Properties

Label 693.2.a.l.1.1
Level $693$
Weight $2$
Character 693.1
Self dual yes
Analytic conductor $5.534$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.53363286007\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.11491\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.47283 q^{2} +4.11491 q^{4} +2.58774 q^{5} -1.00000 q^{7} -5.22982 q^{8} +O(q^{10})\) \(q-2.47283 q^{2} +4.11491 q^{4} +2.58774 q^{5} -1.00000 q^{7} -5.22982 q^{8} -6.39905 q^{10} +1.00000 q^{11} -5.87189 q^{13} +2.47283 q^{14} +4.70265 q^{16} -7.51396 q^{17} -2.35793 q^{19} +10.6483 q^{20} -2.47283 q^{22} -6.94567 q^{23} +1.69641 q^{25} +14.5202 q^{26} -4.11491 q^{28} +5.87189 q^{29} -3.66152 q^{31} -1.16924 q^{32} +18.5808 q^{34} -2.58774 q^{35} +3.30359 q^{37} +5.83076 q^{38} -13.5334 q^{40} -5.28415 q^{41} +7.40530 q^{43} +4.11491 q^{44} +17.1755 q^{46} -7.53341 q^{47} +1.00000 q^{49} -4.19493 q^{50} -24.1623 q^{52} +4.22982 q^{53} +2.58774 q^{55} +5.22982 q^{56} -14.5202 q^{58} +0.926221 q^{59} -2.00000 q^{61} +9.05433 q^{62} -6.51396 q^{64} -15.1949 q^{65} -10.1017 q^{67} -30.9193 q^{68} +6.39905 q^{70} -4.45963 q^{71} -2.12811 q^{73} -8.16924 q^{74} -9.70265 q^{76} -1.00000 q^{77} -4.45963 q^{79} +12.1692 q^{80} +13.0668 q^{82} +10.6894 q^{83} -19.4442 q^{85} -18.3121 q^{86} -5.22982 q^{88} -15.8913 q^{89} +5.87189 q^{91} -28.5808 q^{92} +18.6289 q^{94} -6.10170 q^{95} +10.1212 q^{97} -2.47283 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} + 6 q^{4} - 4 q^{5} - 3 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 2 q^{2} + 6 q^{4} - 4 q^{5} - 3 q^{7} - 3 q^{8} - 11 q^{10} + 3 q^{11} - 4 q^{13} + 2 q^{14} - 4 q^{16} - 8 q^{17} - 8 q^{19} + 3 q^{20} - 2 q^{22} - 10 q^{23} + 15 q^{25} + q^{26} - 6 q^{28} + 4 q^{29} - 2 q^{31} - 8 q^{32} - 4 q^{34} + 4 q^{35} + 13 q^{38} - 18 q^{40} - 14 q^{41} - 14 q^{43} + 6 q^{44} + 28 q^{46} + 3 q^{49} + 19 q^{50} - 29 q^{52} - 4 q^{55} + 3 q^{56} - q^{58} - 6 q^{61} + 38 q^{62} - 5 q^{64} - 14 q^{65} - 4 q^{67} - 42 q^{68} + 11 q^{70} + 12 q^{71} - 20 q^{73} - 29 q^{74} - 11 q^{76} - 3 q^{77} + 12 q^{79} + 41 q^{80} - 6 q^{82} - 6 q^{83} - 6 q^{85} - 24 q^{86} - 3 q^{88} - 26 q^{89} + 4 q^{91} - 26 q^{92} + 35 q^{94} + 8 q^{95} - 4 q^{97} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.47283 −1.74856 −0.874279 0.485424i \(-0.838665\pi\)
−0.874279 + 0.485424i \(0.838665\pi\)
\(3\) 0 0
\(4\) 4.11491 2.05745
\(5\) 2.58774 1.15727 0.578637 0.815586i \(-0.303585\pi\)
0.578637 + 0.815586i \(0.303585\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −5.22982 −1.84902
\(9\) 0 0
\(10\) −6.39905 −2.02356
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −5.87189 −1.62857 −0.814284 0.580466i \(-0.802870\pi\)
−0.814284 + 0.580466i \(0.802870\pi\)
\(14\) 2.47283 0.660893
\(15\) 0 0
\(16\) 4.70265 1.17566
\(17\) −7.51396 −1.82240 −0.911202 0.411960i \(-0.864844\pi\)
−0.911202 + 0.411960i \(0.864844\pi\)
\(18\) 0 0
\(19\) −2.35793 −0.540945 −0.270473 0.962728i \(-0.587180\pi\)
−0.270473 + 0.962728i \(0.587180\pi\)
\(20\) 10.6483 2.38104
\(21\) 0 0
\(22\) −2.47283 −0.527210
\(23\) −6.94567 −1.44827 −0.724136 0.689657i \(-0.757761\pi\)
−0.724136 + 0.689657i \(0.757761\pi\)
\(24\) 0 0
\(25\) 1.69641 0.339281
\(26\) 14.5202 2.84765
\(27\) 0 0
\(28\) −4.11491 −0.777644
\(29\) 5.87189 1.09038 0.545191 0.838312i \(-0.316457\pi\)
0.545191 + 0.838312i \(0.316457\pi\)
\(30\) 0 0
\(31\) −3.66152 −0.657629 −0.328814 0.944395i \(-0.606649\pi\)
−0.328814 + 0.944395i \(0.606649\pi\)
\(32\) −1.16924 −0.206694
\(33\) 0 0
\(34\) 18.5808 3.18658
\(35\) −2.58774 −0.437408
\(36\) 0 0
\(37\) 3.30359 0.543108 0.271554 0.962423i \(-0.412463\pi\)
0.271554 + 0.962423i \(0.412463\pi\)
\(38\) 5.83076 0.945874
\(39\) 0 0
\(40\) −13.5334 −2.13982
\(41\) −5.28415 −0.825245 −0.412623 0.910902i \(-0.635387\pi\)
−0.412623 + 0.910902i \(0.635387\pi\)
\(42\) 0 0
\(43\) 7.40530 1.12930 0.564649 0.825331i \(-0.309012\pi\)
0.564649 + 0.825331i \(0.309012\pi\)
\(44\) 4.11491 0.620346
\(45\) 0 0
\(46\) 17.1755 2.53239
\(47\) −7.53341 −1.09886 −0.549430 0.835540i \(-0.685155\pi\)
−0.549430 + 0.835540i \(0.685155\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −4.19493 −0.593253
\(51\) 0 0
\(52\) −24.1623 −3.35071
\(53\) 4.22982 0.581010 0.290505 0.956874i \(-0.406177\pi\)
0.290505 + 0.956874i \(0.406177\pi\)
\(54\) 0 0
\(55\) 2.58774 0.348931
\(56\) 5.22982 0.698863
\(57\) 0 0
\(58\) −14.5202 −1.90660
\(59\) 0.926221 0.120584 0.0602918 0.998181i \(-0.480797\pi\)
