Properties

Label 693.2.i.i.100.2
Level $693$
Weight $2$
Character 693.100
Analytic conductor $5.534$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(100,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.53363286007\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.10423593216.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} + 21x^{4} - 4x^{3} + 28x^{2} + 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.2
Root \(-0.276205 + 0.478401i\) of defining polynomial
Character \(\chi\) \(=\) 693.100
Dual form 693.2.i.i.298.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.276205 + 0.478401i) q^{2} +(0.847422 + 1.46778i) q^{4} +(0.795012 - 1.37700i) q^{5} +(0.886763 + 2.49272i) q^{7} -2.04107 q^{8} +O(q^{10})\) \(q+(-0.276205 + 0.478401i) q^{2} +(0.847422 + 1.46778i) q^{4} +(0.795012 - 1.37700i) q^{5} +(0.886763 + 2.49272i) q^{7} -2.04107 q^{8} +(0.439172 + 0.760669i) q^{10} +(-0.500000 - 0.866025i) q^{11} +2.87834 q^{13} +(-1.43745 - 0.264273i) q^{14} +(-1.13109 + 1.95911i) q^{16} +(2.41864 + 4.18921i) q^{17} +(0.572943 - 0.992366i) q^{19} +2.69484 q^{20} +0.552409 q^{22} +(-1.82594 + 3.16261i) q^{23} +(1.23591 + 2.14066i) q^{25} +(-0.795012 + 1.37700i) q^{26} +(-2.90730 + 3.41396i) q^{28} +0.325935 q^{29} +(-3.22577 - 5.58719i) q^{31} +(-2.66589 - 4.61746i) q^{32} -2.67216 q^{34} +(4.13747 + 0.760669i) q^{35} +(-0.847422 + 1.46778i) q^{37} +(0.316499 + 0.548192i) q^{38} +(-1.62267 + 2.81055i) q^{40} +4.05839 q^{41} +4.62764 q^{43} +(0.847422 - 1.46778i) q^{44} +(-1.00866 - 1.74706i) q^{46} +(0.152578 - 0.264273i) q^{47} +(-5.42730 + 4.42090i) q^{49} -1.36546 q^{50} +(2.43917 + 4.22477i) q^{52} +(2.85686 + 4.94822i) q^{53} -1.59002 q^{55} +(-1.80994 - 5.08781i) q^{56} +(-0.0900249 + 0.155928i) q^{58} +(5.93075 + 10.2724i) q^{59} +(-0.886763 + 1.53592i) q^{61} +3.56389 q^{62} -1.57904 q^{64} +(2.28832 - 3.96349i) q^{65} +(-7.63574 - 13.2255i) q^{67} +(-4.09922 + 7.10005i) q^{68} +(-1.50669 + 1.76927i) q^{70} -9.16666 q^{71} +(5.86648 + 10.1610i) q^{73} +(-0.468124 - 0.810814i) q^{74} +1.94210 q^{76} +(1.71538 - 2.01432i) q^{77} +(4.35513 - 7.54331i) q^{79} +(1.79846 + 3.11503i) q^{80} +(-1.12095 + 1.94154i) q^{82} -8.40856 q^{83} +7.69139 q^{85} +(-1.27818 + 2.21387i) q^{86} +(1.02053 + 1.76762i) q^{88} +(-2.87489 + 4.97946i) q^{89} +(2.55241 + 7.17491i) q^{91} -6.18935 q^{92} +(0.0842856 + 0.145987i) q^{94} +(-0.910993 - 1.57789i) q^{95} -3.65329 q^{97} +(-0.615916 - 3.81750i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 4 q^{4} + 4 q^{5} + 2 q^{7} - 24 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} - 4 q^{4} + 4 q^{5} + 2 q^{7} - 24 q^{8} - 10 q^{10} - 4 q^{11} - 4 q^{13} + 4 q^{14} - 12 q^{16} + 2 q^{17} - 4 q^{22} + 4 q^{23} - 4 q^{25} - 4 q^{26} - 22 q^{28} - 16 q^{29} + 12 q^{31} + 26 q^{32} - 32 q^{34} + 2 q^{35} + 4 q^{37} + 8 q^{38} + 6 q^{40} - 4 q^{41} + 36 q^{43} - 4 q^{44} + 14 q^{46} + 12 q^{47} - 4 q^{49} - 4 q^{50} + 6 q^{52} - 12 q^{53} - 8 q^{55} - 48 q^{56} + 4 q^{58} + 12 q^{59} - 2 q^{61} + 52 q^{62} + 112 q^{64} - 4 q^{65} - 28 q^{67} - 48 q^{68} - 32 q^{70} - 24 q^{71} - 6 q^{73} - 16 q^{74} - 36 q^{76} - 4 q^{77} - 2 q^{79} + 16 q^{80} + 12 q^{82} + 24 q^{83} + 36 q^{85} + 36 q^{86} + 12 q^{88} + 8 q^{89} + 12 q^{91} + 32 q^{92} - 20 q^{94} + 34 q^{95} - 88 q^{97} - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/693\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.276205 + 0.478401i −0.195306 + 0.338280i −0.947001 0.321231i \(-0.895903\pi\)
0.751695 + 0.659511i \(0.229237\pi\)
\(3\) 0 0
\(4\) 0.847422 + 1.46778i 0.423711 + 0.733889i
\(5\) 0.795012 1.37700i 0.355540 0.615814i −0.631670 0.775237i \(-0.717630\pi\)
0.987210 + 0.159423i \(0.0509635\pi\)
\(6\) 0 0
\(7\) 0.886763 + 2.49272i 0.335165 + 0.942159i
\(8\) −2.04107 −0.721626
\(9\) 0 0
\(10\) 0.439172 + 0.760669i 0.138879 + 0.240545i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 0 0
\(13\) 2.87834 0.798309 0.399155 0.916884i \(-0.369304\pi\)
0.399155 + 0.916884i \(0.369304\pi\)
\(14\) −1.43745 0.264273i −0.384174 0.0706299i
\(15\) 0 0
\(16\) −1.13109 + 1.95911i −0.282773 + 0.489777i
\(17\) 2.41864 + 4.18921i 0.586606 + 1.01603i 0.994673 + 0.103080i \(0.0328697\pi\)
−0.408067 + 0.912952i \(0.633797\pi\)
\(18\) 0 0
\(19\) 0.572943 0.992366i 0.131442 0.227664i −0.792791 0.609494i \(-0.791373\pi\)
0.924233 + 0.381830i \(0.124706\pi\)
\(20\) 2.69484 0.602585
\(21\) 0 0
\(22\) 0.552409 0.117774
\(23\) −1.82594 + 3.16261i −0.380734 + 0.659450i −0.991167 0.132617i \(-0.957662\pi\)
0.610434 + 0.792068i \(0.290995\pi\)
\(24\) 0 0
\(25\) 1.23591 + 2.14066i 0.247182 + 0.428132i
\(26\) −0.795012 + 1.37700i −0.155915 + 0.270052i
\(27\) 0 0
\(28\) −2.90730 + 3.41396i −0.549427 + 0.645177i
\(29\) 0.325935 0.0605247 0.0302623 0.999542i \(-0.490366\pi\)
