349
\(173\) −2374.00 −1.04331 −0.521653 0.853158i \(-0.674684\pi\)
−0.521653 + 0.853158i \(0.674684\pi\)
\(174\) 0 0
\(175\) −623.000 −0.269111
\(176\) 979.000 0.419289
\(177\) 0 0
\(178\) −510.000 −0.214753
\(179\) 1940.00 0.810069 0.405035 0.914301i \(-0.367259\pi\)
0.405035 + 0.914301i \(0.367259\pi\)
\(180\) 0 0
\(181\) −1102.00 −0.452547 −0.226274 0.974064i \(-0.572654\pi\)
−0.226274 + 0.974064i \(0.572654\pi\)
\(182\) −2450.00 −0.997836
\(183\) 0 0
\(184\) −9000.00 −3.60592
\(185\) −1884.00 −0.748727
\(186\) 0 0
\(187\) −1386.00 −0.542002
\(188\) 1428.00 0.553977
\(189\) 0 0
\(190\) 2400.00 0.916391
\(191\) 112.000 0.0424295 0.0212148 0.999775i \(-0.493247\pi\)
0.0212148 + 0.999775i \(0.493247\pi\)
\(192\) 0 0
\(193\) 1058.00 0.394593 0.197297 0.980344i \(-0.436784\pi\)
0.197297 + 0.980344i \(0.436784\pi\)
\(194\) 4310.00 1.59505
\(195\) 0 0
\(196\) 833.000 0.303571
\(197\) −2446.00 −0.884621 −0.442310 0.896862i \(-0.645841\pi\)
−0.442310 + 0.896862i \(0.645841\pi\)
\(198\) 0 0
\(199\) 4684.00 1.66854 0.834271 0.551354i \(-0.185889\pi\)
0.834271 + 0.551354i \(0.185889\pi\)
\(200\) 4005.00 1.41598
\(201\) 0 0
\(202\) −1010.00 −0.351799
\(203\) −938.000 −0.324309
\(204\) 0 0
\(205\) −1668.00 −0.568284
\(206\) −700.000 −0.236754
\(207\) 0 0
\(208\) 6230.00 2.07679
\(209\) −880.000 −0.291248
\(210\) 0 0
\(211\) 68.0000 0.0221863 0.0110932 0.999938i \(-0.496469\pi\)
0.0110932 + 0.999938i \(0.496469\pi\)
\(212\) −3094.00 −1.00234
\(213\) 0 0
\(214\) 7780.00 2.48519
\(215\) −2232.00 −0.708005
\(216\) 0 0
\(217\) −1708.00 −0.534316
\(218\) 1970.00 0.612042
\(219\) 0 0
\(220\) 1122.00 0.343842
\(221\) −8820.00 −2.68460
\(222\) 0 0
\(223\) −2196.00 −0.659440 −0.329720 0.944079i \(-0.606954\pi\)
−0.329720 + 0.944079i \(0.606954\pi\)
\(224\) −595.000 −0.177478
\(225\) 0 0
\(226\) 7770.00 2.28696
\(227\) −4672.00 −1.36604 −0.683021 0.730399i \(-0.739334\pi\)
−0.683021 + 0.730399i \(0.739334\pi\)
\(228\) 0 0
\(229\) −574.000 −0.165638 −0.0828188 0.996565i \(-0.526392\pi\)
−0.0828188 + 0.996565i \(0.526392\pi\)
\(230\) −6000.00 −1.72012
\(231\) 0 0
\(232\) 6030.00 1.70642
\(233\) −218.000 −0.0612947 −0.0306473 0.999530i \(-0.509757\pi\)
−0.0306473 + 0.999530i \(0.509757\pi\)
\(234\) 0 0
\(235\) 504.000 0.139904
\(236\) 12852.0 3.54489
\(237\) 0 0
\(238\) 4410.00 1.20108
\(239\) −4296.00 −1.16270 −0.581350 0.813654i \(-0.697475\pi\)
−0.581350 + 0.813654i \(0.697475\pi\)
\(240\) 0 0
\(241\) 3398.00 0.908234 0.454117 0.890942i \(-0.349955\pi\)
0.454117 + 0.890942i \(0.349955\pi\)
\(242\) −605.000 −0.160706
\(243\) 0 0
\(244\) 11798.0 3.09545
\(245\) 294.000 0.0766652
\(246\) 0 0
\(247\) −5600.00 −1.44259
\(248\) 10980.0 2.81141
\(249\) 0 0
\(250\) 6420.00 1.62415
\(251\) 1188.00 0.298749 0.149374 0.988781i \(-0.452274\pi\)
0.149374 + 0.988781i \(0.452274\pi\)
\(252\) 0 0
\(253\) 2200.00 0.546691
\(254\) 1160.00 0.286555
\(255\) 0 0
\(256\) −8279.00 −2.02124
\(257\) −1490.00 −0.361648 −0.180824 0.983515i \(-0.557877\pi\)
−0.180824 + 0.983515i \(0.557877\pi\)
\(258\) 0 0
\(259\) −2198.00 −0.527325
\(260\) 7140.00 1.70309
\(261\) 0 0
\(262\) 560.000 0.132049
\(263\) −7032.00 −1.64871 −0.824357 0.566070i \(-0.808463\pi\)
−0.824357 + 0.566070i \(0.808463\pi\)
\(264\) 0 0
\(265\) −1092.00 −0.253136
\(266\) 2800.00 0.645410
\(267\) 0 0
\(268\) 13940.0 3.17732
\(269\) 4270.00 0.967831 0.483915 0.875115i \(-0.339214\pi\)
0.483915 + 0.875115i \(0.339214\pi\)
\(270\) 0 0
