Newspace parameters
| Level: | \( N \) | \(=\) | \( 693 = 3^{2} \cdot 7 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 693.cx (of order \(30\), degree \(8\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.53363286007\) |
| Analytic rank: | \(0\) |
| Dimension: | \(736\) |
| Relative dimension: | \(92\) over \(\Q(\zeta_{30})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2.1 | −2.65461 | + | 0.564255i | −1.41923 | + | 0.992861i | 4.90149 | − | 2.18228i | −3.64002 | + | 1.18271i | 3.20729 | − | 3.43647i | 0.155448 | + | 2.64118i | −7.38897 | + | 5.36840i | 1.02845 | − | 2.81821i | 8.99548 | − | 5.19354i |
| 2.2 | −2.63042 | + | 0.559114i | −0.0288739 | − | 1.73181i | 4.77944 | − | 2.12794i | −1.05839 | + | 0.343891i | 1.04423 | + | 4.53925i | 0.683395 | − | 2.55597i | −7.03098 | + | 5.10831i | −2.99833 | + | 0.100008i | 2.59173 | − | 1.49634i |
| 2.3 | −2.60676 | + | 0.554083i | −1.37604 | + | 1.05192i | 4.66108 | − | 2.07525i | 3.87634 | − | 1.25950i | 3.00414 | − | 3.50453i | 2.62450 | − | 0.334677i | −6.68839 | + | 4.85940i | 0.786945 | − | 2.89495i | −9.40681 | + | 5.43103i |
| 2.4 | −2.59523 | + | 0.551633i | 1.24676 | − | 1.20233i | 4.60382 | − | 2.04975i | 1.53679 | − | 0.499335i | −2.57238 | + | 3.80807i | 1.53410 | + | 2.15558i | −6.52426 | + | 4.74015i | 0.108814 | − | 2.99803i | −3.71288 | + | 2.14363i |
| 2.5 | −2.59388 | + | 0.551347i | 1.63989 | + | 0.557469i | 4.59715 | − | 2.04678i | −1.07822 | + | 0.350336i | −4.56103 | − | 0.541863i | −2.63582 | − | 0.229008i | −6.50522 | + | 4.72632i | 2.37846 | + | 1.82837i | 2.60363 | − | 1.50320i |
| 2.6 | −2.57563 | + | 0.547468i | −1.32491 | − | 1.11562i | 4.50708 | − | 2.00668i | 3.29153 | − | 1.06948i | 4.02325 | + | 2.14808i | −2.64387 | − | 0.0997827i | −6.24942 | + | 4.54047i | 0.510784 | + | 2.95620i | −7.89228 | + | 4.55661i |
| 2.7 | −2.53170 | + | 0.538130i | 1.12243 | + | 1.31914i | 4.29284 | − | 1.91130i | −1.59371 | + | 0.517827i | −3.55154 | − | 2.73567i | 2.64560 | − | 0.0281597i | −5.65177 | + | 4.10625i | −0.480284 | + | 2.96130i | 3.75613 | − | 2.16860i |
| 2.8 | −2.44909 | + | 0.520570i | −0.340448 | + | 1.69826i | 3.89996 | − | 1.73638i | −0.462934 | + | 0.150416i | −0.0502762 | − | 4.33643i | −0.906398 | − | 2.48565i | −4.59622 | + | 3.33935i | −2.76819 | − | 1.15634i | 1.05547 | − | 0.609373i |
| 2.9 | −2.29805 | + | 0.488466i | 1.73145 | − | 0.0456392i | 3.21535 | − | 1.43156i | 3.27894 | − | 1.06539i | −3.95666 | + | 0.950635i | −1.30310 | − | 2.30259i | −2.88836 | + | 2.09852i | 2.99583 | − | 0.158044i | −7.01477 | + | 4.04998i |
| 2.10 | −2.28104 | + | 0.484851i | −1.35352 | − | 1.08073i | 3.14098 | − | 1.39846i | −0.152939 | + | 0.0496928i | 3.61144 | + | 1.80893i | 2.39886 | + | 1.11600i | −2.71342 | + | 1.97141i | 0.664060 | + | 2.92558i | 0.324766 | − | 0.187504i |
| 2.11 | −2.26655 | + | 0.481770i | −0.491566 | − | 1.66083i | 3.07806 | − | 1.37044i | −3.34649 | + | 1.08734i | 1.91430 | + | 3.52754i | −2.17298 | + | 1.50936i | −2.56705 | + | 1.86507i | −2.51673 | + | 1.63282i | 7.06115 | − | 4.07676i |
| 2.12 | −2.23339 | + | 0.474722i | 0.700662 | − | 1.58401i | 2.93558 | − | 1.30700i | 1.27988 | − | 0.415858i | −0.812889 | + | 3.87032i | −1.35009 | + | 2.27536i | −2.24139 | + | 1.62846i | −2.01815 | − | 2.21970i | −2.66105 | + | 1.53636i |
