Properties

Label 693.2.i.i.100.3
Level $693$
Weight $2$
Character 693.100
Analytic conductor $5.534$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(100,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.53363286007\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.10423593216.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} + 21x^{4} - 4x^{3} + 28x^{2} + 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.3
Root \(0.643668 - 1.11487i\) of defining polynomial
Character \(\chi\) \(=\) 693.100
Dual form 693.2.i.i.298.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.643668 - 1.11487i) q^{2} +(0.171383 + 0.296844i) q^{4} +(1.95872 - 3.39260i) q^{5} +(-0.234193 - 2.63537i) q^{7} +3.01593 q^{8} +O(q^{10})\) \(q+(0.643668 - 1.11487i) q^{2} +(0.171383 + 0.296844i) q^{4} +(1.95872 - 3.39260i) q^{5} +(-0.234193 - 2.63537i) q^{7} +3.01593 q^{8} +(-2.52153 - 4.36742i) q^{10} +(-0.500000 - 0.866025i) q^{11} -3.04306 q^{13} +(-3.08882 - 1.43521i) q^{14} +(1.59849 - 2.76866i) q^{16} +(1.98643 + 3.44061i) q^{17} +(-3.79530 + 6.57365i) q^{19} +1.34277 q^{20} -1.28734 q^{22} +(2.25572 - 3.90703i) q^{23} +(-5.17316 - 8.96018i) q^{25} +(-1.95872 + 3.39260i) q^{26} +(0.742157 - 0.521177i) q^{28} -3.75572 q^{29} +(3.37168 + 5.83991i) q^{31} +(0.958135 + 1.65954i) q^{32} +5.11442 q^{34} +(-9.39946 - 4.36742i) q^{35} +(-0.171383 + 0.296844i) q^{37} +(4.88582 + 8.46250i) q^{38} +(5.90735 - 10.2318i) q^{40} +2.79182 q^{41} +11.1222 q^{43} +(0.171383 - 0.296844i) q^{44} +(-2.90387 - 5.02965i) q^{46} +(0.828617 - 1.43521i) q^{47} +(-6.89031 + 1.23437i) q^{49} -13.3192 q^{50} +(-0.521529 - 0.903315i) q^{52} +(-6.47016 - 11.2067i) q^{53} -3.91744 q^{55} +(-0.706310 - 7.94807i) q^{56} +(-2.41744 + 4.18713i) q^{58} +(-1.83039 - 3.17034i) q^{59} +(0.234193 - 0.405635i) q^{61} +8.68096 q^{62} +8.86084 q^{64} +(-5.96050 + 10.3239i) q^{65} +(1.28911 + 2.23281i) q^{67} +(-0.680883 + 1.17932i) q^{68} +(-10.9192 + 7.66797i) q^{70} +5.00355 q^{71} +(4.36878 + 7.56694i) q^{73} +(0.220628 + 0.382139i) q^{74} -2.60180 q^{76} +(-2.16520 + 1.52050i) q^{77} +(-0.359814 + 0.623216i) q^{79} +(-6.26198 - 10.8461i) q^{80} +(1.79700 - 3.11250i) q^{82} +11.5976 q^{83} +15.5635 q^{85} +(7.15901 - 12.3998i) q^{86} +(-1.50796 - 2.61187i) q^{88} +(-6.17764 + 10.7000i) q^{89} +(0.712664 + 8.01957i) q^{91} +1.54637 q^{92} +(-1.06671 - 1.84759i) q^{94} +(14.8679 + 25.7519i) q^{95} -13.1687 q^{97} +(-3.05891 + 8.47629i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 4 q^{4} + 4 q^{5} + 2 q^{7} - 24 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} - 4 q^{4} + 4 q^{5} + 2 q^{7} - 24 q^{8} - 10 q^{10} - 4 q^{11} - 4 q^{13} + 4 q^{14} - 12 q^{16} + 2 q^{17} - 4 q^{22} + 4 q^{23} - 4 q^{25} - 4 q^{26} - 22 q^{28} - 16 q^{29} + 12 q^{31} + 26 q^{32} - 32 q^{34} + 2 q^{35} + 4 q^{37} + 8 q^{38} + 6 q^{40} - 4 q^{41} + 36 q^{43} - 4 q^{44} + 14 q^{46} + 12 q^{47} - 4 q^{49} - 4 q^{50} + 6 q^{52} - 12 q^{53} - 8 q^{55} - 48 q^{56} + 4 q^{58} + 12 q^{59} - 2 q^{61} + 52 q^{62} + 112 q^{64} - 4 q^{65} - 28 q^{67} - 48 q^{68} - 32 q^{70} - 24 q^{71} - 6 q^{73} - 16 q^{74} - 36 q^{76} - 4 q^{77} - 2 q^{79} + 16 q^{80} + 12 q^{82} + 24 q^{83} + 36 q^{85} + 36 q^{86} + 12 q^{88} + 8 q^{89} + 12 q^{91} + 32 q^{92} - 20 q^{94} + 34 q^{95} - 88 q^{97} - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/693\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.643668 1.11487i 0.455142 0.788329i −0.543554 0.839374i \(-0.682922\pi\)
0.998696 + 0.0510450i \(0.0162552\pi\)
\(3\) 0 0
\(4\) 0.171383 + 0.296844i 0.0856916 + 0.148422i
\(5\) 1.95872 3.39260i 0.875966 1.51722i 0.0202354 0.999795i \(-0.493558\pi\)
0.855730 0.517422i \(-0.173108\pi\)
\(6\) 0 0
\(7\) −0.234193 2.63537i −0.0885168 0.996075i
\(8\) 3.01593 1.06629
\(9\) 0 0
\(10\) −2.52153 4.36742i −0.797378 1.38110i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 0 0
\(13\) −3.04306 −0.843993 −0.421996 0.906598i \(-0.638670\pi\)
−0.421996 + 0.906598i \(0.638670\pi\)
\(14\) −3.08882 1.43521i −0.825522 0.383575i
\(15\) 0 0
\(16\) 1.59849 2.76866i 0.399622 0.692166i
\(17\) 1.98643 + 3.44061i 0.481781 + 0.834469i 0.999781 0.0209111i \(-0.00665670\pi\)
−0.518000 + 0.855380i \(0.673323\pi\)
\(18\) 0 0
\(19\) −3.79530 + 6.57365i −0.870701 + 1.50810i −0.00942900 + 0.999956i \(0.503001\pi\)
−0.861272 + 0.508144i \(0.830332\pi\)
\(20\) 1.34277 0.300252
\(21\) 0 0
\(22\) −1.28734 −0.274461
\(23\) 2.25572 3.90703i 0.470351 0.814671i −0.529074 0.848575i \(-0.677461\pi\)
0.999425 + 0.0339042i \(0.0107941\pi\)
\(24\) 0 0
\(25\) −5.17316 8.96018i −1.03463 1.79204i
\(26\) −1.95872 + 3.39260i −0.384136 + 0.665344i
\(27\) 0 0
\(28\) 0.742157 0.521177i 0.140254 0.0984931i
\(29\) −3.75572 −0.697420 −0.348710 0.937231i \(-0.613380\pi\)