\(271\) −1592.00 −0.356853 −0.178426 0.983953i \(-0.557101\pi\)
−0.178426 + 0.983953i \(0.557101\pi\)
\(272\) −11214.0 −2.49981
\(273\) 0 0
\(274\) −910.000 −0.200639
\(275\) −979.000 −0.214676
\(276\) 0 0
\(277\) 782.000 0.169624 0.0848120 0.996397i \(-0.472971\pi\)
0.0848120 + 0.996397i \(0.472971\pi\)
\(278\) 7520.00 1.62237
\(279\) 0 0
\(280\) −1890.00 −0.403390
\(281\) 1590.00 0.337550 0.168775 0.985655i \(-0.446019\pi\)
0.168775 + 0.985655i \(0.446019\pi\)
\(282\) 0 0
\(283\) −4384.00 −0.920854 −0.460427 0.887698i \(-0.652304\pi\)
−0.460427 + 0.887698i \(0.652304\pi\)
\(284\) −2720.00 −0.568318
\(285\) 0 0
\(286\) −3850.00 −0.795997
\(287\) −1946.00 −0.400240
\(288\) 0 0
\(289\) 10963.0 2.23143
\(290\) 4020.00 0.814009
\(291\) 0 0
\(292\) −34.0000 −0.00681404
\(293\) −702.000 −0.139970 −0.0699851 0.997548i \(-0.522295\pi\)
−0.0699851 + 0.997548i \(0.522295\pi\)
\(294\) 0 0
\(295\) 4536.00 0.895241
\(296\) 14130.0 2.77463
\(297\) 0 0
\(298\) −15690.0 −3.04999
\(299\) 14000.0 2.70783
\(300\) 0 0
\(301\) −2604.00 −0.498645
\(302\) 13400.0 2.55326
\(303\) 0 0
\(304\) −7120.00 −1.34329
\(305\) 4164.00 0.781738
\(306\) 0 0
\(307\) 10248.0 1.90516 0.952580 0.304288i \(-0.0984184\pi\)
0.952580 + 0.304288i \(0.0984184\pi\)
\(308\) 1309.00 0.242166
\(309\) 0 0
\(310\) 7320.00 1.34112
\(311\) 1220.00 0.222443 0.111222 0.993796i \(-0.464524\pi\)
0.111222 + 0.993796i \(0.464524\pi\)
\(312\) 0 0
\(313\) −4638.00 −0.837557 −0.418778 0.908088i \(-0.637542\pi\)
−0.418778 + 0.908088i \(0.637542\pi\)
\(314\) −10010.0 −1.79903
\(315\) 0 0
\(316\) 680.000 0.121054
\(317\) 7554.00 1.33841 0.669203 0.743079i \(-0.266636\pi\)
0.669203 + 0.743079i \(0.266636\pi\)
\(318\) 0 0
\(319\) −1474.00 −0.258709
\(320\) −1722.00 −0.300821
\(321\) 0 0
\(322\) −7000.00 −1.21147
\(323\) 10080.0 1.73643
\(324\) 0 0
\(325\) −6230.00 −1.06332
\(326\) 3700.00 0.628601
\(327\) 0 0
\(328\) 12510.0 2.10594
\(329\) 588.000 0.0985334
\(330\) 0 0
\(331\) −8004.00 −1.32912 −0.664561 0.747234i \(-0.731382\pi\)
−0.664561 + 0.747234i \(0.731382\pi\)
\(332\) −12920.0 −2.13577
\(333\) 0 0
\(334\) 17040.0 2.79158
\(335\) 4920.00 0.802413
\(336\) 0 0
\(337\) 2746.00 0.443870 0.221935 0.975061i \(-0.428763\pi\)
0.221935 + 0.975061i \(0.428763\pi\)
\(338\) −13515.0 −2.17491
\(339\) 0 0
\(340\) −12852.0 −2.04999
\(341\) −2684.00 −0.426237
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 16740.0 2.62372
\(345\) 0 0
\(346\) 11870.0 1.84432
\(347\) −1444.00 −0.223395 −0.111697 0.993742i \(-0.535629\pi\)
−0.111697 + 0.993742i \(0.535629\pi\)
\(348\) 0 0
\(349\) −9522.00 −1.46046 −0.730231 0.683201i \(-0.760587\pi\)
−0.730231 + 0.683201i \(0.760587\pi\)
\(350\) 3115.00 0.475725
\(351\) 0 0
\(352\) −935.000 −0.141579
\(353\) −642.000 −0.0967995 −0.0483997 0.998828i \(-0.515412\pi\)
−0.0483997 + 0.998828i \(0.515412\pi\)
\(354\) 0 0
\(355\) −960.000 −0.143525
\(356\) 1734.00 0.258151
\(357\) 0 0
\(358\) −9700.00 −1.43201
\(359\) −5160.00 −0.758592 −0.379296 0.925275i \(-0.623834\pi\)
−0.379296 + 0.925275i \(0.623834\pi\)
\(360\) 0 0
\(361\) −459.000 −0.0669194
\(362\) 5510.00 0.799998
\(363\) 0 0
\(364\) 8330.00 1.19948
\(365\) −12.0000 −0.00172085
\(366\) 0 0
\(367\) −8900.00 −1.26588 −0.632938 0.774203i \(-0.718151\pi\)
−0.632938 + 0.774203i \(0.718151\pi\)
\(368\) 17800.0 2.52144
\(369\) 0 0
\(370\) 9420.00 1.32357
\(371\) −1274.00 −0.178282
\(372\) 0 0
\(373\) −2898.00 −0.402286 −0.201143 0.979562i \(-0.564466\pi\)