0.0602918 + 0.998181i \(0.480797\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 9.05433 1.14990
\(63\) 0 0
\(64\) −6.51396 −0.814245
\(65\) −15.1949 −1.88470
\(66\) 0 0
\(67\) −10.1017 −1.23412 −0.617060 0.786916i \(-0.711676\pi\)
−0.617060 + 0.786916i \(0.711676\pi\)
\(68\) −30.9193 −3.74951
\(69\) 0 0
\(70\) 6.39905 0.764833
\(71\) −4.45963 −0.529261 −0.264630 0.964350i \(-0.585250\pi\)
−0.264630 + 0.964350i \(0.585250\pi\)
\(72\) 0 0
\(73\) −2.12811 −0.249077 −0.124538 0.992215i \(-0.539745\pi\)
−0.124538 + 0.992215i \(0.539745\pi\)
\(74\) −8.16924 −0.949655
\(75\) 0 0
\(76\) −9.70265 −1.11297
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) −4.45963 −0.501748 −0.250874 0.968020i \(-0.580718\pi\)
−0.250874 + 0.968020i \(0.580718\pi\)
\(80\) 12.1692 1.36056
\(81\) 0 0
\(82\) 13.0668 1.44299
\(83\) 10.6894 1.17332 0.586660 0.809834i \(-0.300443\pi\)
0.586660 + 0.809834i \(0.300443\pi\)
\(84\) 0 0
\(85\) −19.4442 −2.10902
\(86\) −18.3121 −1.97464
\(87\) 0 0
\(88\) −5.22982 −0.557500
\(89\) −15.8913 −1.68448 −0.842239 0.539104i \(-0.818763\pi\)
−0.842239 + 0.539104i \(0.818763\pi\)
\(90\) 0 0
\(91\) 5.87189 0.615541
\(92\) −28.5808 −2.97975
\(93\) 0 0
\(94\) 18.6289 1.92142
\(95\) −6.10170 −0.626022
\(96\) 0 0
\(97\) 10.1212 1.02765 0.513824 0.857896i \(-0.328229\pi\)
0.513824 + 0.857896i \(0.328229\pi\)
\(98\) −2.47283 −0.249794
\(99\) 0 0
\(100\) 6.98055 0.698055
\(101\) 13.4053 1.33388 0.666939 0.745113i \(-0.267604\pi\)
0.666939 + 0.745113i \(0.267604\pi\)
\(102\) 0 0
\(103\) −4.71585 −0.464667 −0.232333 0.972636i \(-0.574636\pi\)
−0.232333 + 0.972636i \(0.574636\pi\)
\(104\) 30.7089 3.01125
\(105\) 0 0
\(106\) −10.4596 −1.01593
\(107\) −7.07378 −0.683848 −0.341924 0.939728i \(-0.611079\pi\)
−0.341924 + 0.939728i \(0.611079\pi\)
\(108\) 0 0
\(109\) 18.8370 1.80426 0.902129 0.431467i \(-0.142004\pi\)
0.902129 + 0.431467i \(0.142004\pi\)
\(110\) −6.39905 −0.610126
\(111\) 0 0
\(112\) −4.70265 −0.444359
\(113\) 9.02792 0.849276 0.424638 0.905363i \(-0.360401\pi\)
0.424638 + 0.905363i \(0.360401\pi\)
\(114\) 0 0
\(115\) −17.9736 −1.67605
\(116\) 24.1623 2.24341
\(117\) 0 0
\(118\) −2.29039 −0.210848
\(119\) 7.51396 0.688804
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 4.94567 0.447760
\(123\) 0 0
\(124\) −15.0668 −1.35304
\(125\) −8.54885 −0.764632
\(126\) 0 0
\(127\) −10.2298 −0.907749 −0.453875 0.891066i \(-0.649959\pi\)
−0.453875 + 0.891066i \(0.649959\pi\)
\(128\) 18.4464 1.63045
\(129\) 0 0
\(130\) 37.5745 3.29550
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 2.35793 0.204458
\(134\) 24.9798 2.15793
\(135\) 0 0
\(136\) 39.2966 3.36966
\(137\) 10.8370 0.925868 0.462934 0.886393i \(-0.346797\pi\)
0.462934 + 0.886393i \(0.346797\pi\)
\(138\) 0 0
\(139\) 0.459630 0.0389853 0.0194927 0.999810i \(-0.493795\pi\)
0.0194927 + 0.999810i \(0.493795\pi\)
\(140\) −10.6483 −0.899947
\(141\) 0 0
\(142\) 11.0279 0.925443
\(143\) −5.87189 −0.491032
\(144\) 0 0
\(145\) 15.1949 1.26187
\(146\) 5.26247 0.435525
\(147\) 0 0
\(148\) 13.5940 1.11742
\(149\) −11.0474 −0.905036 −0.452518 0.891755i \(-0.649474\pi\)
−0.452518 + 0.891755i \(0.649474\pi\)
\(150\) 0 0
\(151\) −16.1212 −1.31192 −0.655960 0.754795i \(-0.727736\pi\)
−0.655960 + 0.754795i \(0.727736\pi\)
\(152\) 12.3315 1.00022
\(153\) 0 0
\(154\) 2.47283 0.199267
\(155\) −9.47507 −0.761056
\(156\) 0 0
\(157\) 13.0668 1.04285 0.521423 0.853298i \(-0.325401\pi\)
0.521423 + 0.853298i \(0.325401\pi\)
\(158\) 11.0279 0.877335
\(159\) 0 0
\(160\) −3.02569 −0.239202
\(161\) 6.94567 0.547395
\(162\) 0 0
\(163\) −10.1017 −0.791227 −0.395613 0.918417i \(-0.629468\pi\)
−0.395613 + 0.918417i \(0.629468\pi\)
\(164\) −21.7438 −1.69790
\(165\) 0 0
\(166\) −26.4332 −2.05162
\(167\) 10.4860 0.811434 0.405717 0.913999i \(-0.367022\pi\)
0.405717 + 0.913999i \(0.367022\pi\)
\(168\) 0 0
\(169\) 21.4791 1.65224
\(170\) 48.0823 3.68774
\(171\) 0 0
\(172\) 30.4721 2.32348
\(173\) −14.4985 −1.10230 −0.551151 0.834405i \(-0.685811\pi\)
−0.551151 + 0.834405i \(0.685811\pi\)
\(174\) 0 0
\(175\) −1.69641 −0.128236
\(176\) 4.70265 0.354476
\(177\) 0 0
\(178\) 39.2966 2.94541
\(179\) −14.3510 −1.07264 −0.536321 0.844014i \(-0.680186\pi\)
−0.536321 + 0.844014i \(0.680186\pi\)
\(180\) 0 0
\(181\) 9.66152 0.718135 0.359068 0.933312i \(-0.383095\pi\)
0.359068 + 0.933312i \(0.383095\pi\)
\(182\) −14.5202 −1.07631
\(183\) 0 0
\(184\) 36.3246 2.67788
\(185\) 8.54885 0.628524
\(186\) 0 0
\(187\) −7.51396 −0.549475
\(188\) −30.9993 −2.26086
\(189\) 0 0
\(190\) 15.0885 1.09463