−0.348710 + 0.937231i \(0.613380\pi\)
\(30\) 0 0
\(31\) 3.37168 + 5.83991i 0.605571 + 1.04888i 0.991961 + 0.126544i \(0.0403885\pi\)
−0.386390 + 0.922335i \(0.626278\pi\)
\(32\) 0.958135 + 1.65954i 0.169376 + 0.293368i
\(33\) 0 0
\(34\) 5.11442 0.877115
\(35\) −9.39946 4.36742i −1.58880 0.738228i
\(36\) 0 0
\(37\) −0.171383 + 0.296844i −0.0281752 + 0.0488009i −0.879769 0.475401i \(-0.842303\pi\)
0.851594 + 0.524202i \(0.175636\pi\)
\(38\) 4.88582 + 8.46250i 0.792585 + 1.37280i
\(39\) 0 0
\(40\) 5.90735 10.2318i 0.934035 1.61780i
\(41\) 2.79182 0.436009 0.218004 0.975948i \(-0.430045\pi\)
0.218004 + 0.975948i \(0.430045\pi\)
\(42\) 0 0
\(43\) 11.1222 1.69612 0.848061 0.529899i \(-0.177770\pi\)
0.848061 + 0.529899i \(0.177770\pi\)
\(44\) 0.171383 0.296844i 0.0258370 0.0447510i
\(45\) 0 0
\(46\) −2.90387 5.02965i −0.428153 0.741582i
\(47\) 0.828617 1.43521i 0.120866 0.209346i −0.799243 0.601008i \(-0.794766\pi\)
0.920109 + 0.391661i \(0.128099\pi\)
\(48\) 0 0
\(49\) −6.89031 + 1.23437i −0.984330 + 0.176339i
\(50\) −13.3192 −1.88362
\(51\) 0 0
\(52\) −0.521529 0.903315i −0.0723231 0.125267i
\(53\) −6.47016 11.2067i −0.888745 1.53935i −0.841360 0.540476i \(-0.818244\pi\)
−0.0473857 0.998877i \(-0.515089\pi\)
\(54\) 0 0
\(55\) −3.91744 −0.528227
\(56\) −0.706310 7.94807i −0.0943847 1.06211i
\(57\) 0 0
\(58\) −2.41744 + 4.18713i −0.317425 + 0.549797i
\(59\) −1.83039 3.17034i −0.238297 0.412743i 0.721929 0.691967i \(-0.243256\pi\)
−0.960226 + 0.279225i \(0.909923\pi\)
\(60\) 0 0
\(61\) 0.234193 0.405635i 0.0299854 0.0519362i −0.850643 0.525743i \(-0.823787\pi\)
0.880629 + 0.473807i \(0.157121\pi\)
\(62\) 8.68096 1.10248
\(63\) 0 0
\(64\) 8.86084 1.10760
\(65\) −5.96050 + 10.3239i −0.739309 + 1.28052i
\(66\) 0 0
\(67\) 1.28911 + 2.23281i 0.157490 + 0.272781i 0.933963 0.357370i \(-0.116326\pi\)
−0.776473 + 0.630151i \(0.782993\pi\)
\(68\) −0.680883 + 1.17932i −0.0825692 + 0.143014i
\(69\) 0 0
\(70\) −10.9192 + 7.66797i −1.30510 + 0.916498i
\(71\) 5.00355 0.593813 0.296906 0.954907i \(-0.404045\pi\)
0.296906 + 0.954907i \(0.404045\pi\)
\(72\) 0 0
\(73\) 4.36878 + 7.56694i 0.511327 + 0.885644i 0.999914 + 0.0131288i \(0.00417914\pi\)
−0.488587 + 0.872515i \(0.662488\pi\)
\(74\) 0.220628 + 0.382139i 0.0256475 + 0.0444227i
\(75\) 0 0
\(76\) −2.60180 −0.298447
\(77\) −2.16520 + 1.52050i −0.246747 + 0.173277i
\(78\) 0 0
\(79\) −0.359814 + 0.623216i −0.0404822 + 0.0701172i −0.885557 0.464532i \(-0.846223\pi\)
0.845074 + 0.534649i \(0.179556\pi\)
\(80\) −6.26198 10.8461i −0.700111 1.21263i
\(81\) 0 0
\(82\) 1.79700 3.11250i 0.198446 0.343718i
\(83\) 11.5976 1.27300 0.636499 0.771278i \(-0.280382\pi\)
0.636499 + 0.771278i \(0.280382\pi\)
\(84\) 0 0
\(85\) 15.5635 1.68810
\(86\) 7.15901 12.3998i 0.771976 1.33710i
\(87\) 0 0
\(88\) −1.50796 2.61187i −0.160749 0.278426i
\(89\) −6.17764 + 10.7000i −0.654829 + 1.13420i 0.327108 + 0.944987i \(0.393926\pi\)
−0.981937 + 0.189210i \(0.939407\pi\)
\(90\) 0 0
\(91\) 0.712664 + 8.01957i 0.0747075 + 0.840680i
\(92\) 1.54637 0.161220
\(93\) 0 0
\(94\) −1.06671 1.84759i −0.110023 0.190565i
\(95\) 14.8679 + 25.7519i 1.52541 + 2.64209i
\(96\) 0 0
\(97\) −13.1687 −1.33708 −0.668538 0.743678i \(-0.733080\pi\)
−0.668538 + 0.743678i \(0.733080\pi\)
\(98\) −3.05891 + 8.47629i −0.308997 + 0.856235i
\(99\) 0 0
\(100\) 1.77319 3.07125i 0.177319 0.307125i
\(101\) 3.53509 + 6.12296i 0.351755 + 0.609258i 0.986557 0.163417i \(-0.0522517\pi\)
−0.634802 + 0.772675i \(0.718918\pi\)
\(102\) 0 0
\(103\) −1.16868 + 2.02421i −0.115153 + 0.199451i −0.917841 0.396948i \(-0.870069\pi\)
0.802688 + 0.596400i \(0.203403\pi\)
\(104\) −9.17764 −0.899942
\(105\) 0 0
\(106\) −16.6585 −1.61802
\(107\) −5.42660 + 9.39914i −0.524609 + 0.908649i 0.474981 + 0.879996i \(0.342455\pi\)
−0.999589 + 0.0286528i \(0.990878\pi\)
\(108\) 0 0
\(109\) 1.09620 + 1.89868i 0.104997 + 0.181860i 0.913737 0.406306i \(-0.133183\pi\)
−0.808740 + 0.588166i \(0.799850\pi\)
\(110\) −2.52153 + 4.36742i −0.240418 + 0.416417i
\(111\) 0 0
\(112\) −7.67080 3.56420i −0.724822 0.336785i
\(113\) 11.6415 1.09514 0.547568 0.836761i \(-0.315554\pi\)
0.547568 + 0.836761i \(0.315554\pi\)
\(114\) 0 0
\(115\) −8.83665 15.3055i −0.824022 1.42725i
\(116\) −0.643668 1.11487i −0.0597631 0.103513i
\(117\) 0 0
\(118\) −4.71266 −0.433836
\(119\) 8.60204 6.04075i 0.788548 0.553755i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) −0.301486 0.522188i −0.0272952 0.0472767i
\(123\) 0 0
\(124\) −1.15570 + 2.00173i −0.103785 + 0.179760i
\(125\) −20.9439 −1.87328
\(126\) 0 0
\(127\) 5.41837 0.480802 0.240401 0.970674i \(-0.422721\pi\)
0.240401 + 0.970674i \(0.422721\pi\)
\(128\) 3.78717 6.55957i 0.334742 0.579789i
\(129\) 0 0
\(130\) 7.67316 + 13.2903i 0.672981 + 1.16564i