−0.201143 + 0.979562i \(0.564466\pi\)
\(374\) 6930.00 0.958133
\(375\) 0 0
\(376\) −3780.00 −0.518454
\(377\) −9380.00 −1.28142
\(378\) 0 0
\(379\) 13156.0 1.78306 0.891528 0.452965i \(-0.149634\pi\)
0.891528 + 0.452965i \(0.149634\pi\)
\(380\) −8160.00 −1.10158
\(381\) 0 0
\(382\) −560.000 −0.0750055
\(383\) 6220.00 0.829836 0.414918 0.909859i \(-0.363810\pi\)
0.414918 + 0.909859i \(0.363810\pi\)
\(384\) 0 0
\(385\) 462.000 0.0611577
\(386\) −5290.00 −0.697549
\(387\) 0 0
\(388\) −14654.0 −1.91738
\(389\) −6062.00 −0.790117 −0.395059 0.918656i \(-0.629276\pi\)
−0.395059 + 0.918656i \(0.629276\pi\)
\(390\) 0 0
\(391\) −25200.0 −3.25938
\(392\) −2205.00 −0.284105
\(393\) 0 0
\(394\) 12230.0 1.56380
\(395\) 240.000 0.0305714
\(396\) 0 0
\(397\) −990.000 −0.125155 −0.0625777 0.998040i \(-0.519932\pi\)
−0.0625777 + 0.998040i \(0.519932\pi\)
\(398\) −23420.0 −2.94959
\(399\) 0 0
\(400\) −7921.00 −0.990125
\(401\) 4158.00 0.517807 0.258904 0.965903i \(-0.416639\pi\)
0.258904 + 0.965903i \(0.416639\pi\)
\(402\) 0 0
\(403\) −17080.0 −2.11120
\(404\) 3434.00 0.422891
\(405\) 0 0
\(406\) 4690.00 0.573302
\(407\) −3454.00 −0.420660
\(408\) 0 0
\(409\) −8554.00 −1.03415 −0.517076 0.855940i \(-0.672980\pi\)
−0.517076 + 0.855940i \(0.672980\pi\)
\(410\) 8340.00 1.00459
\(411\) 0 0
\(412\) 2380.00 0.284598
\(413\) 5292.00 0.630514
\(414\) 0 0
\(415\) −4560.00 −0.539377
\(416\) −5950.00 −0.701257
\(417\) 0 0
\(418\) 4400.00 0.514859
\(419\) 9364.00 1.09179 0.545897 0.837853i \(-0.316189\pi\)
0.545897 + 0.837853i \(0.316189\pi\)
\(420\) 0 0
\(421\) −7266.00 −0.841148 −0.420574 0.907258i \(-0.638171\pi\)
−0.420574 + 0.907258i \(0.638171\pi\)
\(422\) −340.000 −0.0392202
\(423\) 0 0
\(424\) 8190.00 0.938070
\(425\) 11214.0 1.27990
\(426\) 0 0
\(427\) 4858.00 0.550574
\(428\) −26452.0 −2.98740
\(429\) 0 0
\(430\) 11160.0 1.25159
\(431\) 3760.00 0.420215 0.210108 0.977678i \(-0.432619\pi\)
0.210108 + 0.977678i \(0.432619\pi\)
\(432\) 0 0
\(433\) 7378.00 0.818855 0.409427 0.912343i \(-0.365729\pi\)
0.409427 + 0.912343i \(0.365729\pi\)
\(434\) 8540.00 0.944546
\(435\) 0 0
\(436\) −6698.00 −0.735725
\(437\) −16000.0 −1.75145
\(438\) 0 0
\(439\) 6400.00 0.695798 0.347899 0.937532i \(-0.386895\pi\)
0.347899 + 0.937532i \(0.386895\pi\)
\(440\) −2970.00 −0.321794
\(441\) 0 0
\(442\) 44100.0 4.74575
\(443\) −260.000 −0.0278848 −0.0139424 0.999903i \(-0.504438\pi\)
−0.0139424 + 0.999903i \(0.504438\pi\)
\(444\) 0 0
\(445\) 612.000 0.0651946
\(446\) 10980.0 1.16574
\(447\) 0 0
\(448\) −2009.00 −0.211867
\(449\) −8034.00 −0.844427 −0.422214 0.906496i \(-0.638747\pi\)
−0.422214 + 0.906496i \(0.638747\pi\)
\(450\) 0 0
\(451\) −3058.00 −0.319281
\(452\) −26418.0 −2.74911
\(453\) 0 0
\(454\) 23360.0 2.41484
\(455\) 2940.00 0.302922
\(456\) 0 0
\(457\) 5994.00 0.613539 0.306770 0.951784i \(-0.400752\pi\)
0.306770 + 0.951784i \(0.400752\pi\)
\(458\) 2870.00 0.292808
\(459\) 0 0
\(460\) 20400.0 2.06773
\(461\) 258.000 0.0260656 0.0130328 0.999915i \(-0.495851\pi\)
0.0130328 + 0.999915i \(0.495851\pi\)
\(462\) 0 0
\(463\) −16976.0 −1.70398 −0.851989 0.523560i \(-0.824604\pi\)
−0.851989 + 0.523560i \(0.824604\pi\)
\(464\) −11926.0 −1.19321
\(465\) 0 0
\(466\) 1090.00 0.108355
\(467\) −15676.0 −1.55332 −0.776658 0.629922i \(-0.783087\pi\)
−0.776658 + 0.629922i \(0.783087\pi\)
\(468\) 0 0
\(469\) 5740.00 0.565136
\(470\) −2520.00 −0.247317
\(471\) 0 0
\(472\) −34020.0 −3.31758
\(473\) −4092.00 −0.397781