\(191\) 9.55286 0.691220 0.345610 0.938378i \(-0.387672\pi\)
0.345610 + 0.938378i \(0.387672\pi\)
\(192\) 0 0
\(193\) −22.1212 −1.59232 −0.796158 0.605089i \(-0.793137\pi\)
−0.796158 + 0.605089i \(0.793137\pi\)
\(194\) −25.0279 −1.79690
\(195\) 0 0
\(196\) 4.11491 0.293922
\(197\) 26.2423 1.86969 0.934843 0.355061i \(-0.115540\pi\)
0.934843 + 0.355061i \(0.115540\pi\)
\(198\) 0 0
\(199\) 1.05433 0.0747396 0.0373698 0.999302i \(-0.488102\pi\)
0.0373698 + 0.999302i \(0.488102\pi\)
\(200\) −8.87189 −0.627337
\(201\) 0 0
\(202\) −33.1491 −2.33236
\(203\) −5.87189 −0.412126
\(204\) 0 0
\(205\) −13.6740 −0.955034
\(206\) 11.6615 0.812497
\(207\) 0 0
\(208\) −27.6134 −1.91465
\(209\) −2.35793 −0.163101
\(210\) 0 0
\(211\) −8.71585 −0.600024 −0.300012 0.953935i \(-0.596991\pi\)
−0.300012 + 0.953935i \(0.596991\pi\)
\(212\) 17.4053 1.19540
\(213\) 0 0
\(214\) 17.4923 1.19575
\(215\) 19.1630 1.30691
\(216\) 0 0
\(217\) 3.66152 0.248560
\(218\) −46.5808 −3.15485
\(219\) 0 0
\(220\) 10.6483 0.717909
\(221\) 44.1212 2.96791
\(222\) 0 0
\(223\) −23.7438 −1.59000 −0.795000 0.606609i \(-0.792529\pi\)
−0.795000 + 0.606609i \(0.792529\pi\)
\(224\) 1.16924 0.0781231
\(225\) 0 0
\(226\) −22.3246 −1.48501
\(227\) 13.1755 0.874488 0.437244 0.899343i \(-0.355955\pi\)
0.437244 + 0.899343i \(0.355955\pi\)
\(228\) 0 0
\(229\) 13.3664 0.883277 0.441638 0.897193i \(-0.354397\pi\)
0.441638 + 0.897193i \(0.354397\pi\)
\(230\) 44.4457 2.93066
\(231\) 0 0
\(232\) −30.7089 −2.01614
\(233\) −7.13659 −0.467533 −0.233767 0.972293i \(-0.575105\pi\)
−0.233767 + 0.972293i \(0.575105\pi\)
\(234\) 0 0
\(235\) −19.4945 −1.27168
\(236\) 3.81131 0.248095
\(237\) 0 0
\(238\) −18.5808 −1.20441
\(239\) 19.9930 1.29324 0.646621 0.762811i \(-0.276182\pi\)
0.646621 + 0.762811i \(0.276182\pi\)
\(240\) 0 0
\(241\) −9.19493 −0.592297 −0.296149 0.955142i \(-0.595702\pi\)
−0.296149 + 0.955142i \(0.595702\pi\)
\(242\) −2.47283 −0.158960
\(243\) 0 0
\(244\) −8.22982 −0.526860
\(245\) 2.58774 0.165325
\(246\) 0 0
\(247\) 13.8455 0.880967
\(248\) 19.1491 1.21597
\(249\) 0 0
\(250\) 21.1399 1.33700
\(251\) 9.42474 0.594885 0.297442 0.954740i \(-0.403866\pi\)
0.297442 + 0.954740i \(0.403866\pi\)
\(252\) 0 0
\(253\) −6.94567 −0.436670
\(254\) 25.2966 1.58725
\(255\) 0 0
\(256\) −32.5870 −2.03669
\(257\) 0.0194469 0.00121307 0.000606533 1.00000i \(-0.499807\pi\)
0.000606533 1.00000i \(0.499807\pi\)
\(258\) 0 0
\(259\) −3.30359 −0.205275
\(260\) −62.5257 −3.87768
\(261\) 0 0
\(262\) 9.89134 0.611089
\(263\) −27.9930 −1.72612 −0.863062 0.505097i \(-0.831457\pi\)
−0.863062 + 0.505097i \(0.831457\pi\)
\(264\) 0 0
\(265\) 10.9457 0.672387
\(266\) −5.83076 −0.357507
\(267\) 0 0
\(268\) −41.5676 −2.53914
\(269\) −30.9193 −1.88518 −0.942590 0.333951i \(-0.891618\pi\)
−0.942590 + 0.333951i \(0.891618\pi\)
\(270\) 0 0
\(271\) −22.3579 −1.35815 −0.679074 0.734070i \(-0.737618\pi\)
−0.679074 + 0.734070i \(0.737618\pi\)
\(272\) −35.3355 −2.14253
\(273\) 0 0
\(274\) −26.7981 −1.61893
\(275\) 1.69641 0.102297
\(276\) 0 0
\(277\) 24.7717 1.48839 0.744194 0.667964i \(-0.232834\pi\)
0.744194 + 0.667964i \(0.232834\pi\)
\(278\) −1.13659 −0.0681681
\(279\) 0 0
\(280\) 13.5334 0.808776
\(281\) 1.19493 0.0712835 0.0356418 0.999365i \(-0.488652\pi\)
0.0356418 + 0.999365i \(0.488652\pi\)
\(282\) 0 0
\(283\) −15.5723 −0.925677 −0.462839 0.886443i \(-0.653169\pi\)
−0.462839 + 0.886443i \(0.653169\pi\)
\(284\) −18.3510 −1.08893
\(285\) 0 0
\(286\) 14.5202 0.858598
\(287\) 5.28415 0.311913
\(288\) 0 0
\(289\) 39.4596 2.32115
\(290\) −37.5745 −2.20645
\(291\) 0 0
\(292\) −8.75698 −0.512464
\(293\) 9.74378 0.569238 0.284619 0.958641i \(-0.408133\pi\)
0.284619 + 0.958641i \(0.408133\pi\)
\(294\) 0 0
\(295\) 2.39682 0.139548
\(296\) −17.2772 −1.00422
\(297\) 0 0
\(298\) 27.3183 1.58251
\(299\) 40.7842 2.35861
\(300\) 0 0
\(301\) −7.40530 −0.426834
\(302\) 39.8649 2.29397
\(303\) 0 0
\(304\) −11.0885 −0.635969
\(305\) −5.17548 −0.296347
\(306\) 0 0
\(307\) 6.35097 0.362469 0.181234 0.983440i \(-0.441991\pi\)
0.181234 + 0.983440i \(0.441991\pi\)
\(308\) −4.11491 −0.234469
\(309\) 0 0
\(310\) 23.4303 1.33075
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 16.9457 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(314\) −32.3121 −1.82348
\(315\) 0 0
\(316\) −18.3510 −1.03232
\(317\) −20.0125 −1.12401 −0.562007 0.827133i \(-0.689970\pi\)
−0.562007 + 0.827133i \(0.689970\pi\)
\(318\) 0 0
\(319\) 5.87189 0.328763
\(320\) −16.8565 −0.942304
\(321\) 0 0
\(322\) −17.1755 −0.957152
\(323\) 17.7174 0.985821