0.0302623 + 0.999542i \(0.490366\pi\)
\(30\) 0 0
\(31\) −3.22577 5.58719i −0.579365 1.00349i −0.995552 0.0942105i \(-0.969967\pi\)
0.416188 0.909279i \(-0.363366\pi\)
\(32\) −2.66589 4.61746i −0.471268 0.816259i
\(33\) 0 0
\(34\) −2.67216 −0.458271
\(35\) 4.13747 + 0.760669i 0.699360 + 0.128577i
\(36\) 0 0
\(37\) −0.847422 + 1.46778i −0.139315 + 0.241301i −0.927238 0.374473i \(-0.877823\pi\)
0.787922 + 0.615775i \(0.211157\pi\)
\(38\) 0.316499 + 0.548192i 0.0513429 + 0.0889285i
\(39\) 0 0
\(40\) −1.62267 + 2.81055i −0.256567 + 0.444387i
\(41\) 4.05839 0.633815 0.316907 0.948456i \(-0.397356\pi\)
0.316907 + 0.948456i \(0.397356\pi\)
\(42\) 0 0
\(43\) 4.62764 0.705709 0.352854 0.935678i \(-0.385211\pi\)
0.352854 + 0.935678i \(0.385211\pi\)
\(44\) 0.847422 1.46778i 0.127754 0.221276i
\(45\) 0 0
\(46\) −1.00866 1.74706i −0.148719 0.257590i
\(47\) 0.152578 0.264273i 0.0222558 0.0385482i −0.854683 0.519150i \(-0.826249\pi\)
0.876939 + 0.480602i \(0.159582\pi\)
\(48\) 0 0
\(49\) −5.42730 + 4.42090i −0.775329 + 0.631558i
\(50\) −1.36546 −0.193105
\(51\) 0 0
\(52\) 2.43917 + 4.22477i 0.338252 + 0.585870i
\(53\) 2.85686 + 4.94822i 0.392420 + 0.679691i 0.992768 0.120048i \(-0.0383048\pi\)
−0.600348 + 0.799739i \(0.704971\pi\)
\(54\) 0 0
\(55\) −1.59002 −0.214399
\(56\) −1.80994 5.08781i −0.241864 0.679887i
\(57\) 0 0
\(58\) −0.0900249 + 0.155928i −0.0118208 + 0.0204743i
\(59\) 5.93075 + 10.2724i 0.772118 + 1.33735i 0.936400 + 0.350935i \(0.114136\pi\)
−0.164281 + 0.986414i \(0.552531\pi\)
\(60\) 0 0
\(61\) −0.886763 + 1.53592i −0.113538 + 0.196654i −0.917195 0.398440i \(-0.869552\pi\)
0.803656 + 0.595094i \(0.202885\pi\)
\(62\) 3.56389 0.452614
\(63\) 0 0
\(64\) −1.57904 −0.197380
\(65\) 2.28832 3.96349i 0.283831 0.491610i
\(66\) 0 0
\(67\) −7.63574 13.2255i −0.932854 1.61575i −0.778416 0.627749i \(-0.783977\pi\)
−0.154438 0.988002i \(-0.549357\pi\)
\(68\) −4.09922 + 7.10005i −0.497103 + 0.861007i
\(69\) 0 0
\(70\) −1.50669 + 1.76927i −0.180084 + 0.211468i
\(71\) −9.16666 −1.08788 −0.543941 0.839123i \(-0.683069\pi\)
−0.543941 + 0.839123i \(0.683069\pi\)
\(72\) 0 0
\(73\) 5.86648 + 10.1610i 0.686619 + 1.18926i 0.972925 + 0.231121i \(0.0742393\pi\)
−0.286306 + 0.958138i \(0.592427\pi\)
\(74\) −0.468124 0.810814i −0.0544183 0.0942553i
\(75\) 0 0
\(76\) 1.94210 0.222774
\(77\) 1.71538 2.01432i 0.195485 0.229553i
\(78\) 0 0
\(79\) 4.35513 7.54331i 0.489991 0.848689i −0.509943 0.860208i \(-0.670333\pi\)
0.999934 + 0.0115194i \(0.00366683\pi\)
\(80\) 1.79846 + 3.11503i 0.201074 + 0.348271i
\(81\) 0 0
\(82\) −1.12095 + 1.94154i −0.123788 + 0.214407i
\(83\) −8.40856 −0.922959 −0.461480 0.887151i \(-0.652681\pi\)
−0.461480 + 0.887151i \(0.652681\pi\)
\(84\) 0 0
\(85\) 7.69139 0.834249
\(86\) −1.27818 + 2.21387i −0.137829 + 0.238727i
\(87\) 0 0
\(88\) 1.02053 + 1.76762i 0.108789 + 0.188428i
\(89\) −2.87489 + 4.97946i −0.304738 + 0.527822i −0.977203 0.212307i \(-0.931902\pi\)
0.672465 + 0.740129i \(0.265236\pi\)
\(90\) 0 0
\(91\) 2.55241 + 7.17491i 0.267565 + 0.752135i
\(92\) −6.18935 −0.645284
\(93\) 0 0
\(94\) 0.0842856 + 0.145987i 0.00869339 + 0.0150574i
\(95\) −0.910993 1.57789i −0.0934659 0.161888i
\(96\) 0 0
\(97\) −3.65329 −0.370935 −0.185467 0.982650i \(-0.559380\pi\)
−0.185467 + 0.982650i \(0.559380\pi\)
\(98\) −0.615916 3.81750i −0.0622169 0.385626i
\(99\) 0 0
\(100\) −2.09468 + 3.62808i −0.209468 + 0.362808i
\(101\) 0.142189 + 0.246278i 0.0141483 + 0.0245056i 0.873013 0.487697i \(-0.162163\pi\)
−0.858865 + 0.512203i \(0.828830\pi\)
\(102\) 0 0
\(103\) 8.34671 14.4569i 0.822426 1.42448i −0.0814443 0.996678i \(-0.525953\pi\)
0.903871 0.427806i \(-0.140713\pi\)
\(104\) −5.87489 −0.576081
\(105\) 0 0
\(106\) −3.15631 −0.306568
\(107\) 8.97475 15.5447i 0.867621 1.50276i 0.00320086 0.999995i \(-0.498981\pi\)
0.864421 0.502769i \(-0.167686\pi\)
\(108\) 0 0
\(109\) −5.54399 9.60247i −0.531018 0.919750i −0.999345 0.0361949i \(-0.988476\pi\)
0.468327 0.883555i \(-0.344857\pi\)
\(110\) 0.439172 0.760669i 0.0418734 0.0725269i
\(111\) 0 0
\(112\) −5.88652 1.08223i −0.556224 0.102261i
\(113\) −1.72443 −0.162221 −0.0811105 0.996705i \(-0.525847\pi\)
−0.0811105 + 0.996705i \(0.525847\pi\)
\(114\) 0 0
\(115\) 2.90328 + 5.02863i 0.270732 + 0.468922i
\(116\) 0.276205 + 0.478401i 0.0256450 + 0.0444184i
\(117\) 0 0
\(118\) −6.55241 −0.603198
\(119\) −8.29776 + 9.74382i −0.760654 + 0.893215i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) −0.489856 0.848456i −0.0443495 0.0768156i
\(123\) 0 0
\(124\) 5.46717 9.46942i 0.490966 0.850379i
\(125\) 11.8804 1.06261
\(126\) 0 0
\(127\) 20.3675 1.80732 0.903661 0.428248i \(-0.140869\pi\)
0.903661 + 0.428248i \(0.140869\pi\)
\(128\) 5.76792 9.99033i 0.509817 0.883029i
\(129\) 0 0
\(130\) 1.26409 + 2.18947i 0.110868 + 0.192029i
