Properties

Label 693.2.i.i.100.4
Level $693$
Weight $2$
Character 693.100
Analytic conductor $5.534$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(100,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.53363286007\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.10423593216.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} + 21x^{4} - 4x^{3} + 28x^{2} + 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.4
Root \(1.39083 - 2.40898i\) of defining polynomial
Character \(\chi\) \(=\) 693.100
Dual form 693.2.i.i.298.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39083 - 2.40898i) q^{2} +(-2.86880 - 4.96890i) q^{4} +(0.412855 - 0.715087i) q^{5} +(2.63323 - 0.257073i) q^{7} -10.3967 q^{8} +O(q^{10})\) \(q+(1.39083 - 2.40898i) q^{2} +(-2.86880 - 4.96890i) q^{4} +(0.412855 - 0.715087i) q^{5} +(2.63323 - 0.257073i) q^{7} -10.3967 q^{8} +(-1.14842 - 1.98912i) q^{10} +(-0.500000 - 0.866025i) q^{11} -0.296842 q^{13} +(3.04309 - 6.70095i) q^{14} +(-8.72241 + 15.1077i) q^{16} +(-3.34677 - 5.79677i) q^{17} +(1.41669 - 2.45379i) q^{19} -4.73760 q^{20} -2.78165 q^{22} +(-1.98481 + 3.43779i) q^{23} +(2.15910 + 3.73967i) q^{25} +(-0.412855 + 0.715087i) q^{26} +(-8.83158 - 12.3468i) q^{28} +0.484812 q^{29} +(3.66564 + 6.34907i) q^{31} +(13.8660 + 24.0166i) q^{32} -18.6191 q^{34} +(0.903315 - 1.98912i) q^{35} +(2.86880 - 4.96890i) q^{37} +(-3.94075 - 6.82559i) q^{38} +(-4.29233 + 7.43454i) q^{40} -0.645420 q^{41} +6.43308 q^{43} +(-2.86880 + 4.96890i) q^{44} +(5.52106 + 9.56275i) q^{46} +(3.86880 - 6.70095i) q^{47} +(6.86783 - 1.35386i) q^{49} +12.0117 q^{50} +(0.851579 + 1.47498i) q^{52} +(3.55677 + 6.16050i) q^{53} -0.825711 q^{55} +(-27.3769 + 2.67271i) q^{56} +(0.674289 - 1.16790i) q^{58} +(-0.578495 - 1.00198i) q^{59} +(-2.63323 + 4.56089i) q^{61} +20.3931 q^{62} +42.2513 q^{64} +(-0.122553 + 0.212268i) q^{65} +(-1.50865 - 2.61306i) q^{67} +(-19.2024 + 33.2595i) q^{68} +(-3.53541 - 4.94260i) q^{70} -3.58061 q^{71} +(-8.01625 - 13.8845i) q^{73} +(-7.98000 - 13.8218i) q^{74} -16.2568 q^{76} +(-1.53925 - 2.15191i) q^{77} +(2.16210 - 3.74487i) q^{79} +(7.20219 + 12.4746i) q^{80} +(-0.897667 + 1.55481i) q^{82} -2.37594 q^{83} -5.52693 q^{85} +(8.94729 - 15.4972i) q^{86} +(5.19835 + 9.00380i) q^{88} +(6.08617 - 10.5416i) q^{89} +(-0.781653 + 0.0763099i) q^{91} +22.7761 q^{92} +(-10.7617 - 18.6397i) q^{94} +(-1.16978 - 2.02612i) q^{95} -10.7680 q^{97} +(6.29052 - 18.4275i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 4 q^{4} + 4 q^{5} + 2 q^{7} - 24 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} - 4 q^{4} + 4 q^{5} + 2 q^{7} - 24 q^{8} - 10 q^{10} - 4 q^{11} - 4 q^{13} + 4 q^{14} - 12 q^{16} + 2 q^{17} - 4 q^{22} + 4 q^{23} - 4 q^{25} - 4 q^{26} - 22 q^{28} - 16 q^{29} + 12 q^{31} + 26 q^{32} - 32 q^{34} + 2 q^{35} + 4 q^{37} + 8 q^{38} + 6 q^{40} - 4 q^{41} + 36 q^{43} - 4 q^{44} + 14 q^{46} + 12 q^{47} - 4 q^{49} - 4 q^{50} + 6 q^{52} - 12 q^{53} - 8 q^{55} - 48 q^{56} + 4 q^{58} + 12 q^{59} - 2 q^{61} + 52 q^{62} + 112 q^{64} - 4 q^{65} - 28 q^{67} - 48 q^{68} - 32 q^{70} - 24 q^{71} - 6 q^{73} - 16 q^{74} - 36 q^{76} - 4 q^{77} - 2 q^{79} + 16 q^{80} + 12 q^{82} + 24 q^{83} + 36 q^{85} + 36 q^{86} + 12 q^{88} + 8 q^{89} + 12 q^{91} + 32 q^{92} - 20 q^{94} + 34 q^{95} - 88 q^{97} - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/693\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39083 2.40898i 0.983463 1.70341i 0.334886 0.942259i \(-0.391302\pi\)
0.648577 0.761149i \(-0.275365\pi\)
\(3\) 0 0
\(4\) −2.86880 4.96890i −1.43440 2.48445i
\(5\) 0.412855 0.715087i 0.184635 0.319796i −0.758819 0.651302i \(-0.774223\pi\)
0.943453 + 0.331505i \(0.107557\pi\)
\(6\) 0 0
\(7\) 2.63323 0.257073i 0.995268 0.0971643i
\(8\) −10.3967 −3.67579
\(9\) 0 0
\(10\) −1.14842 1.98912i −0.363163 0.629016i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 0 0
\(13\) −0.296842 −0.0823291 −0.0411645 0.999152i \(-0.513107\pi\)
−0.0411645 + 0.999152i \(0.513107\pi\)
\(14\) 3.04309 6.70095i 0.813299 1.79091i
\(15\) 0 0
\(16\) −8.72241 + 15.1077i −2.18060 + 3.77691i
\(17\) −3.34677 5.79677i −0.811711 1.40592i −0.911666 0.410932i \(-0.865203\pi\)
0.0999551 0.994992i \(-0.468130\pi\)
\(18\) 0 0
\(19\) 1.41669 2.45379i 0.325012 0.562937i −0.656503 0.754324i \(-0.727965\pi\)
0.981515 + 0.191386i \(0.0612983\pi\)
\(20\) −4.73760 −1.05936
\(21\) 0 0
\(22\) −2.78165 −0.593051
\(23\) −1.98481 + 3.43779i −0.413862 + 0.716830i −0.995308 0.0967550i \(-0.969154\pi\)
0.581446 + 0.813585i \(0.302487\pi\)
\(24\) 0 0
\(25\) 2.15910 + 3.73967i 0.431820 + 0.747934i
\(26\) −0.412855 + 0.715087i −0.0809676 + 0.140240i
\(27\) 0 0
\(28\) −8.83158 12.3468i −1.66901 2.33332i
\(29\) 0.484812 0.0900273 0.0450136 0.998986i \(-0.485667\pi\)