\(474\) 0 0
\(475\) 7120.00 0.687764
\(476\) −14994.0 −1.44380
\(477\) 0 0
\(478\) 21480.0 2.05538
\(479\) −2576.00 −0.245721 −0.122861 0.992424i \(-0.539207\pi\)
−0.122861 + 0.992424i \(0.539207\pi\)
\(480\) 0 0
\(481\) −21980.0 −2.08358
\(482\) −16990.0 −1.60555
\(483\) 0 0
\(484\) 2057.00 0.193182
\(485\) −5172.00 −0.484224
\(486\) 0 0
\(487\) −1520.00 −0.141433 −0.0707164 0.997496i \(-0.522529\pi\)
−0.0707164 + 0.997496i \(0.522529\pi\)
\(488\) −31230.0 −2.89696
\(489\) 0 0
\(490\) −1470.00 −0.135526
\(491\) 13572.0 1.24745 0.623723 0.781646i \(-0.285619\pi\)
0.623723 + 0.781646i \(0.285619\pi\)
\(492\) 0 0
\(493\) 16884.0 1.54243
\(494\) 28000.0 2.55016
\(495\) 0 0
\(496\) −21716.0 −1.96588
\(497\) −1120.00 −0.101084
\(498\) 0 0
\(499\) 4372.00 0.392220 0.196110 0.980582i \(-0.437169\pi\)
0.196110 + 0.980582i \(0.437169\pi\)
\(500\) −21828.0 −1.95236
\(501\) 0 0
\(502\) −5940.00 −0.528118
\(503\) −2192.00 −0.194307 −0.0971535 0.995269i \(-0.530974\pi\)
−0.0971535 + 0.995269i \(0.530974\pi\)
\(504\) 0 0
\(505\) 1212.00 0.106799
\(506\) −11000.0 −0.966422
\(507\) 0 0
\(508\) −3944.00 −0.344462
\(509\) 6030.00 0.525098 0.262549 0.964919i \(-0.415437\pi\)
0.262549 + 0.964919i \(0.415437\pi\)
\(510\) 0 0
\(511\) −14.0000 −0.00121198
\(512\) 24475.0 2.11260
\(513\) 0 0
\(514\) 7450.00 0.639310
\(515\) 840.000 0.0718734
\(516\) 0 0
\(517\) 924.000 0.0786025
\(518\) 10990.0 0.932187
\(519\) 0 0
\(520\) −18900.0 −1.59388
\(521\) −1850.00 −0.155566 −0.0777831 0.996970i \(-0.524784\pi\)
−0.0777831 + 0.996970i \(0.524784\pi\)
\(522\) 0 0
\(523\) −5104.00 −0.426735 −0.213367 0.976972i \(-0.568443\pi\)
−0.213367 + 0.976972i \(0.568443\pi\)
\(524\) −1904.00 −0.158734
\(525\) 0 0
\(526\) 35160.0 2.91454
\(527\) 30744.0 2.54123
\(528\) 0 0
\(529\) 27833.0 2.28758
\(530\) 5460.00 0.447485
\(531\) 0 0
\(532\) −9520.00 −0.775835
\(533\) −19460.0 −1.58144
\(534\) 0 0
\(535\) −9336.00 −0.754449
\(536\) −36900.0 −2.97358
\(537\) 0 0
\(538\) −21350.0 −1.71090
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −11706.0 −0.930278 −0.465139 0.885238i \(-0.653996\pi\)
−0.465139 + 0.885238i \(0.653996\pi\)
\(542\) 7960.00 0.630833
\(543\) 0 0
\(544\) 10710.0 0.844095
\(545\) −2364.00 −0.185803
\(546\) 0 0
\(547\) 1676.00 0.131007 0.0655033 0.997852i \(-0.479135\pi\)
0.0655033 + 0.997852i \(0.479135\pi\)
\(548\) 3094.00 0.241185
\(549\) 0 0
\(550\) 4895.00 0.379497
\(551\) 10720.0 0.828834
\(552\) 0 0
\(553\) 280.000 0.0215313
\(554\) −3910.00 −0.299856
\(555\) 0 0
\(556\) −25568.0 −1.95022
\(557\) 22362.0 1.70109 0.850546 0.525901i \(-0.176272\pi\)
0.850546 + 0.525901i \(0.176272\pi\)
\(558\) 0 0
\(559\) −26040.0 −1.97026
\(560\) 3738.00 0.282070
\(561\) 0 0
\(562\) −7950.00 −0.596709
\(563\) 6816.00 0.510231 0.255116 0.966911i \(-0.417886\pi\)
0.255116 + 0.966911i \(0.417886\pi\)
\(564\) 0 0
\(565\) −9324.00 −0.694272
\(566\) 21920.0 1.62786
\(567\) 0 0
\(568\) 7200.00 0.531876
\(569\) 17206.0 1.26769 0.633843 0.773462i \(-0.281477\pi\)
0.633843 + 0.773462i \(0.281477\pi\)
\(570\) 0 0
\(571\) 18164.0 1.33124 0.665621 0.746290i \(-0.268167\pi\)
0.665621 + 0.746290i \(0.268167\pi\)
\(572\) 13090.0 0.956854
\(573\) 0 0
\(574\) 9730.00 0.707530
\(575\) −17800.0 −1.29098
\(576\) 0 0
\(577\) 3610.00 0.260461 0.130231 0.991484i \(-0.458428\pi\)
0.130231 + 0.991484i \(0.458428\pi\)
\(578\) −54815.0 −3.94464
\(579\) 0 0
\(580\) −13668.0 −0.978505
\(581\) −5320.00 −0.379881