\(131\) −1.03297 + 1.78916i −0.0902514 + 0.156320i −0.907617 0.419800i \(-0.862100\pi\)
0.817365 + 0.576120i \(0.195434\pi\)
\(132\) 0 0
\(133\) 18.2128 + 8.46250i 1.57925 + 0.733792i
\(134\) 3.31904 0.286722
\(135\) 0 0
\(136\) 5.99094 + 10.3766i 0.513719 + 0.889787i
\(137\) −2.09153 3.62263i −0.178691 0.309502i 0.762741 0.646704i \(-0.223853\pi\)
−0.941432 + 0.337202i \(0.890520\pi\)
\(138\) 0 0
\(139\) 3.61077 0.306261 0.153131 0.988206i \(-0.451064\pi\)
0.153131 + 0.988206i \(0.451064\pi\)
\(140\) −0.314467 3.53868i −0.0265773 0.299073i
\(141\) 0 0
\(142\) 3.22063 5.57829i 0.270269 0.468120i
\(143\) 1.52153 + 2.63537i 0.127237 + 0.220380i
\(144\) 0 0
\(145\) −7.35641 + 12.7417i −0.610916 + 1.05814i
\(146\) 11.2482 0.930905
\(147\) 0 0
\(148\) −0.117489 −0.00965752
\(149\) 6.65960 11.5348i 0.545575 0.944964i −0.452995 0.891513i \(-0.649645\pi\)
0.998570 0.0534512i \(-0.0170221\pi\)
\(150\) 0 0
\(151\) 3.52160 + 6.09959i 0.286584 + 0.496378i 0.972992 0.230839i \(-0.0741469\pi\)
−0.686408 + 0.727217i \(0.740814\pi\)
\(152\) −11.4463 + 19.8257i −0.928421 + 1.60807i
\(153\) 0 0
\(154\) 0.301486 + 3.39260i 0.0242944 + 0.273384i
\(155\) 26.4167 2.12184
\(156\) 0 0
\(157\) −6.37793 11.0469i −0.509015 0.881639i −0.999945 0.0104406i \(-0.996677\pi\)
0.490931 0.871199i \(-0.336657\pi\)
\(158\) 0.463201 + 0.802288i 0.0368503 + 0.0638266i
\(159\) 0 0
\(160\) 7.50687 0.593470
\(161\) −10.8247 5.02965i −0.853107 0.396392i
\(162\) 0 0
\(163\) −5.70207 + 9.87627i −0.446621 + 0.773569i −0.998164 0.0605770i \(-0.980706\pi\)
0.551543 + 0.834146i \(0.314039\pi\)
\(164\) 0.478471 + 0.828736i 0.0373623 + 0.0647134i
\(165\) 0 0
\(166\) 7.46498 12.9297i 0.579395 1.00354i
\(167\) −12.1109 −0.937167 −0.468583 0.883419i \(-0.655235\pi\)
−0.468583 + 0.883419i \(0.655235\pi\)
\(168\) 0 0
\(169\) −3.73980 −0.287677
\(170\) 10.0177 17.3512i 0.768323 1.33077i
\(171\) 0 0
\(172\) 1.90616 + 3.30157i 0.145343 + 0.251742i
\(173\) 1.82124 3.15448i 0.138466 0.239830i −0.788450 0.615099i \(-0.789116\pi\)
0.926916 + 0.375268i \(0.122449\pi\)
\(174\) 0 0
\(175\) −22.4018 + 15.7316i −1.69342 + 1.18920i
\(176\) −3.19698 −0.240981
\(177\) 0 0
\(178\) 7.95270 + 13.7745i 0.596080 + 1.03244i
\(179\) 4.96320 + 8.59652i 0.370967 + 0.642534i 0.989715 0.143056i \(-0.0456929\pi\)
−0.618748 + 0.785590i \(0.712360\pi\)
\(180\) 0 0
\(181\) −8.07219 −0.600001 −0.300001 0.953939i \(-0.596987\pi\)
−0.300001 + 0.953939i \(0.596987\pi\)
\(182\) 9.39946 + 4.36742i 0.696735 + 0.323734i
\(183\) 0 0
\(184\) 6.80310 11.7833i 0.501531 0.868677i
\(185\) 0.671383 + 1.16287i 0.0493611 + 0.0854959i
\(186\) 0 0
\(187\) 1.98643 3.44061i 0.145262 0.251602i
\(188\) 0.568044 0.0414289
\(189\) 0 0
\(190\) 38.2798 2.77711
\(191\) 2.79182 4.83557i 0.202009 0.349890i −0.747167 0.664637i \(-0.768586\pi\)
0.949176 + 0.314747i \(0.101920\pi\)
\(192\) 0 0
\(193\) −5.56688 9.64211i −0.400712 0.694054i 0.593100 0.805129i \(-0.297904\pi\)
−0.993812 + 0.111075i \(0.964571\pi\)
\(194\) −8.47626 + 14.6813i −0.608560 + 1.05406i
\(195\) 0 0
\(196\) −1.54730 1.83380i −0.110521 0.130986i
\(197\) 0.644475 0.0459170 0.0229585 0.999736i \(-0.492691\pi\)
0.0229585 + 0.999736i \(0.492691\pi\)
\(198\) 0 0
\(199\) 12.6177 + 21.8545i 0.894447 + 1.54923i 0.834487 + 0.551027i \(0.185764\pi\)
0.0599599 + 0.998201i \(0.480903\pi\)
\(200\) −15.6019 27.0232i −1.10322 1.91083i
\(201\) 0 0
\(202\) 9.10171 0.640394
\(203\) 0.879565 + 9.89770i 0.0617334 + 0.694683i
\(204\) 0 0
\(205\) 5.46839 9.47152i 0.381929 0.661520i
\(206\) 1.50448 + 2.60584i 0.104822 + 0.181557i
\(207\) 0 0
\(208\) −4.86430 + 8.42521i −0.337278 + 0.584183i
\(209\) 7.59060 0.525053
\(210\) 0 0
\(211\) −17.6357 −1.21409 −0.607044 0.794668i \(-0.707645\pi\)
−0.607044 + 0.794668i \(0.707645\pi\)
\(212\) 2.21776 3.84127i 0.152316 0.263819i
\(213\) 0 0
\(214\) 6.98585 + 12.0998i 0.477543 + 0.827129i
\(215\) 21.7853 37.7332i 1.48574 2.57338i
\(216\) 0 0
\(217\) 14.6007 10.2533i 0.991159 0.696037i
\(218\) 2.82236 0.191154
\(219\) 0 0
\(220\) −0.671383 1.16287i −0.0452646 0.0784007i
\(221\) −6.04484 10.4700i −0.406620 0.704286i
\(222\) 0 0
\(223\) 16.5853 1.11064 0.555318 0.831638i \(-0.312596\pi\)
0.555318 + 0.831638i \(0.312596\pi\)
\(224\) 4.14910 2.91369i 0.277224 0.194679i
\(225\) 0 0
\(226\) 7.49323 12.9787i 0.498442 0.863327i
\(227\) −1.17409 2.03358i −0.0779269 0.134973i 0.824428 0.565966i \(-0.191497\pi\)
−0.902355 + 0.430993i \(0.858163\pi\)
\(228\) 0 0
\(229\) 8.72518 15.1125i 0.576576 0.998660i −0.419292 0.907851i \(-0.637722\pi\)
0.995868 0.0908081i \(-0.0289450\pi\)
\(230\) −22.7515 −1.50019
\(231\) 0 0
\(232\) −11.3270 −0.743653
\(233\) −2.79530 + 4.84160i −0.183126 + 0.317184i −0.942943 0.332953i \(-0.891955\pi\)
0.759817 + 0.650137i \(0.225288\pi\)
\(234\) 0 0
\(235\) −3.24605 5.62233i −0.211749 0.366760i