0.0450136 + 0.998986i \(0.485667\pi\)
\(30\) 0 0
\(31\) 3.66564 + 6.34907i 0.658368 + 1.14033i 0.981038 + 0.193816i \(0.0620864\pi\)
−0.322670 + 0.946512i \(0.604580\pi\)
\(32\) 13.8660 + 24.0166i 2.45119 + 4.24558i
\(33\) 0 0
\(34\) −18.6191 −3.19315
\(35\) 0.903315 1.98912i 0.152688 0.336223i
\(36\) 0 0
\(37\) 2.86880 4.96890i 0.471627 0.816883i −0.527846 0.849340i \(-0.677000\pi\)
0.999473 + 0.0324576i \(0.0103334\pi\)
\(38\) −3.94075 6.82559i −0.639275 1.10726i
\(39\) 0 0
\(40\) −4.29233 + 7.43454i −0.678677 + 1.17550i
\(41\) −0.645420 −0.100798 −0.0503988 0.998729i \(-0.516049\pi\)
−0.0503988 + 0.998729i \(0.516049\pi\)
\(42\) 0 0
\(43\) 6.43308 0.981035 0.490517 0.871431i \(-0.336808\pi\)
0.490517 + 0.871431i \(0.336808\pi\)
\(44\) −2.86880 + 4.96890i −0.432488 + 0.749090i
\(45\) 0 0
\(46\) 5.52106 + 9.56275i 0.814036 + 1.40995i
\(47\) 3.86880 6.70095i 0.564322 0.977435i −0.432790 0.901495i \(-0.642471\pi\)
0.997112 0.0759400i \(-0.0241958\pi\)
\(48\) 0 0
\(49\) 6.86783 1.35386i 0.981118 0.193409i
\(50\) 12.0117 1.69872
\(51\) 0 0
\(52\) 0.851579 + 1.47498i 0.118093 + 0.204543i
\(53\) 3.55677 + 6.16050i 0.488560 + 0.846210i 0.999913 0.0131602i \(-0.00418914\pi\)
−0.511354 + 0.859370i \(0.670856\pi\)
\(54\) 0 0
\(55\) −0.825711 −0.111339
\(56\) −27.3769 + 2.67271i −3.65839 + 0.357155i
\(57\) 0 0
\(58\) 0.674289 1.16790i 0.0885385 0.153353i
\(59\) −0.578495 1.00198i −0.0753137 0.130447i 0.825909 0.563803i \(-0.190662\pi\)
−0.901223 + 0.433356i \(0.857329\pi\)
\(60\) 0 0
\(61\) −2.63323 + 4.56089i −0.337151 + 0.583962i −0.983896 0.178744i \(-0.942797\pi\)
0.646745 + 0.762707i \(0.276130\pi\)
\(62\) 20.3931 2.58992
\(63\) 0 0
\(64\) 42.2513 5.28141
\(65\) −0.122553 + 0.212268i −0.0152008 + 0.0263286i
\(66\) 0 0
\(67\) −1.50865 2.61306i −0.184311 0.319236i 0.759033 0.651052i \(-0.225672\pi\)
−0.943344 + 0.331816i \(0.892339\pi\)
\(68\) −19.2024 + 33.2595i −2.32863 + 4.03331i
\(69\) 0 0
\(70\) −3.53541 4.94260i −0.422562 0.590753i
\(71\) −3.58061 −0.424940 −0.212470 0.977168i \(-0.568151\pi\)
−0.212470 + 0.977168i \(0.568151\pi\)
\(72\) 0 0
\(73\) −8.01625 13.8845i −0.938231 1.62506i −0.768769 0.639527i \(-0.779130\pi\)
−0.169462 0.985537i \(-0.554203\pi\)
\(74\) −7.98000 13.8218i −0.927656 1.60675i
\(75\) 0 0
\(76\) −16.2568 −1.86479
\(77\) −1.53925 2.15191i −0.175414 0.245233i
\(78\) 0 0
\(79\) 2.16210 3.74487i 0.243255 0.421331i −0.718384 0.695647i \(-0.755118\pi\)
0.961640 + 0.274316i \(0.0884513\pi\)
\(80\) 7.20219 + 12.4746i 0.805229 + 1.39470i
\(81\) 0 0
\(82\) −0.897667 + 1.55481i −0.0991308 + 0.171700i
\(83\) −2.37594 −0.260793 −0.130397 0.991462i \(-0.541625\pi\)
−0.130397 + 0.991462i \(0.541625\pi\)
\(84\) 0 0
\(85\) −5.52693 −0.599480
\(86\) 8.94729 15.4972i 0.964811 1.67110i
\(87\) 0 0
\(88\) 5.19835 + 9.00380i 0.554146 + 0.959809i
\(89\) 6.08617 10.5416i 0.645133 1.11740i −0.339138 0.940737i \(-0.610135\pi\)
0.984271 0.176667i \(-0.0565314\pi\)
\(90\) 0 0
\(91\) −0.781653 + 0.0763099i −0.0819395 + 0.00799945i
\(92\) 22.7761 2.37457
\(93\) 0 0
\(94\) −10.7617 18.6397i −1.10998 1.92254i
\(95\) −1.16978 2.02612i −0.120017 0.207875i
\(96\) 0 0
\(97\) −10.7680 −1.09332 −0.546661 0.837354i \(-0.684101\pi\)
−0.546661 + 0.837354i \(0.684101\pi\)
\(98\) 6.29052 18.4275i 0.635439 1.86146i
\(99\) 0 0
\(100\) 12.3880 21.4567i 1.23880 2.14567i
\(101\) 7.49519 + 12.9821i 0.745799 + 1.29176i 0.949820 + 0.312796i \(0.101266\pi\)
−0.204021 + 0.978966i \(0.565401\pi\)
\(102\) 0 0
\(103\) 1.23203 2.13393i 0.121395 0.210263i −0.798923 0.601434i \(-0.794596\pi\)
0.920318 + 0.391171i \(0.127930\pi\)
\(104\) 3.08617 0.302624
\(105\) 0 0
\(106\) 19.7874 1.92192
\(107\) −5.79022 + 10.0290i −0.559762 + 0.969536i 0.437754 + 0.899095i \(0.355774\pi\)
−0.997516 + 0.0704414i \(0.977559\pi\)
\(108\) 0 0
\(109\) 2.71173 + 4.69685i 0.259736 + 0.449877i 0.966171 0.257901i \(-0.0830310\pi\)
−0.706435 + 0.707778i \(0.749698\pi\)
\(110\) −1.14842 + 1.98912i −0.109498 + 0.189655i
\(111\) 0 0
\(112\) −19.0844 + 42.0243i −1.80330 + 3.97092i
\(113\) 17.5156 1.64773 0.823866 0.566785i \(-0.191813\pi\)
0.823866 + 0.566785i \(0.191813\pi\)
\(114\) 0 0
\(115\) 1.63888 + 2.83862i 0.152826 + 0.264703i
\(116\) −1.39083 2.40898i −0.129135 0.223668i
\(117\) 0 0
\(118\) −3.21835 −0.296273
\(119\) −10.3030 14.4039i −0.944476 1.32040i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 7.32474 + 12.6868i 0.663151 + 1.14861i
\(123\) 0 0
\(124\) 21.0320 36.4284i 1.88873 3.27137i
\(125\) 7.69414 0.688185
\(126\) 0 0
\(127\) 5.97924 0.530572 0.265286 0.964170i \(-0.414534\pi\)
0.265286 + 0.964170i \(0.414534\pi\)
\(128\) 31.0322 53.7493i 2.74288 4.75081i
\(129\) 0 0
\(130\) 0.340899 + 0.590455i 0.0298988 + 0.0517863i
\(131\) 8.82120 15.2788i 0.770712 1.33491i −0.166461 0.986048i \(-0.553234\pi\)