\(324\) 0 0
\(325\) −9.96111 −0.552543
\(326\) 24.9798 1.38351
\(327\) 0 0
\(328\) 27.6351 1.52589
\(329\) 7.53341 0.415330
\(330\) 0 0
\(331\) 7.54037 0.414456 0.207228 0.978293i \(-0.433556\pi\)
0.207228 + 0.978293i \(0.433556\pi\)
\(332\) 43.9861 2.41405
\(333\) 0 0
\(334\) −25.9302 −1.41884
\(335\) −26.1406 −1.42821
\(336\) 0 0
\(337\) −12.6894 −0.691238 −0.345619 0.938375i \(-0.612331\pi\)
−0.345619 + 0.938375i \(0.612331\pi\)
\(338\) −53.1142 −2.88903
\(339\) 0 0
\(340\) −80.0111 −4.33921
\(341\) −3.66152 −0.198282
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −38.7283 −2.08809
\(345\) 0 0
\(346\) 35.8524 1.92744
\(347\) −1.13659 −0.0610153 −0.0305076 0.999535i \(-0.509712\pi\)
−0.0305076 + 0.999535i \(0.509712\pi\)
\(348\) 0 0
\(349\) −14.7911 −0.791752 −0.395876 0.918304i \(-0.629559\pi\)
−0.395876 + 0.918304i \(0.629559\pi\)
\(350\) 4.19493 0.224228
\(351\) 0 0
\(352\) −1.16924 −0.0623207
\(353\) 7.52092 0.400298 0.200149 0.979765i \(-0.435857\pi\)
0.200149 + 0.979765i \(0.435857\pi\)
\(354\) 0 0
\(355\) −11.5404 −0.612499
\(356\) −65.3914 −3.46574
\(357\) 0 0
\(358\) 35.4876 1.87558
\(359\) 17.5962 0.928693 0.464346 0.885654i \(-0.346289\pi\)
0.464346 + 0.885654i \(0.346289\pi\)
\(360\) 0 0
\(361\) −13.4402 −0.707378
\(362\) −23.8913 −1.25570
\(363\) 0 0
\(364\) 24.1623 1.26645
\(365\) −5.50700 −0.288250
\(366\) 0 0
\(367\) 14.3121 0.747084 0.373542 0.927613i \(-0.378143\pi\)
0.373542 + 0.927613i \(0.378143\pi\)
\(368\) −32.6630 −1.70268
\(369\) 0 0
\(370\) −21.1399 −1.09901
\(371\) −4.22982 −0.219601
\(372\) 0 0
\(373\) −16.4332 −0.850880 −0.425440 0.904987i \(-0.639881\pi\)
−0.425440 + 0.904987i \(0.639881\pi\)
\(374\) 18.5808 0.960789
\(375\) 0 0
\(376\) 39.3983 2.03181
\(377\) −34.4791 −1.77576
\(378\) 0 0
\(379\) 19.5334 1.00336 0.501682 0.865052i \(-0.332715\pi\)
0.501682 + 0.865052i \(0.332715\pi\)
\(380\) −25.1079 −1.28801
\(381\) 0 0
\(382\) −23.6226 −1.20864
\(383\) −2.35097 −0.120129 −0.0600644 0.998195i \(-0.519131\pi\)
−0.0600644 + 0.998195i \(0.519131\pi\)
\(384\) 0 0
\(385\) −2.58774 −0.131884
\(386\) 54.7019 2.78426
\(387\) 0 0
\(388\) 41.6476 2.11434
\(389\) 1.74378 0.0884130 0.0442065 0.999022i \(-0.485924\pi\)
0.0442065 + 0.999022i \(0.485924\pi\)
\(390\) 0 0
\(391\) 52.1895 2.63934
\(392\) −5.22982 −0.264146
\(393\) 0 0
\(394\) −64.8929 −3.26925
\(395\) −11.5404 −0.580659
\(396\) 0 0
\(397\) 6.54189 0.328328 0.164164 0.986433i \(-0.447507\pi\)
0.164164 + 0.986433i \(0.447507\pi\)
\(398\) −2.60719 −0.130687
\(399\) 0 0
\(400\) 7.97760 0.398880
\(401\) −5.66152 −0.282723 −0.141361 0.989958i \(-0.545148\pi\)
−0.141361 + 0.989958i \(0.545148\pi\)
\(402\) 0 0
\(403\) 21.5000 1.07099
\(404\) 55.1616 2.74439
\(405\) 0 0
\(406\) 14.5202 0.720626
\(407\) 3.30359 0.163753
\(408\) 0 0
\(409\) −5.48755 −0.271342 −0.135671 0.990754i \(-0.543319\pi\)
−0.135671 + 0.990754i \(0.543319\pi\)
\(410\) 33.8135 1.66993
\(411\) 0 0
\(412\) −19.4053 −0.956030
\(413\) −0.926221 −0.0455764
\(414\) 0 0
\(415\) 27.6615 1.35785
\(416\) 6.86565 0.336616
\(417\) 0 0
\(418\) 5.83076 0.285192
\(419\) −8.24926 −0.403003 −0.201501 0.979488i \(-0.564582\pi\)
−0.201501 + 0.979488i \(0.564582\pi\)
\(420\) 0 0
\(421\) 32.2617 1.57234 0.786171 0.618009i \(-0.212061\pi\)
0.786171 + 0.618009i \(0.212061\pi\)
\(422\) 21.5529 1.04918
\(423\) 0 0
\(424\) −22.1212 −1.07430
\(425\) −12.7467 −0.618307
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) −29.1079 −1.40699
\(429\) 0 0
\(430\) −47.3869 −2.28520
\(431\) 23.2772 1.12122 0.560611 0.828079i \(-0.310566\pi\)
0.560611 + 0.828079i \(0.310566\pi\)
\(432\) 0 0
\(433\) −15.9302 −0.765558 −0.382779 0.923840i \(-0.625033\pi\)
−0.382779 + 0.923840i \(0.625033\pi\)
\(434\) −9.05433 −0.434622
\(435\) 0 0
\(436\) 77.5125 3.71218
\(437\) 16.3774 0.783436
\(438\) 0 0
\(439\) 22.8565 1.09088 0.545439 0.838150i \(-0.316363\pi\)
0.545439 + 0.838150i \(0.316363\pi\)
\(440\) −13.5334 −0.645180
\(441\) 0 0
\(442\) −109.104 −5.18956
\(443\) −21.5962 −1.02607 −0.513034 0.858368i \(-0.671478\pi\)
−0.513034 + 0.858368i \(0.671478\pi\)
\(444\) 0 0
\(445\) −41.1227 −1.94940
\(446\) 58.7144 2.78021
\(447\) 0 0
\(448\) 6.51396 0.307756
\(449\) −18.6630 −0.880763 −0.440382 0.897811i \(-0.645157\pi\)
−0.440382 + 0.897811i \(0.645157\pi\)
\(450\) 0 0
\(451\) −5.28415 −0.248821
\(452\) 37.1491 1.74735
\(453\) 0 0
\(454\) −32.5808 −1.52909
\(455\) 15.1949 0.712349
\(456\) 0 0
\(457\) 36.4721 1.70609 0.853047 0.521834i \(-0.174752\pi\)
0.853047 + 0.521834i \(0.174752\pi\)