\(236\) 0.627398 1.08668i 0.0408401 0.0707372i
\(237\) 0 0
\(238\) −1.19776 13.4784i −0.0776394 0.873672i
\(239\) −17.8147 −1.15234 −0.576169 0.817331i \(-0.695453\pi\)
−0.576169 + 0.817331i \(0.695453\pi\)
\(240\) 0 0
\(241\) −1.49211 2.58441i −0.0961152 0.166476i 0.813958 0.580923i \(-0.197308\pi\)
−0.910074 + 0.414447i \(0.863975\pi\)
\(242\) 0.643668 + 1.11487i 0.0413765 + 0.0716663i
\(243\) 0 0
\(244\) 0.160547 0.0102780
\(245\) −9.30845 + 25.7938i −0.594695 + 1.64791i
\(246\) 0 0
\(247\) 11.5493 20.0040i 0.734866 1.27282i
\(248\) 10.1687 + 17.6128i 0.645715 + 1.11841i
\(249\) 0 0
\(250\) −13.4809 + 23.3496i −0.852607 + 1.47676i
\(251\) −25.0829 −1.58322 −0.791608 0.611029i \(-0.790756\pi\)
−0.791608 + 0.611029i \(0.790756\pi\)
\(252\) 0 0
\(253\) −4.51145 −0.283632
\(254\) 3.48763 6.04075i 0.218833 0.379030i
\(255\) 0 0
\(256\) 3.98548 + 6.90306i 0.249093 + 0.431441i
\(257\) −11.2785 + 19.5350i −0.703535 + 1.21856i 0.263683 + 0.964609i \(0.415063\pi\)
−0.967218 + 0.253948i \(0.918271\pi\)
\(258\) 0 0
\(259\) 0.822431 + 0.382139i 0.0511034 + 0.0237449i
\(260\) −4.08612 −0.253410
\(261\) 0 0
\(262\) 1.32978 + 2.30326i 0.0821544 + 0.142296i
\(263\) 12.8779 + 22.3052i 0.794087 + 1.37540i 0.923417 + 0.383798i \(0.125384\pi\)
−0.129330 + 0.991602i \(0.541283\pi\)
\(264\) 0 0
\(265\) −50.6929 −3.11404
\(266\) 21.1575 14.8578i 1.29725 0.910990i
\(267\) 0 0
\(268\) −0.441865 + 0.765332i −0.0269912 + 0.0467501i
\(269\) −10.3481 17.9234i −0.630935 1.09281i −0.987361 0.158488i \(-0.949338\pi\)
0.356426 0.934323i \(-0.383995\pi\)
\(270\) 0 0
\(271\) −1.53390 + 2.65680i −0.0931779 + 0.161389i −0.908847 0.417130i \(-0.863036\pi\)
0.815669 + 0.578519i \(0.196369\pi\)
\(272\) 12.7012 0.770122
\(273\) 0 0
\(274\) −5.38499 −0.325319
\(275\) −5.17316 + 8.96018i −0.311953 + 0.540319i
\(276\) 0 0
\(277\) 3.34277 + 5.78984i 0.200847 + 0.347878i 0.948802 0.315872i \(-0.102297\pi\)
−0.747954 + 0.663750i \(0.768964\pi\)
\(278\) 2.32413 4.02552i 0.139392 0.241435i
\(279\) 0 0
\(280\) −28.3481 13.1718i −1.69412 0.787166i
\(281\) −3.11286 −0.185698 −0.0928489 0.995680i \(-0.529597\pi\)
−0.0928489 + 0.995680i \(0.529597\pi\)
\(282\) 0 0
\(283\) 11.1799 + 19.3642i 0.664578 + 1.15108i 0.979400 + 0.201932i \(0.0647220\pi\)
−0.314822 + 0.949151i \(0.601945\pi\)
\(284\) 0.857525 + 1.48528i 0.0508848 + 0.0881350i
\(285\) 0 0
\(286\) 3.91744 0.231643
\(287\) −0.653825 7.35746i −0.0385941 0.434297i
\(288\) 0 0
\(289\) 0.608157 1.05336i 0.0357739 0.0619623i
\(290\) 9.47016 + 16.4028i 0.556107 + 0.963206i
\(291\) 0 0
\(292\) −1.49747 + 2.59370i −0.0876328 + 0.151785i
\(293\) −10.6291 −0.620958 −0.310479 0.950580i \(-0.600489\pi\)
−0.310479 + 0.950580i \(0.600489\pi\)
\(294\) 0 0
\(295\) −14.3409 −0.834960
\(296\) −0.516879 + 0.895261i −0.0300430 + 0.0520360i
\(297\) 0 0
\(298\) −8.57314 14.8491i −0.496628 0.860186i
\(299\) −6.86430 + 11.8893i −0.396972 + 0.687576i
\(300\) 0 0
\(301\) −2.60475 29.3111i −0.150135 1.68946i
\(302\) 9.06697 0.521746
\(303\) 0 0
\(304\) 12.1335 + 21.0158i 0.695903 + 1.20534i
\(305\) −0.917438 1.58905i −0.0525324 0.0909887i
\(306\) 0 0
\(307\) −18.5229 −1.05716 −0.528580 0.848883i \(-0.677275\pi\)
−0.528580 + 0.848883i \(0.677275\pi\)
\(308\) −0.822431 0.382139i −0.0468623 0.0217744i
\(309\) 0 0
\(310\) 17.0036 29.4510i 0.965737 1.67271i
\(311\) −9.92192 17.1853i −0.562620 0.974487i −0.997267 0.0738860i \(-0.976460\pi\)
0.434646 0.900601i \(-0.356873\pi\)
\(312\) 0 0
\(313\) 10.5572 18.2856i 0.596729 1.03356i −0.396572 0.918004i \(-0.629800\pi\)
0.993300 0.115561i \(-0.0368665\pi\)
\(314\) −16.4211 −0.926696
\(315\) 0 0
\(316\) −0.246664 −0.0138759
\(317\) −7.90329 + 13.6889i −0.443893 + 0.768845i −0.997974 0.0636174i \(-0.979736\pi\)
0.554081 + 0.832462i \(0.313070\pi\)
\(318\) 0 0
\(319\) 1.87786 + 3.25255i 0.105140 + 0.182108i
\(320\) 17.3559 30.0613i 0.970224 1.68048i
\(321\) 0 0
\(322\) −12.5749 + 8.83068i −0.700772 + 0.492114i
\(323\) −30.1565 −1.67795
\(324\) 0 0
\(325\) 15.7422 + 27.2663i 0.873222 + 1.51246i
\(326\) 7.34048 + 12.7141i 0.406551 + 0.704168i
\(327\) 0 0
\(328\) 8.41992 0.464912
\(329\) −3.97635 1.84759i −0.219223 0.101861i
\(330\) 0 0
\(331\) 4.58163 7.93562i 0.251829 0.436181i −0.712200 0.701976i \(-0.752301\pi\)
0.964030 + 0.265795i \(0.0856345\pi\)
\(332\) 1.98763 + 3.44267i 0.109085 + 0.188941i
\(333\) 0 0
\(334\) −7.79537 + 13.5020i −0.426544 + 0.738796i
\(335\) 10.1000 0.551824
\(336\) 0 0
\(337\) −12.7174 −0.692760 −0.346380 0.938094i \(-0.612589\pi\)
−0.346380 + 0.938094i \(0.612589\pi\)
\(338\) −2.40719 + 4.16937i −0.130934 + 0.226784i
\(339\) 0 0
\(340\) 2.66732 + 4.61993i 0.144656 + 0.250551i
\(341\) 3.37168 5.83991i 0.182586 0.316249i
\(342\) 0 0
\(343\) 4.86668 + 17.8694i 0.262776 + 0.964857i
\(344\) 33.5438 1.80856