\(582\) 0 0
\(583\) −2002.00 −0.142220
\(584\) 90.0000 0.00637710
\(585\) 0 0
\(586\) 3510.00 0.247435
\(587\) 7236.00 0.508793 0.254397 0.967100i \(-0.418123\pi\)
0.254397 + 0.967100i \(0.418123\pi\)
\(588\) 0 0
\(589\) 19520.0 1.36555
\(590\) −22680.0 −1.58258
\(591\) 0 0
\(592\) −27946.0 −1.94016
\(593\) 1570.00 0.108722 0.0543610 0.998521i \(-0.482688\pi\)
0.0543610 + 0.998521i \(0.482688\pi\)
\(594\) 0 0
\(595\) −5292.00 −0.364623
\(596\) 53346.0 3.66634
\(597\) 0 0
\(598\) −70000.0 −4.78681
\(599\) −11360.0 −0.774887 −0.387443 0.921894i \(-0.626642\pi\)
−0.387443 + 0.921894i \(0.626642\pi\)
\(600\) 0 0
\(601\) −2682.00 −0.182032 −0.0910159 0.995849i \(-0.529011\pi\)
−0.0910159 + 0.995849i \(0.529011\pi\)
\(602\) 13020.0 0.881488
\(603\) 0 0
\(604\) −45560.0 −3.06922
\(605\) 726.000 0.0487869
\(606\) 0 0
\(607\) 5488.00 0.366970 0.183485 0.983022i \(-0.441262\pi\)
0.183485 + 0.983022i \(0.441262\pi\)
\(608\) 6800.00 0.453580
\(609\) 0 0
\(610\) −20820.0 −1.38193
\(611\) 5880.00 0.389328
\(612\) 0 0
\(613\) 23870.0 1.57276 0.786379 0.617745i \(-0.211954\pi\)
0.786379 + 0.617745i \(0.211954\pi\)
\(614\) −51240.0 −3.36788
\(615\) 0 0
\(616\) −3465.00 −0.226638
\(617\) −13242.0 −0.864024 −0.432012 0.901868i \(-0.642196\pi\)
−0.432012 + 0.901868i \(0.642196\pi\)
\(618\) 0 0
\(619\) 21924.0 1.42359 0.711793 0.702389i \(-0.247883\pi\)
0.711793 + 0.702389i \(0.247883\pi\)
\(620\) −24888.0 −1.61214
\(621\) 0 0
\(622\) −6100.00 −0.393228
\(623\) 714.000 0.0459162
\(624\) 0 0
\(625\) 3421.00 0.218944
\(626\) 23190.0 1.48061
\(627\) 0 0
\(628\) 34034.0 2.16259
\(629\) 39564.0 2.50798
\(630\) 0 0
\(631\) −19168.0 −1.20930 −0.604648 0.796493i \(-0.706686\pi\)
−0.604648 + 0.796493i \(0.706686\pi\)
\(632\) −1800.00 −0.113291
\(633\) 0 0
\(634\) −37770.0 −2.36599
\(635\) −1392.00 −0.0869919
\(636\) 0 0
\(637\) 3430.00 0.213346
\(638\) 7370.00 0.457337
\(639\) 0 0
\(640\) 12690.0 0.783775
\(641\) −25122.0 −1.54799 −0.773993 0.633194i \(-0.781744\pi\)
−0.773993 + 0.633194i \(0.781744\pi\)
\(642\) 0 0
\(643\) 18708.0 1.14739 0.573695 0.819069i \(-0.305510\pi\)
0.573695 + 0.819069i \(0.305510\pi\)
\(644\) 23800.0 1.45629
\(645\) 0 0
\(646\) −50400.0 −3.06960
\(647\) −24396.0 −1.48239 −0.741195 0.671290i \(-0.765740\pi\)
−0.741195 + 0.671290i \(0.765740\pi\)
\(648\) 0 0
\(649\) 8316.00 0.502976
\(650\) 31150.0 1.87970
\(651\) 0 0
\(652\) −12580.0 −0.755630
\(653\) 31386.0 1.88090 0.940451 0.339929i \(-0.110403\pi\)
0.940451 + 0.339929i \(0.110403\pi\)
\(654\) 0 0
\(655\) −672.000 −0.0400873
\(656\) −24742.0 −1.47258
\(657\) 0 0
\(658\) −2940.00 −0.174184
\(659\) −16284.0 −0.962571 −0.481286 0.876564i \(-0.659830\pi\)
−0.481286 + 0.876564i \(0.659830\pi\)
\(660\) 0 0
\(661\) −21646.0 −1.27372 −0.636862 0.770978i \(-0.719768\pi\)
−0.636862 + 0.770978i \(0.719768\pi\)
\(662\) 40020.0 2.34958
\(663\) 0 0
\(664\) 34200.0 1.99882
\(665\) −3360.00 −0.195933
\(666\) 0 0
\(667\) −26800.0 −1.55577
\(668\) −57936.0 −3.35571
\(669\) 0 0
\(670\) −24600.0 −1.41848
\(671\) 7634.00 0.439206
\(672\) 0 0
\(673\) 19978.0 1.14427 0.572136 0.820159i \(-0.306115\pi\)
0.572136 + 0.820159i \(0.306115\pi\)
\(674\) −13730.0 −0.784659
\(675\) 0 0
\(676\) 45951.0 2.61442
\(677\) −6654.00 −0.377746 −0.188873 0.982002i \(-0.560483\pi\)
−0.188873 + 0.982002i \(0.560483\pi\)
\(678\) 0 0
\(679\) −6034.00 −0.341036
\(680\) 34020.0 1.91854
\(681\) 0 0
\(682\) 13420.0 0.753487
\(683\) −2164.00 −0.121234 −0.0606172 0.998161i \(-0.519307\pi\)