0.937173 0.348864i \(-0.113433\pi\)
\(132\) 0 0
\(133\) 3.09969 6.82559i 0.268777 0.591853i
\(134\) −8.39308 −0.725052
\(135\) 0 0
\(136\) 34.7953 + 60.2673i 2.98368 + 5.16788i
\(137\) 4.67986 + 8.10575i 0.399827 + 0.692521i 0.993704 0.112035i \(-0.0357368\pi\)
−0.593877 + 0.804556i \(0.702403\pi\)
\(138\) 0 0
\(139\) 7.40270 0.627889 0.313944 0.949441i \(-0.398349\pi\)
0.313944 + 0.949441i \(0.398349\pi\)
\(140\) −12.4752 + 1.21791i −1.05435 + 0.102932i
\(141\) 0 0
\(142\) −4.98000 + 8.62562i −0.417912 + 0.723846i
\(143\) 0.148421 + 0.257073i 0.0124116 + 0.0214975i
\(144\) 0 0
\(145\) 0.200157 0.346682i 0.0166221 0.0287904i
\(146\) −44.5968 −3.69086
\(147\) 0 0
\(148\) −32.9200 −2.70601
\(149\) −6.00587 + 10.4025i −0.492020 + 0.852204i −0.999958 0.00919009i \(-0.997075\pi\)
0.507938 + 0.861394i \(0.330408\pi\)
\(150\) 0 0
\(151\) −4.66091 8.07293i −0.379299 0.656966i 0.611661 0.791120i \(-0.290502\pi\)
−0.990960 + 0.134154i \(0.957168\pi\)
\(152\) −14.7289 + 25.5113i −1.19468 + 2.06924i
\(153\) 0 0
\(154\) −7.32474 + 0.715087i −0.590244 + 0.0576233i
\(155\) 6.05352 0.486230
\(156\) 0 0
\(157\) 2.55174 + 4.41974i 0.203651 + 0.352733i 0.949702 0.313155i \(-0.101386\pi\)
−0.746051 + 0.665889i \(0.768053\pi\)
\(158\) −6.01422 10.4169i −0.478465 0.828727i
\(159\) 0 0
\(160\) 22.8986 1.81030
\(161\) −4.34271 + 9.56275i −0.342253 + 0.753651i
\(162\) 0 0
\(163\) −4.74413 + 8.21708i −0.371589 + 0.643612i −0.989810 0.142393i \(-0.954520\pi\)
0.618221 + 0.786004i \(0.287854\pi\)
\(164\) 1.85158 + 3.20703i 0.144584 + 0.250427i
\(165\) 0 0
\(166\) −3.30452 + 5.72360i −0.256481 + 0.444237i
\(167\) 3.03850 0.235126 0.117563 0.993065i \(-0.462492\pi\)
0.117563 + 0.993065i \(0.462492\pi\)
\(168\) 0 0
\(169\) −12.9119 −0.993222
\(170\) −7.68700 + 13.3143i −0.589566 + 1.02116i
\(171\) 0 0
\(172\) −18.4552 31.9653i −1.40720 2.43733i
\(173\) −2.88602 + 4.99873i −0.219420 + 0.380046i −0.954631 0.297792i \(-0.903750\pi\)
0.735211 + 0.677838i \(0.237083\pi\)
\(174\) 0 0
\(175\) 6.64678 + 9.29238i 0.502449 + 0.702438i
\(176\) 17.4448 1.31495
\(177\) 0 0
\(178\) −16.9296 29.3230i −1.26893 2.19785i
\(179\) −1.51422 2.62270i −0.113178 0.196030i 0.803872 0.594802i \(-0.202770\pi\)
−0.917050 + 0.398772i \(0.869436\pi\)
\(180\) 0 0
\(181\) −9.67878 −0.719418 −0.359709 0.933064i \(-0.617124\pi\)
−0.359709 + 0.933064i \(0.617124\pi\)
\(182\) −0.903315 + 1.98912i −0.0669582 + 0.147444i
\(183\) 0 0
\(184\) 20.6355 35.7417i 1.52127 2.63491i
\(185\) −2.36880 4.10288i −0.174157 0.301650i
\(186\) 0 0
\(187\) −3.34677 + 5.79677i −0.244740 + 0.423902i
\(188\) −44.3952 −3.23785
\(189\) 0 0
\(190\) −6.50785 −0.472129
\(191\) −0.645420 + 1.11790i −0.0467009 + 0.0808884i −0.888431 0.459010i \(-0.848204\pi\)
0.841730 + 0.539899i \(0.181537\pi\)
\(192\) 0 0
\(193\) 10.4889 + 18.1673i 0.755006 + 1.30771i 0.945372 + 0.325995i \(0.105699\pi\)
−0.190366 + 0.981713i \(0.560967\pi\)
\(194\) −14.9764 + 25.9399i −1.07524 + 1.86237i
\(195\) 0 0
\(196\) −26.4296 30.2416i −1.88783 2.16012i
\(197\) −15.0836 −1.07466 −0.537332 0.843371i \(-0.680568\pi\)
−0.537332 + 0.843371i \(0.680568\pi\)
\(198\) 0 0
\(199\) 12.8601 + 22.2744i 0.911632 + 1.57899i 0.811759 + 0.583992i \(0.198510\pi\)
0.0998726 + 0.995000i \(0.468156\pi\)
\(200\) −22.4475 38.8802i −1.58728 2.74925i
\(201\) 0 0
\(202\) 41.6980 2.93386
\(203\) 1.27662 0.124632i 0.0896013 0.00874743i
\(204\) 0 0
\(205\) −0.266465 + 0.461531i −0.0186107 + 0.0322347i
\(206\) −3.42707 5.93587i −0.238776 0.413571i
\(207\) 0 0
\(208\) 2.58918 4.48458i 0.179527 0.310950i
\(209\) −2.83339 −0.195990
\(210\) 0 0
\(211\) 1.84814 0.127232 0.0636158 0.997974i \(-0.479737\pi\)
0.0636158 + 0.997974i \(0.479737\pi\)
\(212\) 20.4073 35.3465i 1.40158 2.42761i
\(213\) 0 0
\(214\) 16.1064 + 27.8971i 1.10101 + 1.90701i
\(215\) 2.65593 4.60021i 0.181133 0.313731i
\(216\) 0 0
\(217\) 11.2847 + 15.7763i 0.766052 + 1.07096i
\(218\) 15.0862 1.02176
\(219\) 0 0
\(220\) 2.36880 + 4.10288i 0.159704 + 0.276616i
\(221\) 0.993461 + 1.72072i 0.0668274 + 0.115748i
\(222\) 0 0
\(223\) −6.17851 −0.413744 −0.206872 0.978368i \(-0.566328\pi\)
−0.206872 + 0.978368i \(0.566328\pi\)
\(224\) 42.6865 + 59.6768i 2.85211 + 3.98733i
\(225\) 0 0
\(226\) 24.3612 42.1949i 1.62048 2.80676i
\(227\) 2.50557 + 4.33977i 0.166300 + 0.288041i 0.937116 0.349017i \(-0.113485\pi\)
−0.770816 + 0.637058i \(0.780151\pi\)
\(228\) 0 0
\(229\) −11.2164 + 19.4274i −0.741201 + 1.28380i 0.210748 + 0.977540i \(0.432410\pi\)
−0.951949 + 0.306257i \(0.900923\pi\)
\(230\) 9.11760 0.601197
\(231\) 0 0
\(232\) −5.04044 −0.330921
\(233\) 2.41669 4.18584i 0.158323 0.274223i −0.775941 0.630805i \(-0.782725\pi\)
0.934264 + 0.356582i \(0.116058\pi\)
\(234\) 0 0
\(235\) −3.19451 5.53305i −0.208387 0.360937i