\(131\) 10.0910 17.4782i 0.881659 1.52708i 0.0321623 0.999483i \(-0.489761\pi\)
0.849496 0.527595i \(-0.176906\pi\)
\(132\) 0 0
\(133\) 2.98175 + 0.548192i 0.258551 + 0.0475343i
\(134\) 8.43611 0.728769
\(135\) 0 0
\(136\) −4.93660 8.55045i −0.423310 0.733195i
\(137\) −10.6316 18.4144i −0.908317 1.57325i −0.816401 0.577485i \(-0.804034\pi\)
−0.0919163 0.995767i \(-0.529299\pi\)
\(138\) 0 0
\(139\) 5.27951 0.447802 0.223901 0.974612i \(-0.428121\pi\)
0.223901 + 0.974612i \(0.428121\pi\)
\(140\) 2.38969 + 6.71749i 0.201965 + 0.567732i
\(141\) 0 0
\(142\) 2.53188 4.38534i 0.212470 0.368009i
\(143\) −1.43917 2.49272i −0.120350 0.208452i
\(144\) 0 0
\(145\) 0.259123 0.448814i 0.0215190 0.0372719i
\(146\) −6.48139 −0.536404
\(147\) 0 0
\(148\) −2.87250 −0.236118
\(149\) 0.682729 1.18252i 0.0559313 0.0968759i −0.836704 0.547655i \(-0.815521\pi\)
0.892635 + 0.450779i \(0.148854\pi\)
\(150\) 0 0
\(151\) −7.97450 13.8122i −0.648956 1.12402i −0.983373 0.181599i \(-0.941873\pi\)
0.334417 0.942425i \(-0.391461\pi\)
\(152\) −1.16941 + 2.02549i −0.0948520 + 0.164289i
\(153\) 0 0
\(154\) 0.489856 + 1.37700i 0.0394737 + 0.110962i
\(155\) −10.2581 −0.823950
\(156\) 0 0
\(157\) 4.19830 + 7.27166i 0.335060 + 0.580342i 0.983496 0.180927i \(-0.0579099\pi\)
−0.648436 + 0.761269i \(0.724577\pi\)
\(158\) 2.40582 + 4.16700i 0.191396 + 0.331508i
\(159\) 0 0
\(160\) −8.47767 −0.670219
\(161\) −9.50268 1.74706i −0.748916 0.137687i
\(162\) 0 0
\(163\) 8.65652 14.9935i 0.678031 1.17438i −0.297542 0.954709i \(-0.596167\pi\)
0.975573 0.219675i \(-0.0704999\pi\)
\(164\) 3.43917 + 5.95682i 0.268554 + 0.465150i
\(165\) 0 0
\(166\) 2.32248 4.02266i 0.180260 0.312219i
\(167\) −18.4945 −1.43115 −0.715574 0.698537i \(-0.753835\pi\)
−0.715574 + 0.698537i \(0.753835\pi\)
\(168\) 0 0
\(169\) −4.71513 −0.362702
\(170\) −2.12440 + 3.67957i −0.162934 + 0.282210i
\(171\) 0 0
\(172\) 3.92156 + 6.79235i 0.299016 + 0.517912i
\(173\) 6.13402 10.6244i 0.466361 0.807760i −0.532901 0.846177i \(-0.678898\pi\)
0.999262 + 0.0384172i \(0.0122316\pi\)
\(174\) 0 0
\(175\) −4.24010 + 4.97904i −0.320522 + 0.376380i
\(176\) 2.26218 0.170518
\(177\) 0 0
\(178\) −1.58812 2.75070i −0.119035 0.206174i
\(179\) 6.90582 + 11.9612i 0.516165 + 0.894024i 0.999824 + 0.0187674i \(0.00597419\pi\)
−0.483659 + 0.875257i \(0.660692\pi\)
\(180\) 0 0
\(181\) −18.7687 −1.39506 −0.697532 0.716554i \(-0.745718\pi\)
−0.697532 + 0.716554i \(0.745718\pi\)
\(182\) −4.13747 0.760669i −0.306689 0.0563845i
\(183\) 0 0
\(184\) 3.72686 6.45510i 0.274747 0.475877i
\(185\) 1.34742 + 2.33380i 0.0990644 + 0.171585i
\(186\) 0 0
\(187\) 2.41864 4.18921i 0.176868 0.306345i
\(188\) 0.517192 0.0377201
\(189\) 0 0
\(190\) 1.00648 0.0730179
\(191\) 4.05839 7.02935i 0.293655 0.508626i −0.681016 0.732269i \(-0.738462\pi\)
0.974671 + 0.223643i \(0.0717949\pi\)
\(192\) 0 0
\(193\) −0.595383 1.03123i −0.0428566 0.0742298i 0.843801 0.536656i \(-0.180313\pi\)
−0.886658 + 0.462426i \(0.846979\pi\)
\(194\) 1.00905 1.74773i 0.0724459 0.125480i
\(195\) 0 0
\(196\) −11.0881 4.21970i −0.792008 0.301407i
\(197\) 26.7523 1.90602 0.953012 0.302933i \(-0.0979659\pi\)
0.953012 + 0.302933i \(0.0979659\pi\)
\(198\) 0 0
\(199\) 3.01684 + 5.22531i 0.213858 + 0.370413i 0.952919 0.303226i \(-0.0980637\pi\)
−0.739061 + 0.673639i \(0.764730\pi\)
\(200\) −2.52258 4.36923i −0.178373 0.308951i
\(201\) 0 0
\(202\) −0.157093 −0.0110530
\(203\) 0.289027 + 0.812465i 0.0202857 + 0.0570239i
\(204\) 0 0
\(205\) 3.22647 5.58842i 0.225347 0.390312i
\(206\) 4.61080 + 7.98615i 0.321250 + 0.556421i
\(207\) 0 0
\(208\) −3.25567 + 5.63899i −0.225740 + 0.390993i
\(209\) −1.14589 −0.0792626
\(210\) 0 0
\(211\) −20.4601 −1.40853 −0.704264 0.709938i \(-0.748723\pi\)
−0.704264 + 0.709938i \(0.748723\pi\)
\(212\) −4.84193 + 8.38647i −0.332545 + 0.575985i
\(213\) 0 0
\(214\) 4.95773 + 8.58705i 0.338904 + 0.586998i
\(215\) 3.67903 6.37227i 0.250908 0.434585i
\(216\) 0 0
\(217\) 11.0668 12.9954i 0.751264 0.882188i
\(218\) 6.12511 0.414845
\(219\) 0 0
\(220\) −1.34742 2.33380i −0.0908432 0.157345i
\(221\) 6.96168 + 12.0580i 0.468293 + 0.811107i
\(222\) 0 0
\(223\) −29.6048 −1.98248 −0.991242 0.132055i \(-0.957843\pi\)
−0.991242 + 0.132055i \(0.957843\pi\)
\(224\) 9.14602 10.7399i 0.611094 0.717591i
\(225\) 0 0
\(226\) 0.476296 0.824969i 0.0316828 0.0548761i
\(227\) −12.0416 20.8566i −0.799226 1.38430i −0.920121 0.391635i \(-0.871910\pi\)
0.120894 0.992665i \(-0.461424\pi\)
\(228\) 0 0
\(229\) 2.60735 4.51607i 0.172299 0.298430i −0.766924 0.641737i \(-0.778214\pi\)
0.939223 + 0.343307i \(0.111547\pi\)
\(230\) −3.20760 −0.211503
\(231\) 0 0
\(232\) −0.665256 −0.0436762
\(233\) 1.57294 2.72442i 0.103047 0.178482i −0.809892 0.586579i \(-0.800474\pi\)
0.912939 + 0.408097i \(0.133807\pi\)
\(234\) 0 0
\(235\) −0.242603 0.420201i −0.0158257 0.0274109i