−0.0606172 + 0.998161i \(0.519307\pi\)
\(684\) 0 0
\(685\) 1092.00 0.0609097
\(686\) −1715.00 −0.0954504
\(687\) 0 0
\(688\) −33108.0 −1.83464
\(689\) −12740.0 −0.704434
\(690\) 0 0
\(691\) −3788.00 −0.208542 −0.104271 0.994549i \(-0.533251\pi\)
−0.104271 + 0.994549i \(0.533251\pi\)
\(692\) −40358.0 −2.21702
\(693\) 0 0
\(694\) 7220.00 0.394910
\(695\) −9024.00 −0.492518
\(696\) 0 0
\(697\) 35028.0 1.90356
\(698\) 47610.0 2.58176
\(699\) 0 0
\(700\) −10591.0 −0.571860
\(701\) −28262.0 −1.52274 −0.761370 0.648317i \(-0.775473\pi\)
−0.761370 + 0.648317i \(0.775473\pi\)
\(702\) 0 0
\(703\) 25120.0 1.34768
\(704\) −3157.00 −0.169011
\(705\) 0 0
\(706\) 3210.00 0.171119
\(707\) 1414.00 0.0752177
\(708\) 0 0
\(709\) 6150.00 0.325766 0.162883 0.986645i \(-0.447921\pi\)
0.162883 + 0.986645i \(0.447921\pi\)
\(710\) 4800.00 0.253719
\(711\) 0 0
\(712\) −4590.00 −0.241598
\(713\) −48800.0 −2.56322
\(714\) 0 0
\(715\) 4620.00 0.241648
\(716\) 32980.0 1.72140
\(717\) 0 0
\(718\) 25800.0 1.34101
\(719\) −14532.0 −0.753758 −0.376879 0.926262i \(-0.623003\pi\)
−0.376879 + 0.926262i \(0.623003\pi\)
\(720\) 0 0
\(721\) 980.000 0.0506201
\(722\) 2295.00 0.118298
\(723\) 0 0
\(724\) −18734.0 −0.961662
\(725\) 11926.0 0.610925
\(726\) 0 0
\(727\) −22700.0 −1.15804 −0.579021 0.815313i \(-0.696565\pi\)
−0.579021 + 0.815313i \(0.696565\pi\)
\(728\) −22050.0 −1.12257
\(729\) 0 0
\(730\) 60.0000 0.00304205
\(731\) 46872.0 2.37158
\(732\) 0 0
\(733\) 33782.0 1.70227 0.851137 0.524944i \(-0.175914\pi\)
0.851137 + 0.524944i \(0.175914\pi\)
\(734\) 44500.0 2.23777
\(735\) 0 0
\(736\) −17000.0 −0.851397
\(737\) 9020.00 0.450822
\(738\) 0 0
\(739\) −36372.0 −1.81051 −0.905254 0.424870i \(-0.860320\pi\)
−0.905254 + 0.424870i \(0.860320\pi\)
\(740\) −32028.0 −1.59104
\(741\) 0 0
\(742\) 6370.00 0.315162
\(743\) 9168.00 0.452680 0.226340 0.974048i \(-0.427324\pi\)
0.226340 + 0.974048i \(0.427324\pi\)
\(744\) 0 0
\(745\) 18828.0 0.925912
\(746\) 14490.0 0.711148
\(747\) 0 0
\(748\) −23562.0 −1.15175
\(749\) −10892.0 −0.531355
\(750\) 0 0
\(751\) −25096.0 −1.21940 −0.609698 0.792634i \(-0.708709\pi\)
−0.609698 + 0.792634i \(0.708709\pi\)
\(752\) 7476.00 0.362529
\(753\) 0 0
\(754\) 46900.0 2.26525
\(755\) −16080.0 −0.775114
\(756\) 0 0
\(757\) −27690.0 −1.32947 −0.664736 0.747078i \(-0.731456\pi\)
−0.664736 + 0.747078i \(0.731456\pi\)
\(758\) −65780.0 −3.15203
\(759\) 0 0
\(760\) 21600.0 1.03094
\(761\) −846.000 −0.0402989 −0.0201495 0.999797i \(-0.506414\pi\)
−0.0201495 + 0.999797i \(0.506414\pi\)
\(762\) 0 0
\(763\) −2758.00 −0.130860
\(764\) 1904.00 0.0901627
\(765\) 0 0
\(766\) −31100.0 −1.46696
\(767\) 52920.0 2.49130
\(768\) 0 0
\(769\) 7854.00 0.368300 0.184150 0.982898i \(-0.441047\pi\)
0.184150 + 0.982898i \(0.441047\pi\)
\(770\) −2310.00 −0.108112
\(771\) 0 0
\(772\) 17986.0 0.838511
\(773\) 4830.00 0.224739 0.112369 0.993667i \(-0.464156\pi\)
0.112369 + 0.993667i \(0.464156\pi\)
\(774\) 0 0
\(775\) 21716.0 1.00653
\(776\) 38790.0 1.79443
\(777\) 0 0
\(778\) 30310.0 1.39674
\(779\) 22240.0 1.02289
\(780\) 0 0
\(781\) −1760.00 −0.0806373
\(782\) 126000. 5.76183
\(783\) 0 0
\(784\) 4361.00 0.198661
\(785\) 12012.0 0.546149
\(786\) 0 0
\(787\) 8032.00 0.363799 0.181900 0.983317i \(-0.441775\pi\)
0.181900 + 0.983317i \(0.441775\pi\)
\(788\) −41582.0 −1.87982
\(789\) 0 0
\(790\) −1200.00 −0.0540431
\(791\) −10878.0 −0.488972
\(792\) 0 0
\(793\) 48580.0 2.17544