\(458\) −33.0529 −1.54446
\(459\) 0 0
\(460\) −73.9597 −3.44839
\(461\) −7.17548 −0.334196 −0.167098 0.985940i \(-0.553440\pi\)
−0.167098 + 0.985940i \(0.553440\pi\)
\(462\) 0 0
\(463\) −0.452670 −0.0210373 −0.0105187 0.999945i \(-0.503348\pi\)
−0.0105187 + 0.999945i \(0.503348\pi\)
\(464\) 27.6134 1.28192
\(465\) 0 0
\(466\) 17.6476 0.817509
\(467\) 9.68097 0.447982 0.223991 0.974591i \(-0.428091\pi\)
0.223991 + 0.974591i \(0.428091\pi\)
\(468\) 0 0
\(469\) 10.1017 0.466453
\(470\) 48.2067 2.22361
\(471\) 0 0
\(472\) −4.84396 −0.222962
\(473\) 7.40530 0.340496
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 30.9193 1.41718
\(477\) 0 0
\(478\) −49.4395 −2.26131
\(479\) −24.3635 −1.11319 −0.556597 0.830782i \(-0.687893\pi\)
−0.556597 + 0.830782i \(0.687893\pi\)
\(480\) 0 0
\(481\) −19.3983 −0.884488
\(482\) 22.7375 1.03567
\(483\) 0 0
\(484\) 4.11491 0.187041
\(485\) 26.1909 1.18927
\(486\) 0 0
\(487\) −19.2702 −0.873217 −0.436609 0.899652i \(-0.643821\pi\)
−0.436609 + 0.899652i \(0.643821\pi\)
\(488\) 10.4596 0.473485
\(489\) 0 0
\(490\) −6.39905 −0.289080
\(491\) −29.6421 −1.33773 −0.668864 0.743385i \(-0.733219\pi\)
−0.668864 + 0.743385i \(0.733219\pi\)
\(492\) 0 0
\(493\) −44.1212 −1.98712
\(494\) −34.2376 −1.54042
\(495\) 0 0
\(496\) −17.2188 −0.773149
\(497\) 4.45963 0.200042
\(498\) 0 0
\(499\) 29.3719 1.31487 0.657434 0.753512i \(-0.271642\pi\)
0.657434 + 0.753512i \(0.271642\pi\)
\(500\) −35.1777 −1.57320
\(501\) 0 0
\(502\) −23.3058 −1.04019
\(503\) −12.5947 −0.561570 −0.280785 0.959771i \(-0.590595\pi\)
−0.280785 + 0.959771i \(0.590595\pi\)
\(504\) 0 0
\(505\) 34.6894 1.54366
\(506\) 17.1755 0.763543
\(507\) 0 0
\(508\) −42.0947 −1.86765
\(509\) 15.2144 0.674365 0.337183 0.941439i \(-0.390526\pi\)
0.337183 + 0.941439i \(0.390526\pi\)
\(510\) 0 0
\(511\) 2.12811 0.0941421
\(512\) 43.6894 1.93082
\(513\) 0 0
\(514\) −0.0480890 −0.00212112
\(515\) −12.2034 −0.537746
\(516\) 0 0
\(517\) −7.53341 −0.331319
\(518\) 8.16924 0.358936
\(519\) 0 0
\(520\) 79.4667 3.48484
\(521\) −20.5180 −0.898909 −0.449454 0.893303i \(-0.648382\pi\)
−0.449454 + 0.893303i \(0.648382\pi\)
\(522\) 0 0
\(523\) −29.8844 −1.30675 −0.653376 0.757033i \(-0.726648\pi\)
−0.653376 + 0.757033i \(0.726648\pi\)
\(524\) −16.4596 −0.719042
\(525\) 0 0
\(526\) 69.2221 3.01823
\(527\) 27.5125 1.19846
\(528\) 0 0
\(529\) 25.2423 1.09749
\(530\) −27.0668 −1.17571
\(531\) 0 0
\(532\) 9.70265 0.420663
\(533\) 31.0279 1.34397
\(534\) 0 0
\(535\) −18.3051 −0.791399
\(536\) 52.8300 2.28191
\(537\) 0 0
\(538\) 76.4582 3.29635
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 26.9582 1.15902 0.579511 0.814965i \(-0.303244\pi\)
0.579511 + 0.814965i \(0.303244\pi\)
\(542\) 55.2874 2.37480
\(543\) 0 0
\(544\) 8.78562 0.376680
\(545\) 48.7453 2.08802
\(546\) 0 0
\(547\) 26.0558 1.11407 0.557034 0.830490i \(-0.311939\pi\)
0.557034 + 0.830490i \(0.311939\pi\)
\(548\) 44.5933 1.90493
\(549\) 0 0
\(550\) −4.19493 −0.178872
\(551\) −13.8455 −0.589837
\(552\) 0 0
\(553\) 4.45963 0.189643
\(554\) −61.2563 −2.60253
\(555\) 0 0
\(556\) 1.89134 0.0802105
\(557\) −8.01945 −0.339795 −0.169897 0.985462i \(-0.554344\pi\)
−0.169897 + 0.985462i \(0.554344\pi\)
\(558\) 0 0
\(559\) −43.4831 −1.83914
\(560\) −12.1692 −0.514244
\(561\) 0 0
\(562\) −2.95486 −0.124643
\(563\) −21.9736 −0.926077 −0.463038 0.886338i \(-0.653241\pi\)
−0.463038 + 0.886338i \(0.653241\pi\)
\(564\) 0 0
\(565\) 23.3619 0.982844
\(566\) 38.5077 1.61860
\(567\) 0 0
\(568\) 23.3230 0.978613
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 37.6740 1.57661 0.788304 0.615286i \(-0.210959\pi\)
0.788304 + 0.615286i \(0.210959\pi\)
\(572\) −24.1623 −1.01028
\(573\) 0 0
\(574\) −13.0668 −0.545398
\(575\) −11.7827 −0.491371
\(576\) 0 0
\(577\) −7.80908 −0.325096 −0.162548 0.986701i \(-0.551971\pi\)
−0.162548 + 0.986701i \(0.551971\pi\)
\(578\) −97.5771 −4.05867
\(579\) 0 0
\(580\) 62.5257 2.59624
\(581\) −10.6894 −0.443473
\(582\) 0 0
\(583\) 4.22982 0.175181
\(584\) 11.1296 0.460547
\(585\) 0 0
\(586\) −24.0947 −0.995345
\(587\) 43.2633 1.78567 0.892833 0.450388i \(-0.148714\pi\)
0.892833 + 0.450388i \(0.148714\pi\)
\(588\) 0 0
\(589\) 8.63360 0.355741
\(590\) −5.92694 −0.244008
\(591\) 0 0
\(592\) 15.5356 0.638511
\(593\) 29.7438 1.22143 0.610715 0.791850i \(-0.290882\pi\)
0.610715 + 0.791850i \(0.290882\pi\)
\(594\) 0 0
\(595\) 19.4442 0.797134
\(596\) −45.4589 −1.86207
\(597\) 0 0
\(598\) −100.853 −4.12417
\(599\) −11.5404 −0.471527 −0.235763 0.971810i \(-0.575759\pi\)