\(345\) 0 0
\(346\) −2.34454 4.06087i −0.126043 0.218314i
\(347\) 1.27370 + 2.20611i 0.0683756 + 0.118430i 0.898186 0.439615i \(-0.144885\pi\)
−0.829811 + 0.558045i \(0.811552\pi\)
\(348\) 0 0
\(349\) −25.0183 −1.33920 −0.669600 0.742722i \(-0.733534\pi\)
−0.669600 + 0.742722i \(0.733534\pi\)
\(350\) 3.11927 + 35.1009i 0.166732 + 1.87622i
\(351\) 0 0
\(352\) 0.958135 1.65954i 0.0510688 0.0884537i
\(353\) −5.71444 9.89770i −0.304149 0.526802i 0.672922 0.739713i \(-0.265039\pi\)
−0.977072 + 0.212911i \(0.931705\pi\)
\(354\) 0 0
\(355\) 9.80056 16.9751i 0.520160 0.900943i
\(356\) −4.23498 −0.224453
\(357\) 0 0
\(358\) 12.7786 0.675371
\(359\) 14.9811 25.9480i 0.790672 1.36948i −0.134879 0.990862i \(-0.543065\pi\)
0.925551 0.378622i \(-0.123602\pi\)
\(360\) 0 0
\(361\) −19.3086 33.4435i −1.01624 1.76018i
\(362\) −5.19581 + 8.99941i −0.273086 + 0.472998i
\(363\) 0 0
\(364\) −2.25843 + 1.58597i −0.118374 + 0.0831275i
\(365\) 34.2288 1.79162
\(366\) 0 0
\(367\) 7.23130 + 12.5250i 0.377471 + 0.653798i 0.990693 0.136112i \(-0.0434606\pi\)
−0.613223 + 0.789910i \(0.710127\pi\)
\(368\) −7.21150 12.4907i −0.375925 0.651122i
\(369\) 0 0
\(370\) 1.72859 0.0898652
\(371\) −28.0184 + 19.6758i −1.45464 + 1.02152i
\(372\) 0 0
\(373\) −15.0726 + 26.1066i −0.780431 + 1.35175i 0.151260 + 0.988494i \(0.451667\pi\)
−0.931691 + 0.363252i \(0.881666\pi\)
\(374\) −2.55721 4.42921i −0.132230 0.229029i
\(375\) 0 0
\(376\) 2.49905 4.32848i 0.128879 0.223224i
\(377\) 11.4289 0.588617
\(378\) 0 0
\(379\) −11.7452 −0.603311 −0.301655 0.953417i \(-0.597539\pi\)
−0.301655 + 0.953417i \(0.597539\pi\)
\(380\) −5.09620 + 8.82688i −0.261430 + 0.452809i
\(381\) 0 0
\(382\) −3.59401 6.22500i −0.183885 0.318499i
\(383\) 13.9685 24.1942i 0.713759 1.23627i −0.249678 0.968329i \(-0.580325\pi\)
0.963436 0.267937i \(-0.0863420\pi\)
\(384\) 0 0
\(385\) 0.917438 + 10.3239i 0.0467570 + 0.526154i
\(386\) −14.3329 −0.729524
\(387\) 0 0
\(388\) −2.25689 3.90905i −0.114576 0.198452i
\(389\) −7.87896 13.6468i −0.399479 0.691918i 0.594183 0.804330i \(-0.297476\pi\)
−0.993662 + 0.112412i \(0.964142\pi\)
\(390\) 0 0
\(391\) 17.9234 0.906424
\(392\) −20.7807 + 3.72277i −1.04958 + 0.188028i
\(393\) 0 0
\(394\) 0.414828 0.718503i 0.0208987 0.0361977i
\(395\) 1.40955 + 2.44141i 0.0709221 + 0.122841i
\(396\) 0 0
\(397\) −6.40446 + 11.0928i −0.321430 + 0.556734i −0.980783 0.195100i \(-0.937497\pi\)
0.659353 + 0.751834i \(0.270830\pi\)
\(398\) 32.4865 1.62840
\(399\) 0 0
\(400\) −33.0770 −1.65385
\(401\) −5.49033 + 9.50953i −0.274174 + 0.474883i −0.969926 0.243398i \(-0.921738\pi\)
0.695752 + 0.718282i \(0.255071\pi\)
\(402\) 0 0
\(403\) −10.2602 17.7712i −0.511097 0.885246i
\(404\) −1.21171 + 2.09875i −0.0602849 + 0.104417i
\(405\) 0 0
\(406\) 11.6008 + 5.39024i 0.575736 + 0.267513i
\(407\) 0.342766 0.0169903
\(408\) 0 0
\(409\) −9.01281 15.6106i −0.445655 0.771896i 0.552443 0.833551i \(-0.313696\pi\)
−0.998098 + 0.0616543i \(0.980362\pi\)
\(410\) −7.03965 12.1930i −0.347664 0.602171i
\(411\) 0 0
\(412\) −0.801168 −0.0394707
\(413\) −7.92633 + 5.56623i −0.390029 + 0.273896i
\(414\) 0 0
\(415\) 22.7164 39.3459i 1.11510 1.93141i
\(416\) −2.91566 5.05007i −0.142952 0.247600i
\(417\) 0 0
\(418\) 4.88582 8.46250i 0.238974 0.413914i
\(419\) −11.8542 −0.579116 −0.289558 0.957160i \(-0.593508\pi\)
−0.289558 + 0.957160i \(0.593508\pi\)
\(420\) 0 0
\(421\) 26.4890 1.29100 0.645498 0.763762i \(-0.276650\pi\)
0.645498 + 0.763762i \(0.276650\pi\)
\(422\) −11.3515 + 19.6614i −0.552583 + 0.957101i
\(423\) 0 0
\(424\) −19.5135 33.7985i −0.947661 1.64140i
\(425\) 20.5523 35.5976i 0.996932 1.72674i
\(426\) 0 0
\(427\) −1.12384 0.522188i −0.0543866 0.0252705i
\(428\) −3.72011 −0.179818
\(429\) 0 0
\(430\) −28.0450 48.5753i −1.35245 2.34251i
\(431\) −1.08841 1.88517i −0.0524266 0.0908056i 0.838621 0.544715i \(-0.183362\pi\)
−0.891048 + 0.453910i \(0.850029\pi\)
\(432\) 0 0
\(433\) −16.4831 −0.792129 −0.396065 0.918223i \(-0.629624\pi\)
−0.396065 + 0.918223i \(0.629624\pi\)
\(434\) −2.03302 22.8775i −0.0975882 1.09815i
\(435\) 0 0
\(436\) −0.375741 + 0.650802i −0.0179947 + 0.0311678i
\(437\) 17.1223 + 29.6567i 0.819070 + 1.41867i
\(438\) 0 0
\(439\) 0.376500 0.652117i 0.0179694 0.0311239i −0.856901 0.515481i \(-0.827613\pi\)
0.874870 + 0.484357i \(0.160947\pi\)
\(440\) −11.8147 −0.563244
\(441\) 0 0
\(442\) −15.5635 −0.740279
\(443\) 20.0309 34.6946i 0.951698 1.64839i 0.209949 0.977712i \(-0.432670\pi\)
0.741750 0.670677i \(-0.233996\pi\)
\(444\) 0 0
\(445\) 24.2005 + 41.9166i 1.14722 + 1.98704i
\(446\) 10.6754 18.4904i 0.505497 0.875547i
\(447\) 0 0
\(448\) −2.07515 23.3516i −0.0980416 1.10326i
\(449\) 7.71924 0.364294 0.182147 0.983271i \(-0.441695\pi\)
0.182147 + 0.983271i \(0.441695\pi\)
\(450\) 0 0
\(451\) −1.39591 2.41779i −0.0657308 0.113849i