\(236\) −10.0517 + 17.4101i −0.654310 + 1.13330i
\(237\) 0 0
\(238\) −2.36957 6.66094i −0.153596 0.431765i
\(239\) −2.75465 −0.178184 −0.0890919 0.996023i \(-0.528396\pi\)
−0.0890919 + 0.996023i \(0.528396\pi\)
\(240\) 0 0
\(241\) 4.51479 + 7.81985i 0.290823 + 0.503721i 0.974005 0.226528i \(-0.0727374\pi\)
−0.683181 + 0.730249i \(0.739404\pi\)
\(242\) −0.276205 0.478401i −0.0177551 0.0307528i
\(243\) 0 0
\(244\) −3.00585 −0.192430
\(245\) 1.77282 + 10.9881i 0.113261 + 0.702003i
\(246\) 0 0
\(247\) 1.64913 2.85637i 0.104931 0.181747i
\(248\) 6.58400 + 11.4038i 0.418085 + 0.724144i
\(249\) 0 0
\(250\) −3.28142 + 5.68358i −0.207535 + 0.359461i
\(251\) 6.73133 0.424878 0.212439 0.977174i \(-0.431859\pi\)
0.212439 + 0.977174i \(0.431859\pi\)
\(252\) 0 0
\(253\) 3.65187 0.229591
\(254\) −5.62560 + 9.74382i −0.352981 + 0.611382i
\(255\) 0 0
\(256\) 1.60722 + 2.78378i 0.100451 + 0.173986i
\(257\) 13.8447 23.9797i 0.863607 1.49581i −0.00481687 0.999988i \(-0.501533\pi\)
0.868424 0.495823i \(-0.165133\pi\)
\(258\) 0 0
\(259\) −4.41022 0.810814i −0.274038 0.0503816i
\(260\) 7.75669 0.481049
\(261\) 0 0
\(262\) 5.57439 + 9.65512i 0.344387 + 0.596495i
\(263\) 2.30170 + 3.98667i 0.141929 + 0.245829i 0.928223 0.372024i \(-0.121336\pi\)
−0.786294 + 0.617853i \(0.788003\pi\)
\(264\) 0 0
\(265\) 9.08495 0.558084
\(266\) −1.08583 + 1.27506i −0.0665765 + 0.0781789i
\(267\) 0 0
\(268\) 12.9414 22.4151i 0.790521 1.36922i
\(269\) 9.55515 + 16.5500i 0.582588 + 1.00907i 0.995171 + 0.0981522i \(0.0312932\pi\)
−0.412583 + 0.910920i \(0.635373\pi\)
\(270\) 0 0
\(271\) −7.68643 + 13.3133i −0.466917 + 0.808724i −0.999286 0.0377885i \(-0.987969\pi\)
0.532369 + 0.846513i \(0.321302\pi\)
\(272\) −10.9428 −0.663505
\(273\) 0 0
\(274\) 11.7460 0.709600
\(275\) 1.23591 2.14066i 0.0745282 0.129087i
\(276\) 0 0
\(277\) 4.69484 + 8.13171i 0.282086 + 0.488587i 0.971898 0.235401i \(-0.0756404\pi\)
−0.689812 + 0.723988i \(0.742307\pi\)
\(278\) −1.45823 + 2.52572i −0.0874586 + 0.151483i
\(279\) 0 0
\(280\) −8.44485 1.55258i −0.504676 0.0927842i
\(281\) −26.9788 −1.60942 −0.804710 0.593668i \(-0.797679\pi\)
−0.804710 + 0.593668i \(0.797679\pi\)
\(282\) 0 0
\(283\) 11.7878 + 20.4171i 0.700712 + 1.21367i 0.968217 + 0.250112i \(0.0804673\pi\)
−0.267505 + 0.963556i \(0.586199\pi\)
\(284\) −7.76803 13.4546i −0.460948 0.798385i
\(285\) 0 0
\(286\) 1.59002 0.0940201
\(287\) 3.59883 + 10.1164i 0.212432 + 0.597155i
\(288\) 0 0
\(289\) −3.19963 + 5.54192i −0.188214 + 0.325995i
\(290\) 0.143142 + 0.247929i 0.00840558 + 0.0145589i
\(291\) 0 0
\(292\) −9.94276 + 17.2214i −0.581856 + 1.00780i
\(293\) 11.8500 0.692286 0.346143 0.938182i \(-0.387491\pi\)
0.346143 + 0.938182i \(0.387491\pi\)
\(294\) 0 0
\(295\) 18.8601 1.09808
\(296\) 1.72964 2.99583i 0.100534 0.174129i
\(297\) 0 0
\(298\) 0.377146 + 0.653236i 0.0218475 + 0.0378409i
\(299\) −5.25567 + 9.10309i −0.303943 + 0.526445i
\(300\) 0 0
\(301\) 4.10362 + 11.5354i 0.236529 + 0.664890i
\(302\) 8.81038 0.506980
\(303\) 0 0
\(304\) 1.29610 + 2.24491i 0.0743365 + 0.128755i
\(305\) 1.40998 + 2.44215i 0.0807349 + 0.139837i
\(306\) 0 0
\(307\) 19.5894 1.11803 0.559013 0.829159i \(-0.311180\pi\)
0.559013 + 0.829159i \(0.311180\pi\)
\(308\) 4.41022 + 0.810814i 0.251296 + 0.0462004i
\(309\) 0 0
\(310\) 2.83334 4.90748i 0.160923 0.278726i
\(311\) −10.7008 18.5344i −0.606788 1.05099i −0.991766 0.128062i \(-0.959124\pi\)
0.384978 0.922926i \(-0.374209\pi\)
\(312\) 0 0
\(313\) 6.66392 11.5422i 0.376667 0.652407i −0.613908 0.789378i \(-0.710403\pi\)
0.990575 + 0.136971i \(0.0437367\pi\)
\(314\) −4.63836 −0.261758
\(315\) 0 0
\(316\) 14.7625 0.830458
\(317\) −3.54776 + 6.14490i −0.199262 + 0.345132i −0.948289 0.317407i \(-0.897188\pi\)
0.749027 + 0.662539i \(0.230521\pi\)
\(318\) 0 0
\(319\) −0.162968 0.282268i −0.00912444 0.0158040i
\(320\) −1.25535 + 2.17434i −0.0701765 + 0.121549i
\(321\) 0 0
\(322\) 3.46048 4.06354i 0.192845 0.226452i
\(323\) 5.54297 0.308419
\(324\) 0 0
\(325\) 3.55738 + 6.16156i 0.197328 + 0.341782i
\(326\) 4.78194 + 8.28257i 0.264847 + 0.458729i
\(327\) 0 0
\(328\) −8.28345 −0.457377
\(329\) 0.794059 + 0.145987i 0.0437779 + 0.00804852i
\(330\) 0 0
\(331\) −10.3675 + 17.9570i −0.569849 + 0.987007i 0.426731 + 0.904378i \(0.359665\pi\)
−0.996580 + 0.0826290i \(0.973668\pi\)
\(332\) −7.12560 12.3419i −0.391068 0.677350i
\(333\) 0 0
\(334\) 5.10827 8.84778i 0.279512 0.484129i
\(335\) −24.2820 −1.32667
\(336\) 0 0
\(337\) −5.30755 −0.289121 −0.144560 0.989496i \(-0.546177\pi\)
−0.144560 + 0.989496i \(0.546177\pi\)
\(338\) 1.30234 2.25572i 0.0708380 0.122695i
\(339\) 0 0
\(340\) 6.51785 + 11.2893i 0.353480 + 0.612246i
\(341\) −3.22577 + 5.58719i −0.174685 + 0.302563i
\(342\) 0 0
\(343\) −15.8328 9.60845i −0.854891 0.518808i
\(344\) −9.44532 −0.509258
\(345\) 0 0