\(794\) 4950.00 0.221245
\(795\) 0 0
\(796\) 79628.0 3.54565
\(797\) 26486.0 1.17714 0.588571 0.808445i \(-0.299691\pi\)
0.588571 + 0.808445i \(0.299691\pi\)
\(798\) 0 0
\(799\) −10584.0 −0.468630
\(800\) 7565.00 0.334329
\(801\) 0 0
\(802\) −20790.0 −0.915362
\(803\) −22.0000 −0.000966828 0
\(804\) 0 0
\(805\) 8400.00 0.367778
\(806\) 85400.0 3.73212
\(807\) 0 0
\(808\) −9090.00 −0.395774
\(809\) 9582.00 0.416422 0.208211 0.978084i \(-0.433236\pi\)
0.208211 + 0.978084i \(0.433236\pi\)
\(810\) 0 0
\(811\) 37760.0 1.63494 0.817468 0.575974i \(-0.195377\pi\)
0.817468 + 0.575974i \(0.195377\pi\)
\(812\) −15946.0 −0.689156
\(813\) 0 0
\(814\) 17270.0 0.743628
\(815\) −4440.00 −0.190830
\(816\) 0 0
\(817\) 29760.0 1.27438
\(818\) 42770.0 1.82814
\(819\) 0 0
\(820\) −28356.0 −1.20760
\(821\) 30754.0 1.30733 0.653667 0.756782i \(-0.273230\pi\)
0.653667 + 0.756782i \(0.273230\pi\)
\(822\) 0 0
\(823\) −23216.0 −0.983304 −0.491652 0.870792i \(-0.663607\pi\)
−0.491652 + 0.870792i \(0.663607\pi\)
\(824\) −6300.00 −0.266348
\(825\) 0 0
\(826\) −26460.0 −1.11460
\(827\) 4948.00 0.208052 0.104026 0.994575i \(-0.466828\pi\)
0.104026 + 0.994575i \(0.466828\pi\)
\(828\) 0 0
\(829\) 11162.0 0.467638 0.233819 0.972280i \(-0.424878\pi\)
0.233819 + 0.972280i \(0.424878\pi\)
\(830\) 22800.0 0.953493
\(831\) 0 0
\(832\) −20090.0 −0.837134
\(833\) −6174.00 −0.256802
\(834\) 0 0
\(835\) −20448.0 −0.847464
\(836\) −14960.0 −0.618902
\(837\) 0 0
\(838\) −46820.0 −1.93004
\(839\) −18492.0 −0.760923 −0.380462 0.924797i \(-0.624235\pi\)
−0.380462 + 0.924797i \(0.624235\pi\)
\(840\) 0 0
\(841\) −6433.00 −0.263766
\(842\) 36330.0 1.48695
\(843\) 0 0
\(844\) 1156.00 0.0471459
\(845\) 16218.0 0.660256
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) −16198.0 −0.655945
\(849\) 0 0
\(850\) −56070.0 −2.26257
\(851\) −62800.0 −2.52968
\(852\) 0 0
\(853\) −30994.0 −1.24410 −0.622048 0.782979i \(-0.713699\pi\)
−0.622048 + 0.782979i \(0.713699\pi\)
\(854\) −24290.0 −0.973287
\(855\) 0 0
\(856\) 70020.0 2.79583
\(857\) −20366.0 −0.811773 −0.405886 0.913924i \(-0.633037\pi\)
−0.405886 + 0.913924i \(0.633037\pi\)
\(858\) 0 0
\(859\) 2556.00 0.101525 0.0507623 0.998711i \(-0.483835\pi\)
0.0507623 + 0.998711i \(0.483835\pi\)
\(860\) −37944.0 −1.50451
\(861\) 0 0
\(862\) −18800.0 −0.742843
\(863\) −49568.0 −1.95517 −0.977587 0.210534i \(-0.932480\pi\)
−0.977587 + 0.210534i \(0.932480\pi\)
\(864\) 0 0
\(865\) −14244.0 −0.559897
\(866\) −36890.0 −1.44754
\(867\) 0 0
\(868\) −29036.0 −1.13542
\(869\) 440.000 0.0171760
\(870\) 0 0
\(871\) 57400.0 2.23298
\(872\) 17730.0 0.688548
\(873\) 0 0
\(874\) 80000.0 3.09616
\(875\) −8988.00 −0.347257
\(876\) 0 0
\(877\) −44346.0 −1.70748 −0.853739 0.520701i \(-0.825671\pi\)
−0.853739 + 0.520701i \(0.825671\pi\)
\(878\) −32000.0 −1.23001
\(879\) 0 0
\(880\) 5874.00 0.225014
\(881\) 39254.0 1.50114 0.750568 0.660793i \(-0.229780\pi\)
0.750568 + 0.660793i \(0.229780\pi\)
\(882\) 0 0
\(883\) −9972.00 −0.380050 −0.190025 0.981779i \(-0.560857\pi\)
−0.190025 + 0.981779i \(0.560857\pi\)
\(884\) −149940. −5.70478
\(885\) 0 0
\(886\) 1300.00 0.0492939
\(887\) 904.000 0.0342202 0.0171101 0.999854i \(-0.494553\pi\)
0.0171101 + 0.999854i \(0.494553\pi\)
\(888\) 0 0
\(889\) −1624.00 −0.0612680
\(890\) −3060.00 −0.115249
\(891\) 0 0
\(892\) −37332.0 −1.40131
\(893\) −6720.00 −0.251821
\(894\) 0 0
\(895\) 11640.0 0.434729
\(896\) 14805.0 0.552009
\(897\) 0 0