\(452\) 1.99515 + 3.45570i 0.0938440 + 0.162543i
\(453\) 0 0
\(454\) −3.02289 −0.141871
\(455\) 28.6031 + 13.2903i 1.34093 + 0.623059i
\(456\) 0 0
\(457\) −13.1823 + 22.8324i −0.616643 + 1.06806i 0.373451 + 0.927650i \(0.378174\pi\)
−0.990094 + 0.140407i \(0.955159\pi\)
\(458\) −11.2322 19.4548i −0.524848 0.909064i
\(459\) 0 0
\(460\) 3.02891 5.24622i 0.141224 0.244606i
\(461\) −12.4685 −0.580718 −0.290359 0.956918i \(-0.593775\pi\)
−0.290359 + 0.956918i \(0.593775\pi\)
\(462\) 0 0
\(463\) 37.7630 1.75499 0.877497 0.479582i \(-0.159212\pi\)
0.877497 + 0.479582i \(0.159212\pi\)
\(464\) −6.00348 + 10.3983i −0.278705 + 0.482731i
\(465\) 0 0
\(466\) 3.59849 + 6.23277i 0.166697 + 0.288727i
\(467\) 11.0104 19.0706i 0.509502 0.882483i −0.490438 0.871476i \(-0.663163\pi\)
0.999939 0.0110065i \(-0.00350356\pi\)
\(468\) 0 0
\(469\) 5.58237 3.92019i 0.257770 0.181018i
\(470\) −8.35753 −0.385504
\(471\) 0 0
\(472\) −5.52034 9.56150i −0.254094 0.440104i
\(473\) −5.56111 9.63212i −0.255700 0.442885i
\(474\) 0 0
\(475\) 78.5348 3.60342
\(476\) 3.26741 + 1.51819i 0.149761 + 0.0695860i
\(477\) 0 0
\(478\) −11.4668 + 19.8610i −0.524477 + 0.908421i
\(479\) −4.72401 8.18223i −0.215846 0.373856i 0.737688 0.675142i \(-0.235918\pi\)
−0.953534 + 0.301286i \(0.902584\pi\)
\(480\) 0 0
\(481\) 0.521529 0.903315i 0.0237797 0.0411876i
\(482\) −3.84169 −0.174984
\(483\) 0 0
\(484\) −0.342766 −0.0155803
\(485\) −25.7937 + 44.6761i −1.17123 + 2.02864i
\(486\) 0 0
\(487\) −20.1170 34.8437i −0.911589 1.57892i −0.811819 0.583909i \(-0.801523\pi\)
−0.0997702 0.995011i \(-0.531811\pi\)
\(488\) 0.706310 1.22337i 0.0319732 0.0553791i
\(489\) 0 0
\(490\) 22.7651 + 26.9803i 1.02842 + 1.21885i
\(491\) −20.2964 −0.915966 −0.457983 0.888961i \(-0.651428\pi\)
−0.457983 + 0.888961i \(0.651428\pi\)
\(492\) 0 0
\(493\) −7.46050 12.9220i −0.336004 0.581976i
\(494\) −14.8679 25.7519i −0.668936 1.15863i
\(495\) 0 0
\(496\) 21.5583 0.967998
\(497\) −1.17180 13.1862i −0.0525624 0.591482i
\(498\) 0 0
\(499\) −18.1477 + 31.4328i −0.812403 + 1.40712i 0.0987744 + 0.995110i \(0.468508\pi\)
−0.911178 + 0.412014i \(0.864826\pi\)
\(500\) −3.58943 6.21708i −0.160524 0.278036i
\(501\) 0 0
\(502\) −16.1450 + 27.9640i −0.720588 + 1.24809i
\(503\) 27.6923 1.23474 0.617368 0.786674i \(-0.288199\pi\)
0.617368 + 0.786674i \(0.288199\pi\)
\(504\) 0 0
\(505\) 27.6970 1.23250
\(506\) −2.90387 + 5.02965i −0.129093 + 0.223595i
\(507\) 0 0
\(508\) 0.928617 + 1.60841i 0.0412007 + 0.0713617i
\(509\) 4.54399 7.87041i 0.201409 0.348850i −0.747574 0.664179i \(-0.768781\pi\)
0.948983 + 0.315329i \(0.102115\pi\)
\(510\) 0 0
\(511\) 18.9185 13.2855i 0.836906 0.587714i
\(512\) 25.4100 1.12297
\(513\) 0 0
\(514\) 14.5192 + 25.1481i 0.640416 + 1.10923i
\(515\) 4.57823 + 7.92972i 0.201741 + 0.349425i
\(516\) 0 0
\(517\) −1.65723 −0.0728850
\(518\) 0.955405 0.670929i 0.0419781 0.0294789i
\(519\) 0 0
\(520\) −17.9764 + 31.1361i −0.788318 + 1.36541i
\(521\) 19.4255 + 33.6459i 0.851046 + 1.47405i 0.880266 + 0.474481i \(0.157364\pi\)
−0.0292202 + 0.999573i \(0.509302\pi\)
\(522\) 0 0
\(523\) 10.7500 18.6196i 0.470066 0.814178i −0.529348 0.848405i \(-0.677564\pi\)
0.999414 + 0.0342267i \(0.0108968\pi\)
\(524\) −0.708138 −0.0309352
\(525\) 0 0
\(526\) 33.1565 1.44569
\(527\) −13.3952 + 23.2012i −0.583505 + 1.01066i
\(528\) 0 0
\(529\) 1.32343 + 2.29225i 0.0575405 + 0.0996630i
\(530\) −32.6294 + 56.5158i −1.41733 + 2.45489i
\(531\) 0 0
\(532\) 0.609325 + 6.85670i 0.0264176 + 0.297276i
\(533\) −8.49566 −0.367988
\(534\) 0 0
\(535\) 21.2584 + 36.8205i 0.919079 + 1.59189i
\(536\) 3.88787 + 6.73399i 0.167930 + 0.290864i
\(537\) 0 0
\(538\) −26.6430 −1.14866
\(539\) 4.51415 + 5.35000i 0.194438 + 0.230441i
\(540\) 0 0
\(541\) 14.9470 25.8890i 0.642622 1.11305i −0.342223 0.939619i \(-0.611180\pi\)
0.984845 0.173435i \(-0.0554867\pi\)
\(542\) 1.97465 + 3.42019i 0.0848183 + 0.146910i
\(543\) 0 0
\(544\) −3.80654 + 6.59313i −0.163204 + 0.282678i
\(545\) 8.58860 0.367895
\(546\) 0 0
\(547\) −31.9072 −1.36425 −0.682127 0.731234i \(-0.738945\pi\)
−0.682127 + 0.731234i \(0.738945\pi\)
\(548\) 0.716905 1.24172i 0.0306247 0.0530435i
\(549\) 0 0
\(550\) 6.65960 + 11.5348i 0.283966 + 0.491844i
\(551\) 14.2541 24.6888i 0.607245 1.05178i
\(552\) 0 0
\(553\) 1.72667 + 0.802288i 0.0734254 + 0.0341167i
\(554\) 8.60653 0.365656
\(555\) 0 0
\(556\) 0.618825 + 1.07184i 0.0262440 + 0.0454560i
\(557\) −7.30446 12.6517i −0.309500 0.536069i 0.668753 0.743484i \(-0.266828\pi\)
−0.978253 + 0.207415i \(0.933495\pi\)
\(558\) 0 0
\(559\) −33.8455 −1.43151
\(560\) −27.1169 + 19.0427i −1.14590 + 0.804701i
\(561\) 0 0
\(562\) −2.00365 + 3.47042i −0.0845189 + 0.146391i
\(563\) −4.24116 7.34590i −0.178743 0.309593i 0.762707 0.646744i \(-0.223870\pi\)