−0.235763 + 0.971810i \(0.575759\pi\)
\(600\) 0 0
\(601\) 7.06129 0.288036 0.144018 0.989575i \(-0.453998\pi\)
0.144018 + 0.989575i \(0.453998\pi\)
\(602\) 18.3121 0.746344
\(603\) 0 0
\(604\) −66.3370 −2.69922
\(605\) 2.58774 0.105207
\(606\) 0 0
\(607\) −17.3859 −0.705670 −0.352835 0.935686i \(-0.614782\pi\)
−0.352835 + 0.935686i \(0.614782\pi\)
\(608\) 2.75698 0.111810
\(609\) 0 0
\(610\) 12.7981 0.518180
\(611\) 44.2353 1.78957
\(612\) 0 0
\(613\) 39.4611 1.59382 0.796910 0.604098i \(-0.206466\pi\)
0.796910 + 0.604098i \(0.206466\pi\)
\(614\) −15.7049 −0.633798
\(615\) 0 0
\(616\) 5.22982 0.210715
\(617\) 4.40378 0.177290 0.0886448 0.996063i \(-0.471746\pi\)
0.0886448 + 0.996063i \(0.471746\pi\)
\(618\) 0 0
\(619\) 16.4163 0.659825 0.329913 0.944011i \(-0.392981\pi\)
0.329913 + 0.944011i \(0.392981\pi\)
\(620\) −38.9890 −1.56584
\(621\) 0 0
\(622\) 19.7827 0.793213
\(623\) 15.8913 0.636673
\(624\) 0 0
\(625\) −30.6042 −1.22417
\(626\) −41.9038 −1.67481
\(627\) 0 0
\(628\) 53.7688 2.14561
\(629\) −24.8231 −0.989761
\(630\) 0 0
\(631\) 44.4596 1.76991 0.884955 0.465677i \(-0.154189\pi\)
0.884955 + 0.465677i \(0.154189\pi\)
\(632\) 23.3230 0.927741
\(633\) 0 0
\(634\) 49.4876 1.96540
\(635\) −26.4721 −1.05051
\(636\) 0 0
\(637\) −5.87189 −0.232653
\(638\) −14.5202 −0.574860
\(639\) 0 0
\(640\) 47.7346 1.88688
\(641\) −10.5419 −0.416380 −0.208190 0.978088i \(-0.566757\pi\)
−0.208190 + 0.978088i \(0.566757\pi\)
\(642\) 0 0
\(643\) −23.4053 −0.923015 −0.461507 0.887136i \(-0.652691\pi\)
−0.461507 + 0.887136i \(0.652691\pi\)
\(644\) 28.5808 1.12624
\(645\) 0 0
\(646\) −43.8121 −1.72376
\(647\) −11.4945 −0.451896 −0.225948 0.974139i \(-0.572548\pi\)
−0.225948 + 0.974139i \(0.572548\pi\)
\(648\) 0 0
\(649\) 0.926221 0.0363574
\(650\) 24.6322 0.966153
\(651\) 0 0
\(652\) −41.5676 −1.62791
\(653\) −19.8774 −0.777863 −0.388932 0.921267i \(-0.627156\pi\)
−0.388932 + 0.921267i \(0.627156\pi\)
\(654\) 0 0
\(655\) −10.3510 −0.404446
\(656\) −24.8495 −0.970210
\(657\) 0 0
\(658\) −18.6289 −0.726229
\(659\) −15.0738 −0.587191 −0.293596 0.955930i \(-0.594852\pi\)
−0.293596 + 0.955930i \(0.594852\pi\)
\(660\) 0 0
\(661\) −4.74226 −0.184453 −0.0922263 0.995738i \(-0.529398\pi\)
−0.0922263 + 0.995738i \(0.529398\pi\)
\(662\) −18.6461 −0.724701
\(663\) 0 0
\(664\) −55.9038 −2.16949
\(665\) 6.10170 0.236614
\(666\) 0 0
\(667\) −40.7842 −1.57917
\(668\) 43.1491 1.66949
\(669\) 0 0
\(670\) 64.6414 2.49731
\(671\) −2.00000 −0.0772091
\(672\) 0 0
\(673\) 9.87885 0.380802 0.190401 0.981706i \(-0.439021\pi\)
0.190401 + 0.981706i \(0.439021\pi\)
\(674\) 31.3789 1.20867
\(675\) 0 0
\(676\) 88.3844 3.39940
\(677\) 29.0279 1.11563 0.557817 0.829964i \(-0.311639\pi\)
0.557817 + 0.829964i \(0.311639\pi\)
\(678\) 0 0
\(679\) −10.1212 −0.388414
\(680\) 101.690 3.89962
\(681\) 0 0
\(682\) 9.05433 0.346708
\(683\) 37.9597 1.45249 0.726243 0.687438i \(-0.241265\pi\)
0.726243 + 0.687438i \(0.241265\pi\)
\(684\) 0 0
\(685\) 28.0434 1.07148
\(686\) 2.47283 0.0944132
\(687\) 0 0
\(688\) 34.8245 1.32767
\(689\) −24.8370 −0.946214
\(690\) 0 0
\(691\) −15.5264 −0.590654 −0.295327 0.955396i \(-0.595429\pi\)
−0.295327 + 0.955396i \(0.595429\pi\)
\(692\) −59.6601 −2.26794
\(693\) 0 0
\(694\) 2.81060 0.106689
\(695\) 1.18940 0.0451167
\(696\) 0 0
\(697\) 39.7049 1.50393
\(698\) 36.5761 1.38442
\(699\) 0 0
\(700\) −6.98055 −0.263840
\(701\) 27.4317 1.03608 0.518041 0.855356i \(-0.326662\pi\)
0.518041 + 0.855356i \(0.326662\pi\)
\(702\) 0 0
\(703\) −7.78963 −0.293792
\(704\) −6.51396 −0.245504
\(705\) 0 0
\(706\) −18.5980 −0.699945
\(707\) −13.4053 −0.504158
\(708\) 0 0
\(709\) −44.5180 −1.67191 −0.835954 0.548800i \(-0.815085\pi\)
−0.835954 + 0.548800i \(0.815085\pi\)
\(710\) 28.5374 1.07099
\(711\) 0 0
\(712\) 83.1087 3.11463
\(713\) 25.4317 0.952425
\(714\) 0 0
\(715\) −15.1949 −0.568258
\(716\) −59.0529 −2.20691
\(717\) 0 0
\(718\) −43.5125 −1.62387
\(719\) −17.3859 −0.648383 −0.324191 0.945992i \(-0.605092\pi\)
−0.324191 + 0.945992i \(0.605092\pi\)
\(720\) 0 0
\(721\) 4.71585 0.175628
\(722\) 33.2353 1.23689
\(723\) 0 0
\(724\) 39.7563 1.47753
\(725\) 9.96111 0.369946
\(726\) 0 0
\(727\) −18.6506 −0.691711 −0.345855 0.938288i \(-0.612411\pi\)
−0.345855 + 0.938288i \(0.612411\pi\)
\(728\) −30.7089 −1.13815
\(729\) 0 0
\(730\) 13.6179 0.504021
\(731\) −55.6431 −2.05804
\(732\) 0 0
\(733\) 16.3510 0.603937 0.301968 0.953318i \(-0.402356\pi\)
0.301968 + 0.953318i \(0.402356\pi\)
\(734\) −35.3914 −1.30632
\(735\) 0 0