\(346\) 3.38849 + 5.86903i 0.182166 + 0.315521i
\(347\) 8.40156 + 14.5519i 0.451019 + 0.781188i 0.998450 0.0556630i \(-0.0177273\pi\)
−0.547430 + 0.836851i \(0.684394\pi\)
\(348\) 0 0
\(349\) −0.870459 −0.0465946 −0.0232973 0.999729i \(-0.507416\pi\)
−0.0232973 + 0.999729i \(0.507416\pi\)
\(350\) −1.21084 3.40370i −0.0647220 0.181936i
\(351\) 0 0
\(352\) −2.66589 + 4.61746i −0.142093 + 0.246111i
\(353\) −0.469077 0.812465i −0.0249665 0.0432432i 0.853272 0.521466i \(-0.174615\pi\)
−0.878239 + 0.478223i \(0.841281\pi\)
\(354\) 0 0
\(355\) −7.28761 + 12.6225i −0.386786 + 0.669934i
\(356\) −9.74499 −0.516483
\(357\) 0 0
\(358\) −7.62968 −0.403241
\(359\) −13.5050 + 23.3913i −0.712765 + 1.23454i 0.251051 + 0.967974i \(0.419224\pi\)
−0.963815 + 0.266571i \(0.914109\pi\)
\(360\) 0 0
\(361\) 8.84347 + 15.3173i 0.465446 + 0.806176i
\(362\) 5.18399 8.97894i 0.272465 0.471923i
\(363\) 0 0
\(364\) −8.36820 + 9.82654i −0.438613 + 0.515051i
\(365\) 18.6557 0.976483
\(366\) 0 0
\(367\) 14.2055 + 24.6046i 0.741520 + 1.28435i 0.951803 + 0.306710i \(0.0992281\pi\)
−0.210283 + 0.977641i \(0.567439\pi\)
\(368\) −4.13060 7.15441i −0.215322 0.372949i
\(369\) 0 0
\(370\) −1.48866 −0.0773916
\(371\) −9.80118 + 11.5092i −0.508852 + 0.597530i
\(372\) 0 0
\(373\) 4.87338 8.44094i 0.252334 0.437055i −0.711834 0.702348i \(-0.752135\pi\)
0.964168 + 0.265293i \(0.0854685\pi\)
\(374\) 1.33608 + 2.31416i 0.0690870 + 0.119662i
\(375\) 0 0
\(376\) −0.311422 + 0.539399i −0.0160604 + 0.0278174i
\(377\) 0.938154 0.0483174
\(378\) 0 0
\(379\) −33.1034 −1.70041 −0.850204 0.526454i \(-0.823521\pi\)
−0.850204 + 0.526454i \(0.823521\pi\)
\(380\) 1.54399 2.67427i 0.0792051 0.137187i
\(381\) 0 0
\(382\) 2.24190 + 3.88308i 0.114705 + 0.198676i
\(383\) −5.34418 + 9.25639i −0.273075 + 0.472980i −0.969648 0.244507i \(-0.921374\pi\)
0.696573 + 0.717486i \(0.254707\pi\)
\(384\) 0 0
\(385\) −1.40998 3.96349i −0.0718590 0.201998i
\(386\) 0.657790 0.0334806
\(387\) 0 0
\(388\) −3.09587 5.36221i −0.157169 0.272225i
\(389\) −19.2942 33.4185i −0.978253 1.69438i −0.668753 0.743485i \(-0.733171\pi\)
−0.309501 0.950899i \(-0.600162\pi\)
\(390\) 0 0
\(391\) −17.6651 −0.893363
\(392\) 11.0775 9.02336i 0.559498 0.455748i
\(393\) 0 0
\(394\) −7.38912 + 12.7983i −0.372258 + 0.644770i
\(395\) −6.92477 11.9941i −0.348423 0.603486i
\(396\) 0 0
\(397\) −6.96957 + 12.0716i −0.349793 + 0.605859i −0.986212 0.165484i \(-0.947081\pi\)
0.636420 + 0.771343i \(0.280415\pi\)
\(398\) −3.33306 −0.167071
\(399\) 0 0
\(400\) −5.59171 −0.279586
\(401\) −6.56854 + 11.3770i −0.328017 + 0.568142i −0.982118 0.188265i \(-0.939714\pi\)
0.654101 + 0.756407i \(0.273047\pi\)
\(402\) 0 0
\(403\) −9.28487 16.0819i −0.462512 0.801095i
\(404\) −0.240987 + 0.417402i −0.0119896 + 0.0207665i
\(405\) 0 0
\(406\) −0.468515 0.0861359i −0.0232520 0.00427485i
\(407\) 1.69484 0.0840103
\(408\) 0 0
\(409\) 12.5164 + 21.6791i 0.618898 + 1.07196i 0.989687 + 0.143246i \(0.0457540\pi\)
−0.370789 + 0.928717i \(0.620913\pi\)
\(410\) 1.78233 + 3.08709i 0.0880232 + 0.152461i
\(411\) 0 0
\(412\) 28.2928 1.39388
\(413\) −20.3470 + 23.8929i −1.00121 + 1.17569i
\(414\) 0 0
\(415\) −6.68491 + 11.5786i −0.328149 + 0.568371i
\(416\) −7.67336 13.2906i −0.376217 0.651627i
\(417\) 0 0
\(418\) 0.316499 0.548192i 0.0154805 0.0268130i
\(419\) −5.04297 −0.246365 −0.123183 0.992384i \(-0.539310\pi\)
−0.123183 + 0.992384i \(0.539310\pi\)
\(420\) 0 0
\(421\) 9.94055 0.484473 0.242236 0.970217i \(-0.422119\pi\)
0.242236 + 0.970217i \(0.422119\pi\)
\(422\) 5.65116 9.78810i 0.275094 0.476477i
\(423\) 0 0
\(424\) −5.83104 10.0997i −0.283180 0.490483i
\(425\) −5.97844 + 10.3550i −0.289997 + 0.502290i
\(426\) 0 0
\(427\) −4.61496 0.848456i −0.223334 0.0410597i
\(428\) 30.4216 1.47048
\(429\) 0 0
\(430\) 2.03233 + 3.52010i 0.0980077 + 0.169754i
\(431\) 6.84379 + 11.8538i 0.329654 + 0.570977i 0.982443 0.186562i \(-0.0597347\pi\)
−0.652789 + 0.757539i \(0.726401\pi\)
\(432\) 0 0
\(433\) −4.26360 −0.204895 −0.102448 0.994738i \(-0.532667\pi\)
−0.102448 + 0.994738i \(0.532667\pi\)
\(434\) 3.16032 + 8.88377i 0.151700 + 0.426435i
\(435\) 0 0
\(436\) 9.39620 16.2747i 0.449996 0.779417i
\(437\) 2.09231 + 3.62399i 0.100089 + 0.173359i
\(438\) 0 0
\(439\) 11.7016 20.2678i 0.558487 0.967328i −0.439136 0.898421i \(-0.644715\pi\)
0.997623 0.0689072i \(-0.0219513\pi\)
\(440\) 3.24535 0.154716
\(441\) 0 0
\(442\) −7.69139 −0.365842
\(443\) −7.35960 + 12.7472i −0.349665 + 0.605638i −0.986190 0.165618i \(-0.947038\pi\)
0.636525 + 0.771256i \(0.280371\pi\)
\(444\) 0 0
\(445\) 4.57115 + 7.91747i 0.216693 + 0.375324i
\(446\) 8.17699 14.1630i 0.387192 0.670636i
\(447\) 0 0
\(448\) −1.40023 3.93610i −0.0661548 0.185963i
\(449\) 34.8625 1.64526 0.822631 0.568575i \(-0.192505\pi\)
0.822631 + 0.568575i \(0.192505\pi\)
\(450\) 0 0