−0.941450 + 0.337151i \(0.890537\pi\)
\(564\) 0 0
\(565\) 22.8023 39.4948i 0.959301 1.66156i
\(566\) 28.7847 1.20991
\(567\) 0 0
\(568\) 15.0904 0.633177
\(569\) 10.3529 17.9318i 0.434017 0.751740i −0.563198 0.826322i \(-0.690429\pi\)
0.997215 + 0.0745824i \(0.0237624\pi\)
\(570\) 0 0
\(571\) −0.504409 0.873661i −0.0211088 0.0365616i 0.855278 0.518169i \(-0.173386\pi\)
−0.876387 + 0.481608i \(0.840053\pi\)
\(572\) −0.521529 + 0.903315i −0.0218062 + 0.0377695i
\(573\) 0 0
\(574\) −8.62343 4.00683i −0.359935 0.167242i
\(575\) −46.6769 −1.94656
\(576\) 0 0
\(577\) 19.1925 + 33.2425i 0.798996 + 1.38390i 0.920270 + 0.391283i \(0.127969\pi\)
−0.121274 + 0.992619i \(0.538698\pi\)
\(578\) −0.782902 1.35603i −0.0325644 0.0564033i
\(579\) 0 0
\(580\) −5.04306 −0.209402
\(581\) −2.71607 30.5638i −0.112682 1.26800i
\(582\) 0 0
\(583\) −6.47016 + 11.2067i −0.267967 + 0.464132i
\(584\) 13.1759 + 22.8214i 0.545223 + 0.944354i
\(585\) 0 0
\(586\) −6.84160 + 11.8500i −0.282624 + 0.489519i
\(587\) −3.95733 −0.163336 −0.0816682 0.996660i \(-0.526025\pi\)
−0.0816682 + 0.996660i \(0.526025\pi\)
\(588\) 0 0
\(589\) −51.1861 −2.10909
\(590\) −9.23079 + 15.9882i −0.380025 + 0.658223i
\(591\) 0 0
\(592\) 0.547908 + 0.949005i 0.0225189 + 0.0390039i
\(593\) 4.25131 7.36349i 0.174581 0.302382i −0.765435 0.643513i \(-0.777476\pi\)
0.940016 + 0.341130i \(0.110810\pi\)
\(594\) 0 0
\(595\) −3.64486 41.0154i −0.149425 1.68147i
\(596\) 4.56537 0.187005
\(597\) 0 0
\(598\) 8.83665 + 15.3055i 0.361358 + 0.625890i
\(599\) −3.48076 6.02885i −0.142220 0.246332i 0.786112 0.618084i \(-0.212091\pi\)
−0.928332 + 0.371751i \(0.878757\pi\)
\(600\) 0 0
\(601\) 31.8738 1.30016 0.650081 0.759865i \(-0.274735\pi\)
0.650081 + 0.759865i \(0.274735\pi\)
\(602\) −34.3545 15.9627i −1.40019 0.650590i
\(603\) 0 0
\(604\) −1.20709 + 2.09074i −0.0491157 + 0.0850709i
\(605\) 1.95872 + 3.39260i 0.0796333 + 0.137929i
\(606\) 0 0
\(607\) −1.67204 + 2.89606i −0.0678660 + 0.117547i −0.897962 0.440074i \(-0.854952\pi\)
0.830096 + 0.557621i \(0.188286\pi\)
\(608\) −14.5456 −0.589903
\(609\) 0 0
\(610\) −2.36210 −0.0956387
\(611\) −2.52153 + 4.36742i −0.102010 + 0.176687i
\(612\) 0 0
\(613\) 2.11325 + 3.66025i 0.0853533 + 0.147836i 0.905542 0.424257i \(-0.139465\pi\)
−0.820188 + 0.572093i \(0.806131\pi\)
\(614\) −11.9226 + 20.6506i −0.481158 + 0.833390i
\(615\) 0 0
\(616\) −6.53008 + 4.58572i −0.263104 + 0.184764i
\(617\) −3.91266 −0.157518 −0.0787590 0.996894i \(-0.525096\pi\)
−0.0787590 + 0.996894i \(0.525096\pi\)
\(618\) 0 0
\(619\) −0.869194 1.50549i −0.0349359 0.0605107i 0.848029 0.529950i \(-0.177789\pi\)
−0.882965 + 0.469439i \(0.844456\pi\)
\(620\) 4.52737 + 7.84164i 0.181824 + 0.314928i
\(621\) 0 0
\(622\) −25.5457 −1.02429
\(623\) 29.6452 + 13.7745i 1.18771 + 0.551863i
\(624\) 0 0
\(625\) −15.1574 + 26.2534i −0.606295 + 1.05013i
\(626\) −13.5907 23.5397i −0.543193 0.940837i
\(627\) 0 0
\(628\) 2.18614 3.78651i 0.0872366 0.151098i
\(629\) −1.36177 −0.0542972
\(630\) 0 0
\(631\) −13.3994 −0.533420 −0.266710 0.963777i \(-0.585937\pi\)
−0.266710 + 0.963777i \(0.585937\pi\)
\(632\) −1.08517 + 1.87957i −0.0431658 + 0.0747654i
\(633\) 0 0
\(634\) 10.1742 + 17.6222i 0.404069 + 0.699867i
\(635\) 10.6131 18.3824i 0.421166 0.729481i
\(636\) 0 0
\(637\) 20.9676 3.75626i 0.830767 0.148829i
\(638\) 4.83488 0.191415
\(639\) 0 0
\(640\) −14.8360 25.6967i −0.586444 1.01575i
\(641\) 5.39101 + 9.33750i 0.212932 + 0.368809i 0.952631 0.304129i \(-0.0983653\pi\)
−0.739699 + 0.672938i \(0.765032\pi\)
\(642\) 0 0
\(643\) 30.1180 1.18774 0.593868 0.804562i \(-0.297600\pi\)
0.593868 + 0.804562i \(0.297600\pi\)
\(644\) −0.362150 4.07526i −0.0142707 0.160588i
\(645\) 0 0
\(646\) −19.4107 + 33.6204i −0.763705 + 1.32278i
\(647\) −6.32343 10.9525i −0.248600 0.430587i 0.714538 0.699597i \(-0.246637\pi\)
−0.963138 + 0.269009i \(0.913304\pi\)
\(648\) 0 0
\(649\) −1.83039 + 3.17034i −0.0718493 + 0.124447i
\(650\) 40.5311 1.58976
\(651\) 0 0
\(652\) −3.90896 −0.153087
\(653\) 0.751146 1.30102i 0.0293946 0.0509130i −0.850954 0.525240i \(-0.823975\pi\)
0.880348 + 0.474327i \(0.157309\pi\)
\(654\) 0 0
\(655\) 4.04661 + 7.00894i 0.158114 + 0.273862i
\(656\) 4.46269 7.72961i 0.174239 0.301790i
\(657\) 0 0
\(658\) −4.61927 + 3.24386i −0.180078 + 0.126459i
\(659\) 14.4079 0.561251 0.280626 0.959817i \(-0.409458\pi\)
0.280626 + 0.959817i \(0.409458\pi\)
\(660\) 0 0
\(661\) 8.39269 + 14.5366i 0.326438 + 0.565407i 0.981802 0.189906i \(-0.0608182\pi\)
−0.655364 + 0.755313i \(0.727485\pi\)
\(662\) −5.89810 10.2158i −0.229236 0.397049i
\(663\) 0 0
\(664\) 34.9774 1.35739
\(665\) 64.3837 45.2131i 2.49669 1.75329i
\(666\) 0 0
\(667\) −8.47187 + 14.6737i −0.328032 + 0.568168i
\(668\) −2.07560 3.59504i −0.0803073 0.139096i
\(669\) 0 0