\(736\) 8.12115 0.299350
\(737\) −10.1017 −0.372101
\(738\) 0 0
\(739\) −32.8370 −1.20793 −0.603964 0.797011i \(-0.706413\pi\)
−0.603964 + 0.797011i \(0.706413\pi\)
\(740\) 35.1777 1.29316
\(741\) 0 0
\(742\) 10.4596 0.383985
\(743\) −20.9123 −0.767198 −0.383599 0.923500i \(-0.625315\pi\)
−0.383599 + 0.923500i \(0.625315\pi\)
\(744\) 0 0
\(745\) −28.5877 −1.04737
\(746\) 40.6366 1.48781
\(747\) 0 0
\(748\) −30.9193 −1.13052
\(749\) 7.07378 0.258470
\(750\) 0 0
\(751\) −39.2633 −1.43274 −0.716368 0.697722i \(-0.754197\pi\)
−0.716368 + 0.697722i \(0.754197\pi\)
\(752\) −35.4270 −1.29189
\(753\) 0 0
\(754\) 85.2610 3.10502
\(755\) −41.7174 −1.51825
\(756\) 0 0
\(757\) −10.3454 −0.376011 −0.188006 0.982168i \(-0.560202\pi\)
−0.188006 + 0.982168i \(0.560202\pi\)
\(758\) −48.3029 −1.75444
\(759\) 0 0
\(760\) 31.9108 1.15753
\(761\) −30.9582 −1.12223 −0.561116 0.827737i \(-0.689628\pi\)
−0.561116 + 0.827737i \(0.689628\pi\)
\(762\) 0 0
\(763\) −18.8370 −0.681945
\(764\) 39.3091 1.42215
\(765\) 0 0
\(766\) 5.81355 0.210052
\(767\) −5.43867 −0.196379
\(768\) 0 0
\(769\) −28.8998 −1.04215 −0.521077 0.853510i \(-0.674470\pi\)
−0.521077 + 0.853510i \(0.674470\pi\)
\(770\) 6.39905 0.230606
\(771\) 0 0
\(772\) −91.0265 −3.27612
\(773\) 26.7523 0.962212 0.481106 0.876663i \(-0.340235\pi\)
0.481106 + 0.876663i \(0.340235\pi\)
\(774\) 0 0
\(775\) −6.21142 −0.223121
\(776\) −52.9317 −1.90014
\(777\) 0 0
\(778\) −4.31207 −0.154595
\(779\) 12.4596 0.446413
\(780\) 0 0
\(781\) −4.45963 −0.159578
\(782\) −129.056 −4.61503
\(783\) 0 0
\(784\) 4.70265 0.167952
\(785\) 33.8135 1.20686
\(786\) 0 0
\(787\) 22.1406 0.789227 0.394614 0.918847i \(-0.370878\pi\)
0.394614 + 0.918847i \(0.370878\pi\)
\(788\) 107.985 3.84679
\(789\) 0 0
\(790\) 28.5374 1.01532
\(791\) −9.02792 −0.320996
\(792\) 0 0
\(793\) 11.7438 0.417034
\(794\) −16.1770 −0.574100
\(795\) 0 0
\(796\) 4.33848 0.153773
\(797\) −8.18396 −0.289891 −0.144945 0.989440i \(-0.546301\pi\)
−0.144945 + 0.989440i \(0.546301\pi\)
\(798\) 0 0
\(799\) 56.6058 2.00257
\(800\) −1.98351 −0.0701275
\(801\) 0 0
\(802\) 14.0000 0.494357
\(803\) −2.12811 −0.0750994
\(804\) 0 0
\(805\) 17.9736 0.633486
\(806\) −53.1660 −1.87269
\(807\) 0 0
\(808\) −70.1072 −2.46636
\(809\) −17.6685 −0.621191 −0.310595 0.950542i \(-0.600528\pi\)
−0.310595 + 0.950542i \(0.600528\pi\)
\(810\) 0 0
\(811\) −43.0210 −1.51067 −0.755335 0.655339i \(-0.772526\pi\)
−0.755335 + 0.655339i \(0.772526\pi\)
\(812\) −24.1623 −0.847930
\(813\) 0 0
\(814\) −8.16924 −0.286332
\(815\) −26.1406 −0.915665
\(816\) 0 0
\(817\) −17.4611 −0.610888
\(818\) 13.5698 0.474457
\(819\) 0 0
\(820\) −56.2673 −1.96494
\(821\) −18.0364 −0.629475 −0.314737 0.949179i \(-0.601916\pi\)
−0.314737 + 0.949179i \(0.601916\pi\)
\(822\) 0 0
\(823\) −8.21037 −0.286195 −0.143098 0.989709i \(-0.545706\pi\)
−0.143098 + 0.989709i \(0.545706\pi\)
\(824\) 24.6630 0.859178
\(825\) 0 0
\(826\) 2.29039 0.0796929
\(827\) −6.83148 −0.237554 −0.118777 0.992921i \(-0.537897\pi\)
−0.118777 + 0.992921i \(0.537897\pi\)
\(828\) 0 0
\(829\) −25.7438 −0.894118 −0.447059 0.894504i \(-0.647529\pi\)
−0.447059 + 0.894504i \(0.647529\pi\)
\(830\) −68.4023 −2.37428
\(831\) 0 0
\(832\) 38.2493 1.32605
\(833\) −7.51396 −0.260343
\(834\) 0 0
\(835\) 27.1352 0.939051
\(836\) −9.70265 −0.335573
\(837\) 0 0
\(838\) 20.3991 0.704674
\(839\) 30.6002 1.05644 0.528219 0.849108i \(-0.322860\pi\)
0.528219 + 0.849108i \(0.322860\pi\)
\(840\) 0 0
\(841\) 5.47908 0.188934
\(842\) −79.7779 −2.74933
\(843\) 0 0
\(844\) −35.8649 −1.23452
\(845\) 55.5823 1.91209
\(846\) 0 0
\(847\) −1.00000 −0.0343604
\(848\) 19.8913 0.683071
\(849\) 0 0
\(850\) 31.5205 1.08115
\(851\) −22.9457 −0.786567
\(852\) 0 0
\(853\) −30.4596 −1.04292 −0.521459 0.853276i \(-0.674612\pi\)
−0.521459 + 0.853276i \(0.674612\pi\)
\(854\) −4.94567 −0.169237
\(855\) 0 0
\(856\) 36.9946 1.26445
\(857\) 41.2702 1.40976 0.704882 0.709325i \(-0.251000\pi\)
0.704882 + 0.709325i \(0.251000\pi\)
\(858\) 0 0
\(859\) −28.9193 −0.986712 −0.493356 0.869827i \(-0.664230\pi\)
−0.493356 + 0.869827i \(0.664230\pi\)
\(860\) 78.8540 2.68890
\(861\) 0 0
\(862\) −57.5606 −1.96052
\(863\) −37.0015 −1.25955 −0.629773 0.776779i \(-0.716852\pi\)
−0.629773 + 0.776779i \(0.716852\pi\)
\(864\) 0 0
\(865\) −37.5184 −1.27566
\(866\) 39.3928 1.33862
\(867\) 0 0
\(868\) 15.0668 0.511401
\(869\) −4.45963 −0.151283
\(870\) 0 0
\(871\) 59.3161 2.00985
\(872\) −98.5140 −3.33611
\(873\) 0 0
\(874\) −40.4985 −1.36988
\(875\) 8.54885 0.289004
\(876\) 0 0