\(236\) −3.31917 + 5.74897i −0.216060 + 0.374226i
\(237\) 0 0
\(238\) −49.0284 + 4.78646i −3.17804 + 0.310260i
\(239\) 2.58467 0.167188 0.0835941 0.996500i \(-0.473360\pi\)
0.0835941 + 0.996500i \(0.473360\pi\)
\(240\) 0 0
\(241\) −1.38902 2.40585i −0.0894745 0.154974i 0.817815 0.575482i \(-0.195185\pi\)
−0.907289 + 0.420507i \(0.861852\pi\)
\(242\) 1.39083 + 2.40898i 0.0894057 + 0.154855i
\(243\) 0 0
\(244\) 30.2168 1.93444
\(245\) 1.86729 5.47004i 0.119297 0.349468i
\(246\) 0 0
\(247\) −0.420534 + 0.728387i −0.0267580 + 0.0463461i
\(248\) −38.1105 66.0094i −2.42002 4.19160i
\(249\) 0 0
\(250\) 10.7012 18.5351i 0.676804 1.17226i
\(251\) −0.936967 −0.0591409 −0.0295704 0.999563i \(-0.509414\pi\)
−0.0295704 + 0.999563i \(0.509414\pi\)
\(252\) 0 0
\(253\) 3.96962 0.249568
\(254\) 8.31609 14.4039i 0.521798 0.903781i
\(255\) 0 0
\(256\) −44.0695 76.3306i −2.75434 4.77066i
\(257\) −9.01714 + 15.6181i −0.562474 + 0.974233i 0.434806 + 0.900524i \(0.356817\pi\)
−0.997280 + 0.0737089i \(0.976516\pi\)
\(258\) 0 0
\(259\) 6.27684 13.8218i 0.390024 0.858843i
\(260\) 1.40632 0.0872160
\(261\) 0 0
\(262\) −24.5375 42.5002i −1.51593 2.62567i
\(263\) 3.94826 + 6.83859i 0.243460 + 0.421686i 0.961698 0.274113i \(-0.0883841\pi\)
−0.718237 + 0.695798i \(0.755051\pi\)
\(264\) 0 0
\(265\) 5.87372 0.360820
\(266\) −12.1316 16.9603i −0.743836 1.03990i
\(267\) 0 0
\(268\) −8.65602 + 14.9927i −0.528751 + 0.915823i
\(269\) 8.60850 + 14.9104i 0.524870 + 0.909101i 0.999581 + 0.0289593i \(0.00921931\pi\)
−0.474711 + 0.880142i \(0.657447\pi\)
\(270\) 0 0
\(271\) 4.66767 8.08464i 0.283541 0.491107i −0.688713 0.725034i \(-0.741824\pi\)
0.972254 + 0.233927i \(0.0751575\pi\)
\(272\) 116.768 7.08007
\(273\) 0 0
\(274\) 26.0355 1.57286
\(275\) 2.15910 3.73967i 0.130199 0.225511i
\(276\) 0 0
\(277\) −2.73760 4.74166i −0.164486 0.284898i 0.771987 0.635639i \(-0.219263\pi\)
−0.936473 + 0.350740i \(0.885930\pi\)
\(278\) 10.2959 17.8330i 0.617505 1.06955i
\(279\) 0 0
\(280\) −9.39150 + 20.6803i −0.561249 + 1.23589i
\(281\) 18.3501 1.09467 0.547337 0.836912i \(-0.315641\pi\)
0.547337 + 0.836912i \(0.315641\pi\)
\(282\) 0 0
\(283\) −13.0203 22.5518i −0.773977 1.34057i −0.935368 0.353677i \(-0.884931\pi\)
0.161391 0.986891i \(-0.448402\pi\)
\(284\) 10.2720 + 17.7917i 0.609533 + 1.05574i
\(285\) 0 0
\(286\) 0.825711 0.0488253
\(287\) −1.69954 + 0.165920i −0.100321 + 0.00979393i
\(288\) 0 0
\(289\) −13.9017 + 24.0785i −0.817749 + 1.41638i
\(290\) −0.556768 0.964350i −0.0326945 0.0566286i
\(291\) 0 0
\(292\) −45.9940 + 79.6639i −2.69159 + 4.66198i
\(293\) −21.3317 −1.24621 −0.623106 0.782137i \(-0.714130\pi\)
−0.623106 + 0.782137i \(0.714130\pi\)
\(294\) 0 0
\(295\) −0.955340 −0.0556220
\(296\) −29.8260 + 51.6602i −1.73360 + 3.00269i
\(297\) 0 0
\(298\) 16.7062 + 28.9361i 0.967767 + 1.67622i
\(299\) 0.589175 1.02048i 0.0340729 0.0590159i
\(300\) 0 0
\(301\) 16.9398 1.65377i 0.976393 0.0953215i
\(302\) −25.9301 −1.49211
\(303\) 0 0
\(304\) 24.7140 + 42.8059i 1.41744 + 2.45508i
\(305\) 2.17429 + 3.76598i 0.124499 + 0.215639i
\(306\) 0 0
\(307\) −6.88329 −0.392850 −0.196425 0.980519i \(-0.562933\pi\)
−0.196425 + 0.980519i \(0.562933\pi\)
\(308\) −6.27684 + 13.8218i −0.357656 + 0.787568i
\(309\) 0 0
\(310\) 8.41939 14.5828i 0.478189 0.828248i
\(311\) −1.89864 3.28854i −0.107662 0.186476i 0.807161 0.590332i \(-0.201003\pi\)
−0.914823 + 0.403856i \(0.867670\pi\)
\(312\) 0 0
\(313\) −1.30955 + 2.26821i −0.0740203 + 0.128207i −0.900660 0.434525i \(-0.856916\pi\)
0.826640 + 0.562732i \(0.190250\pi\)
\(314\) 14.1961 0.801132
\(315\) 0 0
\(316\) −24.8105 −1.39570
\(317\) −13.9321 + 24.1311i −0.782505 + 1.35534i 0.147973 + 0.988991i \(0.452725\pi\)
−0.930478 + 0.366347i \(0.880608\pi\)
\(318\) 0 0
\(319\) −0.242406 0.419859i −0.0135721 0.0235076i
\(320\) 17.4437 30.2133i 0.975131 1.68898i
\(321\) 0 0
\(322\) 16.9966 + 23.7616i 0.947181 + 1.32418i
\(323\) −18.9654 −1.05526
\(324\) 0 0
\(325\) −0.640911 1.11009i −0.0355514 0.0615768i
\(326\) 13.1965 + 22.8571i 0.730889 + 1.26594i
\(327\) 0 0
\(328\) 6.71023 0.370511
\(329\) 8.46481 18.6397i 0.466680 1.02764i
\(330\) 0 0
\(331\) 4.02076 6.96416i 0.221001 0.382785i −0.734111 0.679029i \(-0.762401\pi\)
0.955112 + 0.296245i \(0.0957343\pi\)
\(332\) 6.81609 + 11.8058i 0.374082 + 0.647928i
\(333\) 0 0
\(334\) 4.22603 7.31969i 0.231238 0.400516i
\(335\) −2.49142 −0.136121
\(336\) 0 0
\(337\) 26.2686 1.43094 0.715471 0.698643i \(-0.246212\pi\)
0.715471 + 0.698643i \(0.246212\pi\)
\(338\) −17.9582 + 31.1045i −0.976797 + 1.69186i
\(339\) 0 0
\(340\) 15.8556 + 27.4628i 0.859893 + 1.48938i
\(341\) 3.66564 6.34907i 0.198506 0.343822i
\(342\) 0 0
\(343\) 17.7365 5.33057i 0.957683 0.287824i
\(344\) −66.8827 −3.60608
\(345\) 0 0