\(670\) 6.50107 11.2602i 0.251158 0.435019i
\(671\) −0.468387 −0.0180819
\(672\) 0 0
\(673\) −48.1663 −1.85667 −0.928337 0.371740i \(-0.878761\pi\)
−0.928337 + 0.371740i \(0.878761\pi\)
\(674\) −8.18577 + 14.1782i −0.315304 + 0.546123i
\(675\) 0 0
\(676\) −0.640938 1.11014i −0.0246515 0.0426976i
\(677\) −5.85741 + 10.1453i −0.225118 + 0.389916i −0.956355 0.292207i \(-0.905610\pi\)
0.731237 + 0.682124i \(0.238944\pi\)
\(678\) 0 0
\(679\) 3.08402 + 34.7043i 0.118354 + 1.33183i
\(680\) 46.9383 1.80000
\(681\) 0 0
\(682\) −4.34048 7.51793i −0.166206 0.287876i
\(683\) 5.70996 + 9.88994i 0.218486 + 0.378428i 0.954345 0.298706i \(-0.0965550\pi\)
−0.735860 + 0.677134i \(0.763222\pi\)
\(684\) 0 0
\(685\) −16.3868 −0.626109
\(686\) 23.0545 + 6.07626i 0.880225 + 0.231993i
\(687\) 0 0
\(688\) 17.7787 30.7937i 0.677808 1.17400i
\(689\) 19.6891 + 34.1025i 0.750095 + 1.29920i
\(690\) 0 0
\(691\) 11.4596 19.8486i 0.435943 0.755075i −0.561429 0.827525i \(-0.689748\pi\)
0.997372 + 0.0724499i \(0.0230817\pi\)
\(692\) 1.24852 0.0474615
\(693\) 0 0
\(694\) 3.27935 0.124482
\(695\) 7.07248 12.2499i 0.268274 0.464665i
\(696\) 0 0
\(697\) 5.54576 + 9.60554i 0.210061 + 0.363836i
\(698\) −16.1035 + 27.8921i −0.609526 + 1.05573i
\(699\) 0 0
\(700\) −8.50913 3.95373i −0.321615 0.149437i
\(701\) −25.3982 −0.959277 −0.479638 0.877466i \(-0.659232\pi\)
−0.479638 + 0.877466i \(0.659232\pi\)
\(702\) 0 0
\(703\) −1.30090 2.25323i −0.0490644 0.0849821i
\(704\) −4.43042 7.67371i −0.166978 0.289214i
\(705\) 0 0
\(706\) −14.7128 −0.553724
\(707\) 15.3084 10.7502i 0.575730 0.404304i
\(708\) 0 0
\(709\) 8.25054 14.2903i 0.309855 0.536685i −0.668475 0.743735i \(-0.733053\pi\)
0.978331 + 0.207049i \(0.0663860\pi\)
\(710\) −12.6166 21.8526i −0.473493 0.820114i
\(711\) 0 0
\(712\) −18.6313 + 32.2704i −0.698238 + 1.20938i
\(713\) 30.4223 1.13932
\(714\) 0 0
\(715\) 11.9210 0.445820
\(716\) −1.70122 + 2.94660i −0.0635775 + 0.110120i
\(717\) 0 0
\(718\) −19.2857 33.4038i −0.719736 1.24662i
\(719\) −17.9149 + 31.0295i −0.668112 + 1.15720i 0.310319 + 0.950632i \(0.399564\pi\)
−0.978431 + 0.206572i \(0.933769\pi\)
\(720\) 0 0
\(721\) 5.60823 + 2.60584i 0.208862 + 0.0970465i
\(722\) −49.7133 −1.85014
\(723\) 0 0
\(724\) −1.38344 2.39619i −0.0514151 0.0890535i
\(725\) 19.4290 + 33.6519i 0.721573 + 1.24980i
\(726\) 0 0
\(727\) −18.7401 −0.695031 −0.347516 0.937674i \(-0.612975\pi\)
−0.347516 + 0.937674i \(0.612975\pi\)
\(728\) 2.14934 + 24.1864i 0.0796600 + 0.896409i
\(729\) 0 0
\(730\) 22.0320 38.1605i 0.815441 1.41239i
\(731\) 22.0935 + 38.2671i 0.817159 + 1.41536i
\(732\) 0 0
\(733\) −23.9039 + 41.4028i −0.882912 + 1.52925i −0.0348246 + 0.999393i \(0.511087\pi\)
−0.848088 + 0.529856i \(0.822246\pi\)
\(734\) 18.6182 0.687211
\(735\) 0 0
\(736\) 8.64515 0.318664
\(737\) 1.28911 2.23281i 0.0474851 0.0822466i
\(738\) 0 0
\(739\) 6.07009 + 10.5137i 0.223292 + 0.386753i 0.955806 0.293999i \(-0.0949864\pi\)
−0.732514 + 0.680752i \(0.761653\pi\)
\(740\) −0.230128 + 0.398593i −0.00845966 + 0.0146526i
\(741\) 0 0
\(742\) 3.90132 + 43.9014i 0.143222 + 1.61167i
\(743\) −30.9615 −1.13587 −0.567934 0.823074i \(-0.692257\pi\)
−0.567934 + 0.823074i \(0.692257\pi\)
\(744\) 0 0
\(745\) −26.0886 45.1867i −0.955811 1.65551i
\(746\) 19.4035 + 33.6079i 0.710414 + 1.23047i
\(747\) 0 0
\(748\) 1.36177 0.0497911
\(749\) 26.0410 + 12.0998i 0.951519 + 0.442119i
\(750\) 0 0
\(751\) 16.0219 27.7507i 0.584646 1.01264i −0.410273 0.911963i \(-0.634567\pi\)
0.994919 0.100674i \(-0.0321000\pi\)
\(752\) −2.64907 4.58832i −0.0966016 0.167319i
\(753\) 0 0
\(754\) 7.35641 12.7417i 0.267904 0.464024i
\(755\) 27.5913 1.00415
\(756\) 0 0
\(757\) 32.5209 1.18199 0.590996 0.806675i \(-0.298735\pi\)
0.590996 + 0.806675i \(0.298735\pi\)
\(758\) −7.56001 + 13.0943i −0.274592 + 0.475607i
\(759\) 0 0
\(760\) 44.8404 + 77.6658i 1.62653 + 2.81723i
\(761\) −1.23181 + 2.13355i −0.0446530 + 0.0773412i −0.887488 0.460831i \(-0.847552\pi\)
0.842835 + 0.538172i \(0.180885\pi\)
\(762\) 0 0
\(763\) 4.74698 3.33355i 0.171852 0.120683i
\(764\) 1.91388 0.0692419
\(765\) 0 0
\(766\) −17.9822 31.1461i −0.649723 1.12535i
\(767\) 5.57000 + 9.64752i 0.201121 + 0.348352i
\(768\) 0 0
\(769\) 49.0232 1.76782 0.883911 0.467656i \(-0.154901\pi\)
0.883911 + 0.467656i \(0.154901\pi\)
\(770\) 12.1003 + 5.62233i 0.436063 + 0.202615i
\(771\) 0 0
\(772\) 1.90814 3.30499i 0.0686754 0.118949i
\(773\) 0.208182 + 0.360582i 0.00748779 + 0.0129692i 0.869745 0.493501i \(-0.164283\pi\)
−0.862257 + 0.506471i \(0.830950\pi\)
\(774\) 0 0
\(775\) 34.8844 60.4216i 1.25309 2.17041i
\(776\) −39.7158 −1.42571
\(777\) 0 0
\(778\) −20.2857 −0.727278
\(779\) −10.5958 + 18.3524i −0.379633 + 0.657544i
\(780\) 0 0
\(781\) −2.50178 4.33321i −0.0895206 0.155054i
\(782\) 11.5367 19.9822i 0.412552 0.714561i