\(877\) −6.12562 −0.206847 −0.103424 0.994637i \(-0.532980\pi\)
−0.103424 + 0.994637i \(0.532980\pi\)
\(878\) −56.5202 −1.90746
\(879\) 0 0
\(880\) 12.1692 0.410225
\(881\) −25.4123 −0.856161 −0.428080 0.903741i \(-0.640810\pi\)
−0.428080 + 0.903741i \(0.640810\pi\)
\(882\) 0 0
\(883\) −17.0040 −0.572230 −0.286115 0.958195i \(-0.592364\pi\)
−0.286115 + 0.958195i \(0.592364\pi\)
\(884\) 181.554 6.10634
\(885\) 0 0
\(886\) 53.4039 1.79414
\(887\) −35.2269 −1.18280 −0.591401 0.806378i \(-0.701425\pi\)
−0.591401 + 0.806378i \(0.701425\pi\)
\(888\) 0 0
\(889\) 10.2298 0.343097
\(890\) 101.690 3.40864
\(891\) 0 0
\(892\) −97.7034 −3.27135
\(893\) 17.7632 0.594424
\(894\) 0 0
\(895\) −37.1366 −1.24134
\(896\) −18.4464 −0.616252
\(897\) 0 0
\(898\) 46.1506 1.54007
\(899\) −21.5000 −0.717067
\(900\) 0 0
\(901\) −31.7827 −1.05883
\(902\) 13.0668 0.435077
\(903\) 0 0
\(904\) −47.2144 −1.57033
\(905\) 25.0015 0.831079
\(906\) 0 0
\(907\) −9.72682 −0.322974 −0.161487 0.986875i \(-0.551629\pi\)
−0.161487 + 0.986875i \(0.551629\pi\)
\(908\) 54.2159 1.79922
\(909\) 0 0
\(910\) −37.5745 −1.24558
\(911\) 42.7717 1.41709 0.708545 0.705666i \(-0.249352\pi\)
0.708545 + 0.705666i \(0.249352\pi\)
\(912\) 0 0
\(913\) 10.6894 0.353769
\(914\) −90.1895 −2.98320
\(915\) 0 0
\(916\) 55.0015 1.81730
\(917\) 4.00000 0.132092
\(918\) 0 0
\(919\) 6.26871 0.206786 0.103393 0.994641i \(-0.467030\pi\)
0.103393 + 0.994641i \(0.467030\pi\)
\(920\) 93.9986 3.09904
\(921\) 0 0
\(922\) 17.7438 0.584360
\(923\) 26.1865 0.861938
\(924\) 0 0
\(925\) 5.60424 0.184266
\(926\) 1.11938 0.0367850
\(927\) 0 0
\(928\) −6.86565 −0.225376
\(929\) −20.0194 −0.656817 −0.328408 0.944536i \(-0.606512\pi\)
−0.328408 + 0.944536i \(0.606512\pi\)
\(930\) 0 0
\(931\) −2.35793 −0.0772779
\(932\) −29.3664 −0.961929
\(933\) 0 0
\(934\) −23.9394 −0.783322
\(935\) −19.4442 −0.635893
\(936\) 0 0
\(937\) −11.2144 −0.366358 −0.183179 0.983080i \(-0.558639\pi\)
−0.183179 + 0.983080i \(0.558639\pi\)
\(938\) −24.9798 −0.815621
\(939\) 0 0
\(940\) −80.2181 −2.61643
\(941\) −31.3400 −1.02165 −0.510827 0.859683i \(-0.670661\pi\)
−0.510827 + 0.859683i \(0.670661\pi\)
\(942\) 0 0
\(943\) 36.7019 1.19518
\(944\) 4.35569 0.141766
\(945\) 0 0
\(946\) −18.3121 −0.595377
\(947\) 23.2841 0.756633 0.378317 0.925676i \(-0.376503\pi\)
0.378317 + 0.925676i \(0.376503\pi\)
\(948\) 0 0
\(949\) 12.4960 0.405638
\(950\) 9.89134 0.320917
\(951\) 0 0
\(952\) −39.2966 −1.27361
\(953\) −26.8300 −0.869110 −0.434555 0.900645i \(-0.643094\pi\)
−0.434555 + 0.900645i \(0.643094\pi\)
\(954\) 0 0
\(955\) 24.7203 0.799931
\(956\) 82.2695 2.66079
\(957\) 0 0
\(958\) 60.2468 1.94648
\(959\) −10.8370 −0.349945
\(960\) 0 0
\(961\) −17.5933 −0.567525
\(962\) 47.9689 1.54658
\(963\) 0 0
\(964\) −37.8363 −1.21862
\(965\) −57.2438 −1.84274
\(966\) 0 0
\(967\) 36.2034 1.16422 0.582112 0.813109i \(-0.302227\pi\)
0.582112 + 0.813109i \(0.302227\pi\)
\(968\) −5.22982 −0.168093
\(969\) 0 0
\(970\) −64.7658 −2.07950
\(971\) −6.06281 −0.194565 −0.0972824 0.995257i \(-0.531015\pi\)
−0.0972824 + 0.995257i \(0.531015\pi\)
\(972\) 0 0
\(973\) −0.459630 −0.0147351
\(974\) 47.6521 1.52687
\(975\) 0 0
\(976\) −9.40530 −0.301056
\(977\) 4.28263 0.137013 0.0685067 0.997651i \(-0.478177\pi\)
0.0685067 + 0.997651i \(0.478177\pi\)
\(978\) 0 0
\(979\) −15.8913 −0.507889
\(980\) 10.6483 0.340148
\(981\) 0 0
\(982\) 73.2999 2.33909
\(983\) 17.1894 0.548257 0.274128 0.961693i \(-0.411611\pi\)
0.274128 + 0.961693i \(0.411611\pi\)
\(984\) 0 0
\(985\) 67.9083 2.16374
\(986\) 109.104 3.47459
\(987\) 0 0
\(988\) 56.9729 1.81255
\(989\) −51.4347 −1.63553
\(990\) 0 0
\(991\) 35.4945 1.12752 0.563760 0.825939i \(-0.309354\pi\)
0.563760 + 0.825939i \(0.309354\pi\)
\(992\) 4.28120 0.135928
\(993\) 0 0
\(994\) −11.0279 −0.349785
\(995\) 2.72834 0.0864942
\(996\) 0 0
\(997\) 30.4068 0.962993 0.481497 0.876448i \(-0.340093\pi\)
0.481497 + 0.876448i \(0.340093\pi\)
\(998\) −72.6319 −2.29912
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.2.a.l.1.1 3
3.2 odd 2 231.2.a.e.1.3 3
7.6 odd 2 4851.2.a.bi.1.1 3
11.10 odd 2 7623.2.a.cd.1.3 3
12.11 even 2 3696.2.a.bo.1.1 3
15.14 odd 2 5775.2.a.bp.1.1 3
21.20 even 2 1617.2.a.t.1.3 3
33.32 even 2 2541.2.a.bg.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.2.a.e.1.3 3 3.2 odd 2
693.2.a.l.1.1 3 1.1 even 1 trivial
1617.2.a.t.1.3 3 21.20 even 2
2541.2.a.bg.1.1 3 33.32 even 2
3696.2.a.bo.1.1 3 12.11 even 2
4851.2.a.bi.1.1 3 7.6 odd 2
5775.2.a.bp.1.1 3 15.14 odd 2
7623.2.a.cd.1.3 3 11.10 odd 2