\(451\) −2.02920 3.51467i −0.0955512 0.165499i
\(452\) −1.46132 2.53108i −0.0687348 0.119052i
\(453\) 0 0
\(454\) 13.3037 0.624376
\(455\) 11.9091 + 2.18947i 0.558305 + 0.102644i
\(456\) 0 0
\(457\) 5.30068 9.18105i 0.247955 0.429471i −0.715003 0.699121i \(-0.753575\pi\)
0.962958 + 0.269650i \(0.0869080\pi\)
\(458\) 1.44033 + 2.49472i 0.0673020 + 0.116571i
\(459\) 0 0
\(460\) −4.92061 + 8.52275i −0.229425 + 0.397375i
\(461\) 6.84418 0.318765 0.159383 0.987217i \(-0.449050\pi\)
0.159383 + 0.987217i \(0.449050\pi\)
\(462\) 0 0
\(463\) −11.7299 −0.545136 −0.272568 0.962137i \(-0.587873\pi\)
−0.272568 + 0.962137i \(0.587873\pi\)
\(464\) −0.368663 + 0.638542i −0.0171147 + 0.0296436i
\(465\) 0 0
\(466\) 0.868908 + 1.50499i 0.0402514 + 0.0697175i
\(467\) −19.1443 + 33.1590i −0.885894 + 1.53441i −0.0412088 + 0.999151i \(0.513121\pi\)
−0.844685 + 0.535263i \(0.820212\pi\)
\(468\) 0 0
\(469\) 26.1964 30.7616i 1.20964 1.42044i
\(470\) 0.268032 0.0123634
\(471\) 0 0
\(472\) −12.1051 20.9666i −0.557181 0.965065i
\(473\) −2.31382 4.00765i −0.106390 0.184272i
\(474\) 0 0
\(475\) 2.83242 0.129961
\(476\) −21.3335 3.92213i −0.977818 0.179771i
\(477\) 0 0
\(478\) 0.760848 1.31783i 0.0348004 0.0602760i
\(479\) 6.31446 + 10.9370i 0.288515 + 0.499722i 0.973455 0.228876i \(-0.0735052\pi\)
−0.684941 + 0.728599i \(0.740172\pi\)
\(480\) 0 0
\(481\) −2.43917 + 4.22477i −0.111217 + 0.192633i
\(482\) −4.98803 −0.227199
\(483\) 0 0
\(484\) −1.69484 −0.0770384
\(485\) −2.90441 + 5.03058i −0.131882 + 0.228427i
\(486\) 0 0
\(487\) −17.8070 30.8426i −0.806911 1.39761i −0.914993 0.403470i \(-0.867804\pi\)
0.108082 0.994142i \(-0.465529\pi\)
\(488\) 1.80994 3.13491i 0.0819322 0.141911i
\(489\) 0 0
\(490\) −5.74636 2.18684i −0.259594 0.0987915i
\(491\) −7.59854 −0.342917 −0.171459 0.985191i \(-0.554848\pi\)
−0.171459 + 0.985191i \(0.554848\pi\)
\(492\) 0 0
\(493\) 0.788320 + 1.36541i 0.0355041 + 0.0614950i
\(494\) 0.910993 + 1.57789i 0.0409875 + 0.0709925i
\(495\) 0 0
\(496\) 14.5945 0.655315
\(497\) −8.12866 22.8499i −0.364620 1.02496i
\(498\) 0 0
\(499\) −0.803040 + 1.39091i −0.0359490 + 0.0622655i −0.883440 0.468544i \(-0.844779\pi\)
0.847491 + 0.530810i \(0.178112\pi\)
\(500\) 10.0677 + 17.4378i 0.450241 + 0.779840i
\(501\) 0 0
\(502\) −1.85923 + 3.22027i −0.0829813 + 0.143728i
\(503\) 38.6291 1.72239 0.861194 0.508277i \(-0.169717\pi\)
0.861194 + 0.508277i \(0.169717\pi\)
\(504\) 0 0
\(505\) 0.452167 0.0201212
\(506\) −1.00866 + 1.74706i −0.0448406 + 0.0776662i
\(507\) 0 0
\(508\) 17.2599 + 29.8950i 0.765782 + 1.32637i
\(509\) 15.8991 27.5381i 0.704716 1.22060i −0.262078 0.965047i \(-0.584408\pi\)
0.966794 0.255558i \(-0.0822590\pi\)
\(510\) 0 0
\(511\) −20.1264 + 23.6339i −0.890341 + 1.04550i
\(512\) 21.2960 0.941159
\(513\) 0 0
\(514\) 7.64793 + 13.2466i 0.337336 + 0.584282i
\(515\) −13.2715 22.9869i −0.584811 1.01292i
\(516\) 0 0
\(517\) −0.305156 −0.0134208
\(518\) 1.60602 1.88590i 0.0705644 0.0828618i
\(519\) 0 0
\(520\) −4.67061 + 8.08974i −0.204820 + 0.354759i
\(521\) 6.03416 + 10.4515i 0.264362 + 0.457888i 0.967396 0.253268i \(-0.0815055\pi\)
−0.703035 + 0.711156i \(0.748172\pi\)
\(522\) 0 0
\(523\) −0.142825 + 0.247380i −0.00624531 + 0.0108172i −0.869131 0.494582i \(-0.835321\pi\)
0.862886 + 0.505399i \(0.168655\pi\)
\(524\) 34.2055 1.49427
\(525\) 0 0
\(526\) −2.54297 −0.110879
\(527\) 15.6039 27.0268i 0.679718 1.17731i
\(528\) 0 0
\(529\) 4.83192 + 8.36913i 0.210083 + 0.363875i
\(530\) −2.50931 + 4.34625i −0.108997 + 0.188789i
\(531\) 0 0
\(532\) 1.72218 + 4.84110i 0.0746660 + 0.209888i
\(533\) 11.6815 0.505980
\(534\) 0 0
\(535\) −14.2701 24.7165i −0.616949 1.06859i
\(536\) 15.5851 + 26.9941i 0.673172 + 1.16597i
\(537\) 0 0
\(538\) −10.5567 −0.455132
\(539\) 6.54227 + 2.48973i 0.281795 + 0.107240i
\(540\) 0 0
\(541\) −1.40501 + 2.43355i −0.0604060 + 0.104626i −0.894647 0.446774i \(-0.852573\pi\)
0.834241 + 0.551400i \(0.185906\pi\)
\(542\) −4.24605 7.35438i −0.182384 0.315898i
\(543\) 0 0
\(544\) 12.8957 22.3359i 0.552897 0.957646i
\(545\) −17.6302 −0.755193
\(546\) 0 0
\(547\) −20.8781 −0.892681 −0.446341 0.894863i \(-0.647273\pi\)
−0.446341 + 0.894863i \(0.647273\pi\)
\(548\) 18.0189 31.2096i 0.769728 1.33321i
\(549\) 0 0
\(550\) 0.682729 + 1.18252i 0.0291116 + 0.0504229i
\(551\) 0.186742 0.323447i 0.00795549 0.0137793i
\(552\) 0 0
\(553\) 22.6653 + 4.16700i 0.963828 + 0.177199i
\(554\) −5.18695 −0.220372
\(555\) 0 0
\(556\) 4.47397 + 7.74915i 0.189739 + 0.328637i
\(557\) 9.13771 + 15.8270i 0.387177 + 0.670611i 0.992069 0.125697i \(-0.0401168\pi\)
−0.604891 + 0.796308i \(0.706783\pi\)
\(558\) 0 0
\(559\) 13.3199 0.563374
\(560\) −6.17009 + 7.24536i −0.260734 + 0.306172i
\(561\) 0 0
\(562\) 7.45167 12.9067i 0.314330 0.544435i
\(563\) 8.14944 + 14.1152i 0.343458 + 0.594886i 0.985072 0.172141i \(-0.0550684\pi\)