\(346\) 8.02790 + 13.9047i 0.431583 + 0.747523i
\(347\) 4.24421 + 7.35120i 0.227841 + 0.394633i 0.957168 0.289533i \(-0.0934999\pi\)
−0.729327 + 0.684166i \(0.760167\pi\)
\(348\) 0 0
\(349\) −31.9290 −1.70912 −0.854561 0.519351i \(-0.826174\pi\)
−0.854561 + 0.519351i \(0.826174\pi\)
\(350\) 31.6297 3.08789i 1.69068 0.165055i
\(351\) 0 0
\(352\) 13.8660 24.0166i 0.739061 1.28009i
\(353\) 0.0719562 + 0.124632i 0.00382984 + 0.00663348i 0.867934 0.496680i \(-0.165448\pi\)
−0.864104 + 0.503313i \(0.832114\pi\)
\(354\) 0 0
\(355\) −1.47827 + 2.56044i −0.0784586 + 0.135894i
\(356\) −69.8400 −3.70151
\(357\) 0 0
\(358\) −8.42406 −0.445225
\(359\) 4.11744 7.13162i 0.217310 0.376392i −0.736675 0.676247i \(-0.763605\pi\)
0.953985 + 0.299855i \(0.0969383\pi\)
\(360\) 0 0
\(361\) 5.48595 + 9.50195i 0.288734 + 0.500102i
\(362\) −13.4615 + 23.3160i −0.707521 + 1.22546i
\(363\) 0 0
\(364\) 2.62158 + 3.66504i 0.137408 + 0.192100i
\(365\) −13.2382 −0.692919
\(366\) 0 0
\(367\) −8.31512 14.4022i −0.434046 0.751789i 0.563171 0.826340i \(-0.309581\pi\)
−0.997217 + 0.0745508i \(0.976248\pi\)
\(368\) −34.6247 59.9717i −1.80494 3.12624i
\(369\) 0 0
\(370\) −13.1784 −0.685110
\(371\) 10.9495 + 15.3077i 0.568469 + 0.794736i
\(372\) 0 0
\(373\) 2.56242 4.43823i 0.132677 0.229803i −0.792031 0.610481i \(-0.790976\pi\)
0.924708 + 0.380678i \(0.124309\pi\)
\(374\) 9.30955 + 16.1246i 0.481385 + 0.833784i
\(375\) 0 0
\(376\) −40.2227 + 69.6678i −2.07433 + 3.59284i
\(377\) −0.143912 −0.00741186
\(378\) 0 0
\(379\) −19.6383 −1.00875 −0.504377 0.863484i \(-0.668278\pi\)
−0.504377 + 0.863484i \(0.668278\pi\)
\(380\) −6.71173 + 11.6251i −0.344304 + 0.596353i
\(381\) 0 0
\(382\) 1.79533 + 3.10961i 0.0918573 + 0.159102i
\(383\) −5.38513 + 9.32731i −0.275167 + 0.476603i −0.970177 0.242397i \(-0.922067\pi\)
0.695010 + 0.719000i \(0.255400\pi\)
\(384\) 0 0
\(385\) −2.17429 + 0.212268i −0.110812 + 0.0108182i
\(386\) 58.3528 2.97008
\(387\) 0 0
\(388\) 30.8911 + 53.5050i 1.56826 + 2.71631i
\(389\) 16.3394 + 28.3007i 0.828441 + 1.43490i 0.899261 + 0.437412i \(0.144105\pi\)
−0.0708206 + 0.997489i \(0.522562\pi\)
\(390\) 0 0
\(391\) 26.5708 1.34374
\(392\) −71.4027 + 14.0757i −3.60638 + 0.710931i
\(393\) 0 0
\(394\) −20.9787 + 36.3362i −1.05689 + 1.83059i
\(395\) −1.78527 3.09218i −0.0898267 0.155584i
\(396\) 0 0
\(397\) 16.4742 28.5342i 0.826817 1.43209i −0.0737049 0.997280i \(-0.523482\pi\)
0.900522 0.434810i \(-0.143184\pi\)
\(398\) 71.5450 3.58622
\(399\) 0 0
\(400\) −75.3302 −3.76651
\(401\) −9.67932 + 16.7651i −0.483362 + 0.837208i −0.999817 0.0191063i \(-0.993918\pi\)
0.516455 + 0.856314i \(0.327251\pi\)
\(402\) 0 0
\(403\) −1.08812 1.88467i −0.0542029 0.0938821i
\(404\) 43.0044 74.4858i 2.13955 3.70580i
\(405\) 0 0
\(406\) 1.47532 3.24870i 0.0732191 0.161230i
\(407\) −5.73760 −0.284402
\(408\) 0 0
\(409\) 15.0573 + 26.0800i 0.744535 + 1.28957i 0.950412 + 0.310995i \(0.100662\pi\)
−0.205877 + 0.978578i \(0.566005\pi\)
\(410\) 0.741214 + 1.28382i 0.0366059 + 0.0634033i
\(411\) 0 0
\(412\) −14.1378 −0.696517
\(413\) −1.78089 2.48974i −0.0876321 0.122512i
\(414\) 0 0
\(415\) −0.980920 + 1.69900i −0.0481515 + 0.0834008i
\(416\) −4.11601 7.12914i −0.201804 0.349535i
\(417\) 0 0
\(418\) −3.94075 + 6.82559i −0.192749 + 0.333850i
\(419\) 2.70722 0.132256 0.0661282 0.997811i \(-0.478935\pi\)
0.0661282 + 0.997811i \(0.478935\pi\)
\(420\) 0 0
\(421\) −30.1501 −1.46943 −0.734713 0.678378i \(-0.762683\pi\)
−0.734713 + 0.678378i \(0.762683\pi\)
\(422\) 2.57045 4.45215i 0.125127 0.216727i
\(423\) 0 0
\(424\) −36.9786 64.0489i −1.79584 3.11049i
\(425\) 14.4520 25.0316i 0.701026 1.21421i
\(426\) 0 0
\(427\) −5.76143 + 12.6868i −0.278815 + 0.613958i
\(428\) 66.4439 3.21169
\(429\) 0 0
\(430\) −7.38788 12.7962i −0.356275 0.617087i
\(431\) 16.3405 + 28.3025i 0.787092 + 1.36328i 0.927741 + 0.373224i \(0.121748\pi\)
−0.140650 + 0.990059i \(0.544919\pi\)
\(432\) 0 0
\(433\) −26.2432 −1.26117 −0.630583 0.776122i \(-0.717184\pi\)
−0.630583 + 0.776122i \(0.717184\pi\)
\(434\) 53.6997 5.24250i 2.57767 0.251648i
\(435\) 0 0
\(436\) 15.5588 26.9486i 0.745131 1.29061i
\(437\) 5.62374 + 9.74061i 0.269020 + 0.465957i
\(438\) 0 0
\(439\) 13.8453 23.9807i 0.660798 1.14454i −0.319608 0.947550i \(-0.603551\pi\)
0.980406 0.196986i \(-0.0631155\pi\)
\(440\) 8.58467 0.409258
\(441\) 0 0
\(442\) 5.52693 0.262889
\(443\) −10.4469 + 18.0946i −0.496348 + 0.859701i −0.999991 0.00421138i \(-0.998659\pi\)
0.503643 + 0.863912i \(0.331993\pi\)
\(444\) 0 0
\(445\) −5.02542 8.70428i −0.238228 0.412623i
\(446\) −8.59324 + 14.8839i −0.406902 + 0.704774i
\(447\) 0 0
\(448\) 111.257 10.8616i 5.25642 0.513164i
\(449\) −23.9615 −1.13081 −0.565407 0.824812i \(-0.691281\pi\)
−0.565407 + 0.824812i \(0.691281\pi\)
\(450\) 0 0