\(898\) 40170.0 1.49275
\(899\) 32696.0 1.21298
\(900\) 0 0
\(901\) 22932.0 0.847920
\(902\) 15290.0 0.564414
\(903\) 0 0
\(904\) 69930.0 2.57283
\(905\) −6612.00 −0.242862
\(906\) 0 0
\(907\) −24324.0 −0.890480 −0.445240 0.895411i \(-0.646882\pi\)
−0.445240 + 0.895411i \(0.646882\pi\)
\(908\) −79424.0 −2.90284
\(909\) 0 0
\(910\) −14700.0 −0.535495
\(911\) 49968.0 1.81725 0.908624 0.417614i \(-0.137134\pi\)
0.908624 + 0.417614i \(0.137134\pi\)
\(912\) 0 0
\(913\) −8360.00 −0.303040
\(914\) −29970.0 −1.08459
\(915\) 0 0
\(916\) −9758.00 −0.351980
\(917\) −784.000 −0.0282333
\(918\) 0 0
\(919\) 26072.0 0.935839 0.467919 0.883771i \(-0.345004\pi\)
0.467919 + 0.883771i \(0.345004\pi\)
\(920\) −54000.0 −1.93514
\(921\) 0 0
\(922\) −1290.00 −0.0460780
\(923\) −11200.0 −0.399407
\(924\) 0 0
\(925\) 27946.0 0.993361
\(926\) 84880.0 3.01224
\(927\) 0 0
\(928\) 11390.0 0.402904
\(929\) −8802.00 −0.310855 −0.155427 0.987847i \(-0.549675\pi\)
−0.155427 + 0.987847i \(0.549675\pi\)
\(930\) 0 0
\(931\) −3920.00 −0.137994
\(932\) −3706.00 −0.130251
\(933\) 0 0
\(934\) 78380.0 2.74590
\(935\) −8316.00 −0.290869
\(936\) 0 0
\(937\) −9506.00 −0.331427 −0.165714 0.986174i \(-0.552993\pi\)
−0.165714 + 0.986174i \(0.552993\pi\)
\(938\) −28700.0 −0.999028
\(939\) 0 0
\(940\) 8568.00 0.297295
\(941\) 23594.0 0.817367 0.408684 0.912676i \(-0.365988\pi\)
0.408684 + 0.912676i \(0.365988\pi\)
\(942\) 0 0
\(943\) −55600.0 −1.92003
\(944\) 67284.0 2.31982
\(945\) 0 0
\(946\) 20460.0 0.703184
\(947\) −3684.00 −0.126414 −0.0632069 0.998000i \(-0.520133\pi\)
−0.0632069 + 0.998000i \(0.520133\pi\)
\(948\) 0 0
\(949\) −140.000 −0.00478882
\(950\) −35600.0 −1.21581
\(951\) 0 0
\(952\) 39690.0 1.35122
\(953\) 15950.0 0.542152 0.271076 0.962558i \(-0.412620\pi\)
0.271076 + 0.962558i \(0.412620\pi\)
\(954\) 0 0
\(955\) 672.000 0.0227701
\(956\) −73032.0 −2.47074
\(957\) 0 0
\(958\) 12880.0 0.434378
\(959\) 1274.00 0.0428984
\(960\) 0 0
\(961\) 29745.0 0.998456
\(962\) 109900. 3.68328
\(963\) 0 0
\(964\) 57766.0 1.93000
\(965\) 6348.00 0.211761
\(966\) 0 0
\(967\) −16312.0 −0.542460 −0.271230 0.962515i \(-0.587430\pi\)
−0.271230 + 0.962515i \(0.587430\pi\)
\(968\) −5445.00 −0.180794
\(969\) 0 0
\(970\) 25860.0 0.855994
\(971\) −22148.0 −0.731991 −0.365995 0.930617i \(-0.619271\pi\)
−0.365995 + 0.930617i \(0.619271\pi\)
\(972\) 0 0
\(973\) −10528.0 −0.346878
\(974\) 7600.00 0.250020
\(975\) 0 0
\(976\) 61766.0 2.02570
\(977\) −32306.0 −1.05789 −0.528946 0.848655i \(-0.677413\pi\)
−0.528946 + 0.848655i \(0.677413\pi\)
\(978\) 0 0
\(979\) 1122.00 0.0366285
\(980\) 4998.00 0.162914
\(981\) 0 0
\(982\) −67860.0 −2.20519
\(983\) 30268.0 0.982095 0.491047 0.871133i \(-0.336614\pi\)
0.491047 + 0.871133i \(0.336614\pi\)
\(984\) 0 0
\(985\) −14676.0 −0.474737
\(986\) −84420.0 −2.72665
\(987\) 0 0
\(988\) −95200.0 −3.06550
\(989\) −74400.0 −2.39210
\(990\) 0 0
\(991\) 7328.00 0.234896 0.117448 0.993079i \(-0.462529\pi\)
0.117448 + 0.993079i \(0.462529\pi\)
\(992\) 20740.0 0.663806
\(993\) 0 0
\(994\) 5600.00 0.178693
\(995\) 28104.0 0.895434
\(996\) 0 0
\(997\) 18406.0 0.584678 0.292339 0.956315i \(-0.405566\pi\)
0.292339 + 0.956315i \(0.405566\pi\)
\(998\) −21860.0 −0.693353
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.a.1.1 1
3.2 odd 2 231.4.a.e.1.1 1
21.20 even 2 1617.4.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.e.1.1 1 3.2 odd 2
693.4.a.a.1.1 1 1.1 even 1 trivial
1617.4.a.g.1.1 1 21.20 even 2