−0.641615 + 0.767027i \(0.721735\pi\)
\(564\) 0 0
\(565\) −1.37094 + 2.37455i −0.0576761 + 0.0998979i
\(566\) −13.0234 −0.547413
\(567\) 0 0
\(568\) 18.7098 0.785045
\(569\) 8.37221 14.5011i 0.350981 0.607918i −0.635440 0.772150i \(-0.719181\pi\)
0.986422 + 0.164232i \(0.0525147\pi\)
\(570\) 0 0
\(571\) −12.1461 21.0377i −0.508300 0.880401i −0.999954 0.00961042i \(-0.996941\pi\)
0.491654 0.870791i \(-0.336392\pi\)
\(572\) 2.43917 4.22477i 0.101987 0.176647i
\(573\) 0 0
\(574\) −5.83373 1.07252i −0.243495 0.0447663i
\(575\) −9.02677 −0.376442
\(576\) 0 0
\(577\) −11.1586 19.3273i −0.464540 0.804607i 0.534641 0.845080i \(-0.320447\pi\)
−0.999181 + 0.0404725i \(0.987114\pi\)
\(578\) −1.76751 3.06141i −0.0735185 0.127338i
\(579\) 0 0
\(580\) 0.878345 0.0364713
\(581\) −7.45640 20.9602i −0.309344 0.869575i
\(582\) 0 0
\(583\) 2.85686 4.94822i 0.118319 0.204934i
\(584\) −11.9739 20.7393i −0.495482 0.858200i
\(585\) 0 0
\(586\) −3.27303 + 5.66906i −0.135208 + 0.234187i
\(587\) 26.6944 1.10180 0.550898 0.834572i \(-0.314285\pi\)
0.550898 + 0.834572i \(0.314285\pi\)
\(588\) 0 0
\(589\) −7.39272 −0.304612
\(590\) −5.20925 + 9.02268i −0.214461 + 0.371458i
\(591\) 0 0
\(592\) −1.91702 3.32038i −0.0787892 0.136467i
\(593\) −11.4721 + 19.8702i −0.471101 + 0.815971i −0.999454 0.0330538i \(-0.989477\pi\)
0.528352 + 0.849025i \(0.322810\pi\)
\(594\) 0 0
\(595\) 6.82044 + 19.1725i 0.279611 + 0.785995i
\(596\) 2.31424 0.0947948
\(597\) 0 0
\(598\) −2.90328 5.02863i −0.118724 0.205636i
\(599\) −10.3521 17.9303i −0.422974 0.732613i 0.573255 0.819377i \(-0.305681\pi\)
−0.996229 + 0.0867645i \(0.972347\pi\)
\(600\) 0 0
\(601\) −11.2354 −0.458302 −0.229151 0.973391i \(-0.573595\pi\)
−0.229151 + 0.973391i \(0.573595\pi\)
\(602\) −6.65199 1.22296i −0.271115 0.0498441i
\(603\) 0 0
\(604\) 13.5155 23.4096i 0.549939 0.952523i
\(605\) 0.795012 + 1.37700i 0.0323219 + 0.0559831i
\(606\) 0 0
\(607\) 3.72700 6.45535i 0.151274 0.262015i −0.780422 0.625253i \(-0.784996\pi\)
0.931696 + 0.363239i \(0.118329\pi\)
\(608\) −6.10962 −0.247778
\(609\) 0 0
\(610\) −1.55777 −0.0630721
\(611\) 0.439172 0.760669i 0.0177670 0.0307734i
\(612\) 0 0
\(613\) −10.5940 18.3493i −0.427886 0.741121i 0.568799 0.822477i \(-0.307408\pi\)
−0.996685 + 0.0813559i \(0.974075\pi\)
\(614\) −5.41068 + 9.37158i −0.218357 + 0.378206i
\(615\) 0 0
\(616\) −3.50120 + 4.11136i −0.141067 + 0.165651i
\(617\) −39.7670 −1.60096 −0.800479 0.599361i \(-0.795422\pi\)
−0.800479 + 0.599361i \(0.795422\pi\)
\(618\) 0 0
\(619\) −8.64771 14.9783i −0.347581 0.602028i 0.638238 0.769839i \(-0.279663\pi\)
−0.985819 + 0.167811i \(0.946330\pi\)
\(620\) −8.69294 15.0566i −0.349117 0.604688i
\(621\) 0 0
\(622\) 11.8225 0.474038
\(623\) −14.9618 2.75070i −0.599430 0.110205i
\(624\) 0 0
\(625\) 3.26550 5.65601i 0.130620 0.226240i
\(626\) 3.68121 + 6.37605i 0.147131 + 0.254838i
\(627\) 0 0
\(628\) −7.11545 + 12.3243i −0.283938 + 0.491794i
\(629\) −8.19843 −0.326893
\(630\) 0 0
\(631\) −22.8639 −0.910198 −0.455099 0.890441i \(-0.650396\pi\)
−0.455099 + 0.890441i \(0.650396\pi\)
\(632\) −8.88912 + 15.3964i −0.353590 + 0.612436i
\(633\) 0 0
\(634\) −1.95982 3.39450i −0.0778342 0.134813i
\(635\) 16.1924 28.0461i 0.642576 1.11297i
\(636\) 0 0
\(637\) −15.6216 + 12.7249i −0.618952 + 0.504178i
\(638\) 0.180050 0.00712824
\(639\) 0 0
\(640\) −9.17114 15.8849i −0.362521 0.627905i
\(641\) −3.36284 5.82462i −0.132824 0.230058i 0.791940 0.610599i \(-0.209071\pi\)
−0.924764 + 0.380541i \(0.875738\pi\)
\(642\) 0 0
\(643\) 8.16118 0.321845 0.160923 0.986967i \(-0.448553\pi\)
0.160923 + 0.986967i \(0.448553\pi\)
\(644\) −5.48849 15.4283i −0.216277 0.607961i
\(645\) 0 0
\(646\) −1.53099 + 2.65176i −0.0602361 + 0.104332i
\(647\) −9.83192 17.0294i −0.386533 0.669494i 0.605448 0.795885i \(-0.292994\pi\)
−0.991981 + 0.126391i \(0.959661\pi\)
\(648\) 0 0
\(649\) 5.93075 10.2724i 0.232802 0.403226i
\(650\) −3.93026 −0.154157
\(651\) 0 0
\(652\) 29.3429 1.14916
\(653\) −11.1517 + 19.3154i −0.436401 + 0.755869i −0.997409 0.0719417i \(-0.977080\pi\)
0.561008 + 0.827811i \(0.310414\pi\)
\(654\) 0 0
\(655\) −16.0450 27.7908i −0.626930 1.08588i
\(656\) −4.59042 + 7.95083i −0.179226 + 0.310428i
\(657\) 0 0
\(658\) −0.289163 + 0.339556i −0.0112728 + 0.0132373i
\(659\) −19.0497 −0.742072 −0.371036 0.928619i \(-0.620997\pi\)
−0.371036 + 0.928619i \(0.620997\pi\)
\(660\) 0 0
\(661\) −12.1612 21.0638i −0.473015 0.819286i 0.526508 0.850170i \(-0.323501\pi\)
−0.999523 + 0.0308845i \(0.990168\pi\)
\(662\) −5.72710 9.91963i −0.222590 0.385537i
\(663\) 0 0
\(664\) 17.1624 0.666032
\(665\) 3.12539 3.67006i 0.121198 0.142319i
\(666\) 0 0
\(667\) −0.595137 + 1.03081i −0.0230438 + 0.0399130i
\(668\) −15.6726 27.1458i −0.606393 1.05030i
\(669\) 0 0