\(451\) 0.322710 + 0.558950i 0.0151958 + 0.0263199i
\(452\) −50.2488 87.0335i −2.36351 4.09371i
\(453\) 0 0
\(454\) 13.9392 0.654201
\(455\) −0.268142 + 0.590455i −0.0125707 + 0.0276810i
\(456\) 0 0
\(457\) −9.30541 + 16.1174i −0.435289 + 0.753942i −0.997319 0.0731743i \(-0.976687\pi\)
0.562030 + 0.827117i \(0.310020\pi\)
\(458\) 31.2002 + 54.0403i 1.45789 + 2.52514i
\(459\) 0 0
\(460\) 9.40324 16.2869i 0.438428 0.759380i
\(461\) 6.88513 0.320672 0.160336 0.987062i \(-0.448742\pi\)
0.160336 + 0.987062i \(0.448742\pi\)
\(462\) 0 0
\(463\) 2.73532 0.127121 0.0635605 0.997978i \(-0.479754\pi\)
0.0635605 + 0.997978i \(0.479754\pi\)
\(464\) −4.22872 + 7.32437i −0.196314 + 0.340025i
\(465\) 0 0
\(466\) −6.72241 11.6436i −0.311410 0.539377i
\(467\) 17.8180 30.8618i 0.824521 1.42811i −0.0777644 0.996972i \(-0.524778\pi\)
0.902285 0.431140i \(-0.141888\pi\)
\(468\) 0 0
\(469\) −4.64437 6.49296i −0.214457 0.299817i
\(470\) −17.7720 −0.819763
\(471\) 0 0
\(472\) 6.01444 + 10.4173i 0.276837 + 0.479496i
\(473\) −3.21654 5.57121i −0.147897 0.256164i
\(474\) 0 0
\(475\) 12.2351 0.561387
\(476\) −42.0143 + 92.5165i −1.92572 + 4.24049i
\(477\) 0 0
\(478\) 3.59482 6.22642i 0.164423 0.284790i
\(479\) −13.6899 23.7116i −0.625508 1.08341i −0.988442 0.151598i \(-0.951558\pi\)
0.362934 0.931815i \(-0.381775\pi\)
\(480\) 0 0
\(481\) −0.851579 + 1.47498i −0.0388287 + 0.0672532i
\(482\) −7.72753 −0.351979
\(483\) 0 0
\(484\) 5.73760 0.260800
\(485\) −4.44562 + 7.70003i −0.201865 + 0.349641i
\(486\) 0 0
\(487\) −14.6853 25.4357i −0.665455 1.15260i −0.979162 0.203083i \(-0.934904\pi\)
0.313706 0.949520i \(-0.398429\pi\)
\(488\) 27.3769 47.4182i 1.23929 2.14652i
\(489\) 0 0
\(490\) −10.5802 12.1062i −0.477963 0.546900i
\(491\) 1.69115 0.0763207 0.0381604 0.999272i \(-0.487850\pi\)
0.0381604 + 0.999272i \(0.487850\pi\)
\(492\) 0 0
\(493\) −1.62255 2.81034i −0.0730761 0.126572i
\(494\) 1.16978 + 2.02612i 0.0526309 + 0.0911594i
\(495\) 0 0
\(496\) −127.893 −5.74256
\(497\) −9.42857 + 0.920475i −0.422929 + 0.0412890i
\(498\) 0 0
\(499\) −14.7983 + 25.6313i −0.662461 + 1.14742i 0.317506 + 0.948256i \(0.397155\pi\)
−0.979967 + 0.199160i \(0.936179\pi\)
\(500\) −22.0729 38.2314i −0.987132 1.70976i
\(501\) 0 0
\(502\) −1.30316 + 2.25714i −0.0581628 + 0.100741i
\(503\) −28.2737 −1.26066 −0.630331 0.776326i \(-0.717081\pi\)
−0.630331 + 0.776326i \(0.717081\pi\)
\(504\) 0 0
\(505\) 12.3777 0.550801
\(506\) 5.52106 9.56275i 0.245441 0.425116i
\(507\) 0 0
\(508\) −17.1532 29.7103i −0.761052 1.31818i
\(509\) 5.45037 9.44032i 0.241584 0.418435i −0.719582 0.694408i \(-0.755667\pi\)
0.961166 + 0.275972i \(0.0889999\pi\)
\(510\) 0 0
\(511\) −24.6780 34.5005i −1.09169 1.52621i
\(512\) −121.043 −5.34941
\(513\) 0 0
\(514\) 25.0826 + 43.4443i 1.10634 + 1.91624i
\(515\) −1.01730 1.76201i −0.0448275 0.0776436i
\(516\) 0 0
\(517\) −7.73760 −0.340299
\(518\) −24.5664 34.3445i −1.07939 1.50901i
\(519\) 0 0
\(520\) 1.27414 2.20688i 0.0558749 0.0967782i
\(521\) 2.81803 + 4.88098i 0.123460 + 0.213839i 0.921130 0.389255i \(-0.127268\pi\)
−0.797670 + 0.603094i \(0.793934\pi\)
\(522\) 0 0
\(523\) 13.4113 23.2290i 0.586434 1.01573i −0.408261 0.912865i \(-0.633865\pi\)
0.994695 0.102868i \(-0.0328019\pi\)
\(524\) −101.225 −4.42203
\(525\) 0 0
\(526\) 21.9654 0.957737
\(527\) 24.5361 42.4978i 1.06881 1.85123i
\(528\) 0 0
\(529\) 3.62105 + 6.27183i 0.157437 + 0.272688i
\(530\) 8.16933 14.1497i 0.354853 0.614624i
\(531\) 0 0
\(532\) −42.8081 + 4.17919i −1.85596 + 0.181191i
\(533\) 0.191588 0.00829858
\(534\) 0 0
\(535\) 4.78105 + 8.28102i 0.206703 + 0.358020i
\(536\) 15.6850 + 27.1672i 0.677487 + 1.17344i
\(537\) 0 0
\(538\) 47.8918 2.06476
\(539\) −4.60639 5.27078i −0.198411 0.227029i
\(540\) 0 0
\(541\) −3.03355 + 5.25426i −0.130422 + 0.225898i −0.923839 0.382780i \(-0.874967\pi\)
0.793417 + 0.608678i \(0.208300\pi\)
\(542\) −12.9838 22.4887i −0.557704 0.965971i
\(543\) 0 0
\(544\) 92.8127 160.756i 3.97931 6.89237i
\(545\) 4.47821 0.191825
\(546\) 0 0
\(547\) −13.7115 −0.586263 −0.293132 0.956072i \(-0.594697\pi\)
−0.293132 + 0.956072i \(0.594697\pi\)
\(548\) 26.8511 46.5075i 1.14702 1.98670i
\(549\) 0 0
\(550\) −6.00587 10.4025i −0.256091 0.443563i
\(551\) 0.686830 1.18962i 0.0292600 0.0506797i
\(552\) 0 0
\(553\) 4.73061 10.4169i 0.201166 0.442973i
\(554\) −15.2301 −0.647064
\(555\) 0 0
\(556\) −21.2368 36.7833i −0.900643 1.55996i
\(557\) −5.54782 9.60910i −0.235069 0.407151i 0.724224 0.689565i \(-0.242198\pi\)
−0.959293 + 0.282414i \(0.908865\pi\)
\(558\) 0 0
\(559\) −1.90961 −0.0807677
\(560\) 22.1719 + 30.9969i 0.936934 + 1.30986i
\(561\) 0 0
\(562\) 25.5218 44.2051i 1.07657 1.86468i
\(563\) 2.17578 + 3.76857i 0.0916983 + 0.158826i 0.908226 0.418480i \(-0.137437\pi\)