| 2.13 | −2.19012 | + | 0.465525i | 1.52315 | − | 0.824638i | 2.75284 | − | 1.22564i | −3.48709 | + | 1.13302i | −2.95199 | + | 2.51512i | 1.92548 | − | 1.81453i | −1.83563 | + | 1.33366i | 1.63995 | − | 2.51209i | 7.10971 | − | 4.10479i |
| 2.14 | −2.09851 | + | 0.446051i | −1.72538 | + | 0.151919i | 2.37768 | − | 1.05861i | 0.837300 | − | 0.272055i | 3.55295 | − | 1.08841i | −1.57385 | + | 2.12673i | −1.04607 | + | 0.760013i | 2.95384 | − | 0.524233i | −1.63573 | + | 0.944389i |
| 2.15 | −2.05012 | + | 0.435766i | −1.61759 | − | 0.619190i | 2.18601 | − | 0.973273i | −1.55645 | + | 0.505721i | 3.58608 | + | 0.564521i | 2.44834 | − | 1.00282i | −0.666184 | + | 0.484011i | 2.23321 | + | 2.00319i | 2.97053 | − | 1.71504i |
| 2.16 | −2.03507 | + | 0.432568i | 0.717736 | + | 1.57634i | 2.12732 | − | 0.947144i | 2.43513 | − | 0.791221i | −2.14252 | − | 2.89750i | 1.17581 | − | 2.37012i | −0.553165 | + | 0.401898i | −1.96971 | + | 2.26279i | −4.61341 | + | 2.66355i |
| 2.17 | −1.94654 | + | 0.413750i | −1.58088 | + | 0.707691i | 1.79074 | − | 0.797290i | 0.404910 | − | 0.131563i | 2.78444 | − | 2.03164i | −1.86715 | − | 1.87450i | 0.0640565 | − | 0.0465398i | 1.99835 | − | 2.23755i | −0.733740 | + | 0.423625i |
| 2.18 | −1.81463 | + | 0.385712i | 1.28496 | + | 1.16141i | 1.31703 | − | 0.586381i | 3.55974 | − | 1.15663i | −2.77970 | − | 1.61192i | −1.01644 | + | 2.44271i | 0.837976 | − | 0.608825i | 0.302237 | + | 2.98474i | −6.01351 | + | 3.47190i |
| 2.19 | −1.80409 | + | 0.383472i | 0.327129 | + | 1.70088i | 1.28061 | − | 0.570163i | −1.83301 | + | 0.595581i | −1.24241 | − | 2.94310i | 1.60778 | + | 2.10120i | 0.892605 | − | 0.648516i | −2.78597 | + | 1.11281i | 3.07853 | − | 1.77739i |
| 2.20 | −1.79760 | + | 0.382092i | 1.73015 | + | 0.0811017i | 1.25828 | − | 0.560223i | −0.879960 | + | 0.285916i | −3.14111 | + | 0.515288i | −0.726845 | + | 2.54395i | 0.925726 | − | 0.672580i | 2.98685 | + | 0.280637i | 1.47257 | − | 0.850188i |
| See next 80 embeddings (of 736 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.d | odd | 10 | 1 | inner |
| 63.n | odd | 6 | 1 | inner |
| 693.cx | even | 30 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 693.2.cx.a | yes | 736 |
| 7.c | even | 3 | 1 | 693.2.cb.a | ✓ | 736 | |
| 9.d | odd | 6 | 1 | 693.2.cb.a | ✓ | 736 | |
| 11.d | odd | 10 | 1 | inner | 693.2.cx.a | yes | 736 |
| 63.n | odd | 6 | 1 | inner | 693.2.cx.a | yes | 736 |
| 77.o | odd | 30 | 1 | 693.2.cb.a | ✓ | 736 | |
| 99.p | even | 30 | 1 | 693.2.cb.a | ✓ | 736 | |
| 693.cx | even | 30 | 1 | inner | 693.2.cx.a | yes | 736 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 693.2.cb.a | ✓ | 736 | 7.c | even | 3 | 1 | |
| 693.2.cb.a | ✓ | 736 | 9.d | odd | 6 | 1 | |
| 693.2.cb.a | ✓ | 736 | 77.o | odd | 30 | 1 | |
| 693.2.cb.a | ✓ | 736 | 99.p | even | 30 | 1 | |
| 693.2.cx.a | yes | 736 | 1.a | even | 1 | 1 | trivial |
| 693.2.cx.a | yes | 736 | 11.d | odd | 10 | 1 | inner |
| 693.2.cx.a | yes | 736 | 63.n | odd | 6 | 1 | inner |
| 693.2.cx.a | yes | 736 | 693.cx | even | 30 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(693, [\chi])\).