\(670\) 6.70681 11.6165i 0.259107 0.448786i
\(671\) 1.77353 0.0684662
\(672\) 0 0
\(673\) 42.6054 1.64232 0.821159 0.570699i \(-0.193328\pi\)
0.821159 + 0.570699i \(0.193328\pi\)
\(674\) 1.46597 2.53914i 0.0564671 0.0978039i
\(675\) 0 0
\(676\) −3.99571 6.92076i −0.153681 0.266183i
\(677\) −6.98302 + 12.0949i −0.268379 + 0.464846i −0.968443 0.249233i \(-0.919821\pi\)
0.700064 + 0.714080i \(0.253155\pi\)
\(678\) 0 0
\(679\) −3.23960 9.10662i −0.124324 0.349480i
\(680\) −15.6986 −0.602016
\(681\) 0 0
\(682\) −1.78194 3.08642i −0.0682342 0.118185i
\(683\) −2.64173 4.57561i −0.101083 0.175081i 0.811048 0.584979i \(-0.198897\pi\)
−0.912131 + 0.409899i \(0.865564\pi\)
\(684\) 0 0
\(685\) −33.8090 −1.29177
\(686\) 8.96978 4.92052i 0.342468 0.187866i
\(687\) 0 0
\(688\) −5.23428 + 9.06605i −0.199555 + 0.345640i
\(689\) 8.22302 + 14.2427i 0.313272 + 0.542603i
\(690\) 0 0
\(691\) −14.0658 + 24.3627i −0.535088 + 0.926799i 0.464071 + 0.885798i \(0.346388\pi\)
−0.999159 + 0.0410014i \(0.986945\pi\)
\(692\) 20.7924 0.790408
\(693\) 0 0
\(694\) −9.28220 −0.352347
\(695\) 4.19728 7.26990i 0.159212 0.275763i
\(696\) 0 0
\(697\) 9.81579 + 17.0014i 0.371800 + 0.643976i
\(698\) 0.240425 0.416428i 0.00910022 0.0157620i
\(699\) 0 0
\(700\) −10.9013 2.00419i −0.412030 0.0757512i
\(701\) −29.9421 −1.13090 −0.565449 0.824783i \(-0.691297\pi\)
−0.565449 + 0.824783i \(0.691297\pi\)
\(702\) 0 0
\(703\) 0.971049 + 1.68191i 0.0366238 + 0.0634343i
\(704\) 0.789519 + 1.36749i 0.0297561 + 0.0515391i
\(705\) 0 0
\(706\) 0.518245 0.0195044
\(707\) −0.487814 + 0.572826i −0.0183461 + 0.0215433i
\(708\) 0 0
\(709\) 8.35341 14.4685i 0.313719 0.543377i −0.665446 0.746446i \(-0.731758\pi\)
0.979164 + 0.203070i \(0.0650917\pi\)
\(710\) −4.02575 6.97280i −0.151084 0.261684i
\(711\) 0 0
\(712\) 5.86785 10.1634i 0.219907 0.380890i
\(713\) 23.5602 0.882335
\(714\) 0 0
\(715\) −4.57664 −0.171157
\(716\) −11.7043 + 20.2724i −0.437409 + 0.757615i
\(717\) 0 0
\(718\) −7.46027 12.9216i −0.278415 0.482228i
\(719\) 11.6748 20.2213i 0.435395 0.754127i −0.561933 0.827183i \(-0.689942\pi\)
0.997328 + 0.0730563i \(0.0232753\pi\)
\(720\) 0 0
\(721\) 43.4386 + 7.98615i 1.61774 + 0.297420i
\(722\) −9.77044 −0.363618
\(723\) 0 0
\(724\) −15.9050 27.5482i −0.591104 1.02382i
\(725\) 0.402827 + 0.697717i 0.0149606 + 0.0259125i
\(726\) 0 0
\(727\) 14.4262 0.535037 0.267519 0.963553i \(-0.413796\pi\)
0.267519 + 0.963553i \(0.413796\pi\)
\(728\) −5.20964 14.6445i −0.193082 0.542760i
\(729\) 0 0
\(730\) −5.15279 + 8.92489i −0.190713 + 0.330325i
\(731\) 11.1926 + 19.3861i 0.413973 + 0.717022i
\(732\) 0 0
\(733\) −13.4733 + 23.3365i −0.497649 + 0.861953i −0.999996 0.00271253i \(-0.999137\pi\)
0.502347 + 0.864666i \(0.332470\pi\)
\(734\) −15.6945 −0.579294
\(735\) 0 0
\(736\) 19.4710 0.717710
\(737\) −7.63574 + 13.2255i −0.281266 + 0.487167i
\(738\) 0 0
\(739\) 22.2858 + 38.6001i 0.819795 + 1.41993i 0.905833 + 0.423634i \(0.139246\pi\)
−0.0860388 + 0.996292i \(0.527421\pi\)
\(740\) −2.28367 + 3.95543i −0.0839494 + 0.145405i
\(741\) 0 0
\(742\) −2.79890 7.86780i −0.102751 0.288836i
\(743\) −44.7041 −1.64004 −0.820018 0.572338i \(-0.806037\pi\)
−0.820018 + 0.572338i \(0.806037\pi\)
\(744\) 0 0
\(745\) −1.08556 1.88024i −0.0397717 0.0688866i
\(746\) 2.69210 + 4.66285i 0.0985648 + 0.170719i
\(747\) 0 0
\(748\) 8.19843 0.299764
\(749\) 46.7071 + 8.58705i 1.70664 + 0.313764i
\(750\) 0 0
\(751\) −22.2962 + 38.6182i −0.813600 + 1.40920i 0.0967287 + 0.995311i \(0.469162\pi\)
−0.910329 + 0.413886i \(0.864171\pi\)
\(752\) 0.345160 + 0.597834i 0.0125867 + 0.0218008i
\(753\) 0 0
\(754\) −0.259123 + 0.448814i −0.00943669 + 0.0163448i
\(755\) −25.3593 −0.922920
\(756\) 0 0
\(757\) 5.85842 0.212928 0.106464 0.994317i \(-0.466047\pi\)
0.106464 + 0.994317i \(0.466047\pi\)
\(758\) 9.14332 15.8367i 0.332100 0.575214i
\(759\) 0 0
\(760\) 1.85940 + 3.22057i 0.0674475 + 0.116822i
\(761\) −19.2017 + 33.2583i −0.696061 + 1.20561i 0.273760 + 0.961798i \(0.411733\pi\)
−0.969822 + 0.243816i \(0.921601\pi\)
\(762\) 0 0
\(763\) 19.0201 22.3347i 0.688573 0.808572i
\(764\) 13.7567 0.497700
\(765\) 0 0
\(766\) −2.95218 5.11332i −0.106666 0.184752i
\(767\) 17.0708 + 29.5674i 0.616389 + 1.06762i
\(768\) 0 0
\(769\) −1.44505 −0.0521099 −0.0260549 0.999661i \(-0.508294\pi\)
−0.0260549 + 0.999661i \(0.508294\pi\)
\(770\) 2.28558 + 0.420201i 0.0823664 + 0.0151430i
\(771\) 0 0
\(772\) 1.00908 1.74778i 0.0363176 0.0629039i
\(773\) −1.05839 1.83319i −0.0380678 0.0659354i 0.846364 0.532605i \(-0.178787\pi\)
−0.884432 + 0.466670i \(0.845454\pi\)
\(774\) 0 0
\(775\) 7.97352 13.8105i 0.286417 0.496089i
\(776\) 7.45660 0.267676
\(777\) 0 0
\(778\) 21.3166 0.764236
\(779\) 2.32523 4.02741i 0.0833099 0.144297i
\(780\) 0 0
\(781\) 4.58333 + 7.93856i 0.164005 + 0.284064i
\(782\) 4.87919 8.45100i 0.174479