−0.816528 + 0.577306i \(0.804104\pi\)
\(564\) 0 0
\(565\) 7.23142 12.5252i 0.304228 0.526939i
\(566\) −72.4360 −3.04471
\(567\) 0 0
\(568\) 37.2265 1.56199
\(569\) 4.57112 7.91741i 0.191631 0.331915i −0.754160 0.656691i \(-0.771956\pi\)
0.945791 + 0.324776i \(0.105289\pi\)
\(570\) 0 0
\(571\) −2.38226 4.12619i −0.0996944 0.172676i 0.811864 0.583847i \(-0.198453\pi\)
−0.911558 + 0.411171i \(0.865120\pi\)
\(572\) 0.851579 1.47498i 0.0356063 0.0616719i
\(573\) 0 0
\(574\) −1.96407 + 4.32493i −0.0819786 + 0.180519i
\(575\) −17.1416 −0.714856
\(576\) 0 0
\(577\) 8.80479 + 15.2504i 0.366548 + 0.634880i 0.989023 0.147759i \(-0.0472061\pi\)
−0.622475 + 0.782640i \(0.713873\pi\)
\(578\) 38.6698 + 66.9780i 1.60845 + 2.78592i
\(579\) 0 0
\(580\) −2.29684 −0.0953712
\(581\) −6.25640 + 0.610789i −0.259559 + 0.0253398i
\(582\) 0 0
\(583\) 3.55677 6.16050i 0.147306 0.255142i
\(584\) 83.3425 + 144.353i 3.44874 + 5.97339i
\(585\) 0 0
\(586\) −29.6687 + 51.3877i −1.22560 + 2.12281i
\(587\) −33.3405 −1.37611 −0.688054 0.725659i \(-0.741535\pi\)
−0.688054 + 0.725659i \(0.741535\pi\)
\(588\) 0 0
\(589\) 20.7724 0.855911
\(590\) −1.32871 + 2.30140i −0.0547022 + 0.0947470i
\(591\) 0 0
\(592\) 50.0457 + 86.6816i 2.05686 + 3.56259i
\(593\) −1.86707 + 3.23386i −0.0766713 + 0.132799i −0.901812 0.432129i \(-0.857763\pi\)
0.825141 + 0.564928i \(0.191096\pi\)
\(594\) 0 0
\(595\) −14.5537 + 1.42082i −0.596643 + 0.0582480i
\(596\) 68.9185 2.82301
\(597\) 0 0
\(598\) −1.63888 2.83862i −0.0670188 0.116080i
\(599\) 7.08256 + 12.2673i 0.289385 + 0.501230i 0.973663 0.227991i \(-0.0732158\pi\)
−0.684278 + 0.729221i \(0.739882\pi\)
\(600\) 0 0
\(601\) −18.3032 −0.746602 −0.373301 0.927710i \(-0.621774\pi\)
−0.373301 + 0.927710i \(0.621774\pi\)
\(602\) 19.5764 43.1077i 0.797875 1.75694i
\(603\) 0 0
\(604\) −26.7424 + 46.3192i −1.08813 + 1.88470i
\(605\) 0.412855 + 0.715087i 0.0167850 + 0.0290724i
\(606\) 0 0
\(607\) 22.6313 39.1985i 0.918576 1.59102i 0.116996 0.993132i \(-0.462674\pi\)
0.801580 0.597888i \(-0.203993\pi\)
\(608\) 78.5757 3.18666
\(609\) 0 0
\(610\) 12.0962 0.489762
\(611\) −1.14842 + 1.98912i −0.0464601 + 0.0804713i
\(612\) 0 0
\(613\) 7.28722 + 12.6218i 0.294328 + 0.509791i 0.974828 0.222957i \(-0.0715708\pi\)
−0.680500 + 0.732748i \(0.738237\pi\)
\(614\) −9.57346 + 16.5817i −0.386354 + 0.669184i
\(615\) 0 0
\(616\) 16.0031 + 22.3728i 0.644783 + 0.901424i
\(617\) 39.8257 1.60332 0.801662 0.597778i \(-0.203950\pi\)
0.801662 + 0.597778i \(0.203950\pi\)
\(618\) 0 0
\(619\) 0.218883 + 0.379117i 0.00879767 + 0.0152380i 0.870391 0.492362i \(-0.163866\pi\)
−0.861593 + 0.507600i \(0.830533\pi\)
\(620\) −17.3663 30.0793i −0.697448 1.20802i
\(621\) 0 0
\(622\) −10.5627 −0.423526
\(623\) 13.3164 29.3230i 0.533509 1.17480i
\(624\) 0 0
\(625\) −7.61894 + 13.1964i −0.304757 + 0.527855i
\(626\) 3.64272 + 6.30938i 0.145592 + 0.252173i
\(627\) 0 0
\(628\) 14.6408 25.3587i 0.584233 1.01192i
\(629\) −38.4048 −1.53130
\(630\) 0 0
\(631\) 29.1632 1.16097 0.580484 0.814272i \(-0.302863\pi\)
0.580484 + 0.814272i \(0.302863\pi\)
\(632\) −22.4787 + 38.9343i −0.894155 + 1.54872i
\(633\) 0 0
\(634\) 38.7543 + 67.1244i 1.53913 + 2.66585i
\(635\) 2.46856 4.27568i 0.0979619 0.169675i
\(636\) 0 0
\(637\) −2.03866 + 0.401883i −0.0807746 + 0.0159232i
\(638\) −1.34858 −0.0533907
\(639\) 0 0
\(640\) −25.6236 44.3814i −1.01286 1.75433i
\(641\) −2.69300 4.66442i −0.106367 0.184233i 0.807929 0.589280i \(-0.200589\pi\)
−0.914296 + 0.405047i \(0.867255\pi\)
\(642\) 0 0
\(643\) −2.19971 −0.0867481 −0.0433740 0.999059i \(-0.513811\pi\)
−0.0433740 + 0.999059i \(0.513811\pi\)
\(644\) 59.9748 5.85511i 2.36334 0.230724i
\(645\) 0 0
\(646\) −26.3776 + 45.6873i −1.03781 + 1.79754i
\(647\) −8.62105 14.9321i −0.338928 0.587041i 0.645303 0.763927i \(-0.276731\pi\)
−0.984231 + 0.176886i \(0.943398\pi\)
\(648\) 0 0
\(649\) −0.578495 + 1.00198i −0.0227079 + 0.0393313i
\(650\) −3.56559 −0.139854
\(651\) 0 0
\(652\) 54.4399 2.13203
\(653\) 20.3835 35.3052i 0.797666 1.38160i −0.123466 0.992349i \(-0.539401\pi\)
0.921132 0.389250i \(-0.127266\pi\)
\(654\) 0 0
\(655\) −7.28376 12.6158i −0.284600 0.492942i
\(656\) 5.62961 9.75078i 0.219800 0.380704i
\(657\) 0 0
\(658\) −33.1297 46.3162i −1.29153 1.80559i
\(659\) −33.9747 −1.32347 −0.661734 0.749739i \(-0.730179\pi\)
−0.661734 + 0.749739i \(0.730179\pi\)
\(660\) 0 0
\(661\) 14.9579 + 25.9078i 0.581795 + 1.00770i 0.995267 + 0.0971811i \(0.0309826\pi\)
−0.413472 + 0.910517i \(0.635684\pi\)
\(662\) −11.1844 19.3719i −0.434692 0.752909i
\(663\) 0 0
\(664\) 24.7019 0.958621
\(665\) −3.60116 5.03452i −0.139647 0.195230i
\(666\) 0 0
\(667\) −0.962260 + 1.66668i −0.0372589 + 0.0645342i
\(668\) −8.71684 15.0980i −0.337265 0.584159i
\(669\) 0 0
\(670\) −3.46513 + 6.00178i −0.133870 + 0.231869i
\(671\) 5.26647 0.203310
\(672\) 0 0
\(673\) 11.3711 0.438325 0.219163 0.975688i \(-0.429667\pi\)
0.219163 + 0.975688i \(0.429667\pi\)
\(674\) 36.5351 63.2806i 1.40728 2.43748i
\(675\) 0 0
\(676\) 37.0416 + 64.1579i 1.42468 + 2.46761i
\(677\) 4.85596 8.41076i 0.186630 0.323252i −0.757495 0.652841i \(-0.773577\pi\)
0.944124 + 0.329589i \(0.106910\pi\)
\(678\) 0 0
\(679\) −28.3546 + 2.76815i −1.08815 + 0.106232i
\(680\) 57.4618 2.20356
\(681\) 0 0
\(682\) −10.1965 17.6609i −0.390446 0.676272i
\(683\) 4.85512 + 8.40931i 0.185776 + 0.321773i 0.943838 0.330409i \(-0.107187\pi\)
−0.758062 + 0.652183i \(0.773853\pi\)
\(684\) 0 0
\(685\) 7.72842 0.295288
\(686\) 11.8272 50.1409i 0.451565 1.91439i
\(687\) 0 0
\(688\) −56.1119 + 97.1887i −2.13925 + 3.70528i
\(689\) −1.05580 1.82869i −0.0402227 0.0696677i
\(690\) 0 0
\(691\) 1.96902 3.41044i 0.0749051 0.129739i −0.826140 0.563465i \(-0.809468\pi\)
0.901045 + 0.433726i \(0.142801\pi\)
\(692\) 33.1176 1.25894
\(693\) 0 0
\(694\) 23.6119 0.896294
\(695\) 3.05624 5.29357i 0.115930 0.200797i
\(696\) 0 0
\(697\) 2.16007 + 3.74135i 0.0818185 + 0.141714i
\(698\) −44.4077 + 76.9165i −1.68086 + 2.91133i
\(699\) 0 0
\(700\) 27.1047 59.6852i 1.02446 2.25589i
\(701\) −11.7432 −0.443533 −0.221766 0.975100i \(-0.571182\pi\)
−0.221766 + 0.975100i \(0.571182\pi\)
\(702\) 0 0
\(703\) −8.12842 14.0788i −0.306569 0.530994i
\(704\) −21.1256 36.5907i −0.796203 1.37906i
\(705\) 0 0
\(706\) 0.400314 0.0150660
\(707\) 23.0739 + 32.2579i 0.867784 + 1.21319i
\(708\) 0 0
\(709\) 3.26744 5.65936i 0.122711 0.212542i −0.798125 0.602492i \(-0.794174\pi\)
0.920836 + 0.389950i \(0.127508\pi\)
\(710\) 4.11204 + 7.12227i 0.154322 + 0.267294i
\(711\) 0 0
\(712\) −63.2761 + 109.597i −2.37137 + 4.10734i
\(713\) −29.1024 −1.08989
\(714\) 0 0
\(715\) 0.245106 0.00916643
\(716\) −8.68797 + 15.0480i −0.324685 + 0.562370i
\(717\) 0 0
\(718\) −11.4533 19.8377i −0.427433 0.740336i
\(719\) −1.84382 + 3.19359i −0.0687629 + 0.119101i −0.898357 0.439266i \(-0.855239\pi\)
0.829594 + 0.558367i \(0.188572\pi\)
\(720\) 0 0
\(721\) 2.69564 5.93587i 0.100391 0.221063i
\(722\) 30.5200 1.13584
\(723\) 0 0
\(724\) 27.7665 + 48.0929i 1.03193 + 1.78736i
\(725\) 1.04676 + 1.81304i 0.0388756 + 0.0673345i
\(726\) 0 0
\(727\) −0.674563 −0.0250182 −0.0125091 0.999922i \(-0.503982\pi\)
−0.0125091 + 0.999922i \(0.503982\pi\)
\(728\) 8.12661 0.793371i 0.301192 0.0294043i
\(729\) 0 0
\(730\) −18.4121 + 31.8906i −0.681461 + 1.18032i
\(731\) −21.5300 37.2911i −0.796317 1.37926i
\(732\) 0 0
\(733\) −8.66961 + 15.0162i −0.320219 + 0.554636i −0.980533 0.196354i \(-0.937090\pi\)
0.660314 + 0.750990i \(0.270423\pi\)
\(734\) −46.2596 −1.70747
\(735\) 0 0
\(736\) −110.086 −4.05781
\(737\) −1.50865 + 2.61306i −0.0555718 + 0.0962532i
\(738\) 0 0
\(739\) −18.2695 31.6437i −0.672054 1.16403i −0.977321 0.211764i \(-0.932079\pi\)
0.305267 0.952267i \(-0.401254\pi\)
\(740\) −13.5912 + 23.5407i −0.499623 + 0.865372i
\(741\) 0 0
\(742\) 52.1048 5.08679i 1.91283 0.186742i
\(743\) −9.83489 −0.360807 −0.180404 0.983593i \(-0.557740\pi\)
−0.180404 + 0.983593i \(0.557740\pi\)
\(744\) 0 0
\(745\) 4.95911 + 8.58944i 0.181688 + 0.314693i
\(746\) −7.12775 12.3456i −0.260966 0.452006i
\(747\) 0 0
\(748\) 38.4048 1.40422
\(749\) −12.6688 + 27.8971i −0.462909 + 1.01934i
\(750\) 0 0
\(751\) 14.3484 24.8522i 0.523581 0.906869i −0.476042 0.879423i \(-0.657929\pi\)
0.999623 0.0274468i \(-0.00873768\pi\)
\(752\) 67.4905 + 116.897i 2.46112 + 4.26279i
\(753\) 0 0
\(754\) −0.200157 + 0.346682i −0.00728929 + 0.0126254i
\(755\) −7.69713 −0.280127
\(756\) 0 0
\(757\) −50.9435 −1.85157 −0.925786 0.378047i \(-0.876596\pi\)
−0.925786 + 0.378047i \(0.876596\pi\)
\(758\) −27.3135 + 47.3084i −0.992072 + 1.71832i
\(759\) 0 0
\(760\) 12.1619 + 21.0649i 0.441157 + 0.764106i
\(761\) 21.9590 38.0340i 0.796011 1.37873i −0.126184 0.992007i \(-0.540273\pi\)
0.922195 0.386725i \(-0.126394\pi\)
\(762\) 0 0
\(763\) 8.34804 + 11.6708i 0.302219 + 0.422511i
\(764\) 7.40632 0.267951
\(765\) 0 0
\(766\) 14.9796 + 25.9453i 0.541233 + 0.937444i
\(767\) 0.171722 + 0.297430i 0.00620051 + 0.0107396i
\(768\) 0 0
\(769\) 4.82343 0.173937 0.0869687 0.996211i \(-0.472282\pi\)
0.0869687 + 0.996211i \(0.472282\pi\)
\(770\) −2.51271 + 5.53305i −0.0905518 + 0.199397i
\(771\) 0 0
\(772\) 60.1809 104.236i 2.16596 3.75155i
\(773\) 3.64542 + 6.31405i 0.131117 + 0.227101i 0.924107 0.382133i \(-0.124810\pi\)
−0.792991 + 0.609234i \(0.791477\pi\)
\(774\) 0 0
\(775\) −15.8290 + 27.4166i −0.568593 + 0.984833i
\(776\) 111.951 4.01882
\(777\) 0 0
\(778\) 90.9011 3.25896
\(779\) −0.914363 + 1.58372i −0.0327605 + 0.0567428i
\(780\) 0 0
\(781\) 1.79030 + 3.10090i 0.0640621 + 0.110959i
\(782\) 36.9554 64.0087i 1.32152 2.28894i