Properties

Label 693.2.a.j.1.1
Level $693$
Weight $2$
Character 693.1
Self dual yes
Analytic conductor $5.534$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.53363286007\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.79129\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.79129 q^{2} +1.20871 q^{4} -3.00000 q^{5} +1.00000 q^{7} +1.41742 q^{8} +O(q^{10})\) \(q-1.79129 q^{2} +1.20871 q^{4} -3.00000 q^{5} +1.00000 q^{7} +1.41742 q^{8} +5.37386 q^{10} +1.00000 q^{11} +1.00000 q^{13} -1.79129 q^{14} -4.95644 q^{16} -7.58258 q^{17} -6.58258 q^{19} -3.62614 q^{20} -1.79129 q^{22} +5.58258 q^{23} +4.00000 q^{25} -1.79129 q^{26} +1.20871 q^{28} +8.16515 q^{29} +3.58258 q^{31} +6.04356 q^{32} +13.5826 q^{34} -3.00000 q^{35} +1.00000 q^{37} +11.7913 q^{38} -4.25227 q^{40} +11.1652 q^{41} +1.58258 q^{43} +1.20871 q^{44} -10.0000 q^{46} -1.41742 q^{47} +1.00000 q^{49} -7.16515 q^{50} +1.20871 q^{52} +9.58258 q^{53} -3.00000 q^{55} +1.41742 q^{56} -14.6261 q^{58} -4.58258 q^{59} +10.0000 q^{61} -6.41742 q^{62} -0.912878 q^{64} -3.00000 q^{65} +8.58258 q^{67} -9.16515 q^{68} +5.37386 q^{70} -11.1652 q^{71} +7.00000 q^{73} -1.79129 q^{74} -7.95644 q^{76} +1.00000 q^{77} +7.16515 q^{79} +14.8693 q^{80} -20.0000 q^{82} +11.5826 q^{83} +22.7477 q^{85} -2.83485 q^{86} +1.41742 q^{88} -9.16515 q^{89} +1.00000 q^{91} +6.74773 q^{92} +2.53901 q^{94} +19.7477 q^{95} -2.41742 q^{97} -1.79129 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 7 q^{4} - 6 q^{5} + 2 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + 7 q^{4} - 6 q^{5} + 2 q^{7} + 12 q^{8} - 3 q^{10} + 2 q^{11} + 2 q^{13} + q^{14} + 13 q^{16} - 6 q^{17} - 4 q^{19} - 21 q^{20} + q^{22} + 2 q^{23} + 8 q^{25} + q^{26} + 7 q^{28} - 2 q^{29} - 2 q^{31} + 35 q^{32} + 18 q^{34} - 6 q^{35} + 2 q^{37} + 19 q^{38} - 36 q^{40} + 4 q^{41} - 6 q^{43} + 7 q^{44} - 20 q^{46} - 12 q^{47} + 2 q^{49} + 4 q^{50} + 7 q^{52} + 10 q^{53} - 6 q^{55} + 12 q^{56} - 43 q^{58} + 20 q^{61} - 22 q^{62} + 44 q^{64} - 6 q^{65} + 8 q^{67} - 3 q^{70} - 4 q^{71} + 14 q^{73} + q^{74} + 7 q^{76} + 2 q^{77} - 4 q^{79} - 39 q^{80} - 40 q^{82} + 14 q^{83} + 18 q^{85} - 24 q^{86} + 12 q^{88} + 2 q^{91} - 14 q^{92} - 27 q^{94} + 12 q^{95} - 14 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.79129 −1.26663 −0.633316 0.773893i \(-0.718307\pi\)
−0.633316 + 0.773893i \(0.718307\pi\)
\(3\) 0 0
\(4\) 1.20871 0.604356
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.41742 0.501135
\(9\) 0 0
\(10\) 5.37386 1.69936
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) −1.79129 −0.478742
\(15\) 0 0
\(16\) −4.95644 −1.23911
\(17\) −7.58258 −1.83904 −0.919522 0.393038i \(-0.871424\pi\)
−0.919522 + 0.393038i \(0.871424\pi\)
\(18\) 0 0
\(19\) −6.58258 −1.51015 −0.755073 0.655640i \(-0.772399\pi\)
−0.755073 + 0.655640i \(0.772399\pi\)
\(20\) −3.62614 −0.810829
\(21\) 0 0
\(22\) −1.79129 −0.381904
\(23\) 5.58258 1.16405 0.582024 0.813172i \(-0.302261\pi\)
0.582024 + 0.813172i \(0.302261\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) −1.79129 −0.351300
\(27\) 0 0
\(28\) 1.20871 0.228425
\(29\) 8.16515 1.51623 0.758115 0.652121i \(-0.226120\pi\)
0.758115 + 0.652121i \(0.226120\pi\)
\(30\) 0 0
\(31\) 3.58258 0.643450 0.321725 0.946833i \(-0.395737\pi\)
0.321725 + 0.946833i \(0.395737\pi\)
\(32\) 6.04356 1.06836
\(33\) 0 0
\(34\) 13.5826 2.32939
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) 1.00000 0.164399 0.0821995 0.996616i \(-0.473806\pi\)
0.0821995 + 0.996616i \(0.473806\pi\)
\(38\) 11.7913 1.91280
\(39\) 0 0
\(40\) −4.25227 −0.672343
\(41\) 11.1652 1.74370 0.871852 0.489770i \(-0.162919\pi\)
0.871852 + 0.489770i \(0.162919\pi\)
\(42\) 0 0
\(43\) 1.58258 0.241341 0.120670 0.992693i \(-0.461496\pi\)
0.120670 + 0.992693i \(0.461496\pi\)
\(44\) 1.20871 0.182220
\(45\) 0 0
\(46\) −10.0000 −1.47442
\(47\) −1.41742 −0.206753 −0.103376 0.994642i \(-0.532965\pi\)
−0.103376 + 0.994642i \(0.532965\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −7.16515 −1.01331
\(51\) 0 0
\(52\) 1.20871 0.167618
\(53\) 9.58258 1.31627 0.658134 0.752901i \(-0.271346\pi\)
0.658134 + 0.752901i \(0.271346\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 1.41742 0.189411
\(57\) 0 0
\(58\) −14.6261 −1.92051
\(59\) −4.58258 −0.596601 −0.298300 0.954472i \(-0.596420\pi\)
−0.298300 + 0.954472i \(0.596420\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) −6.41742 −0.815014
\(63\) 0 0
\(64\) −0.912878 −0.114110
\(65\) −3.00000 −0.372104
\(66\) 0 0
\(67\) 8.58258 1.04853 0.524264 0.851556i \(-0.324340\pi\)
0.524264 + 0.851556i \(0.324340\pi\)
\(68\) −9.16515 −1.11144
\(69\) 0 0
\(70\) 5.37386 0.642300
\(71\) −11.1652 −1.32506 −0.662530 0.749036i \(-0.730517\pi\)
−0.662530 + 0.749036i \(0.730517\pi\)
\(72\) 0 0
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) −1.79129 −0.208233
\(75\) 0 0
\(76\) −7.95644 −0.912666
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 7.16515 0.806143 0.403071 0.915169i \(-0.367943\pi\)
0.403071 + 0.915169i \(0.367943\pi\)
\(80\) 14.8693 1.66244
\(81\) 0 0
\(82\) −20.0000 −2.20863
\(83\) 11.5826 1.27135 0.635676 0.771956i \(-0.280721\pi\)
0.635676 + 0.771956i \(0.280721\pi\)
\(84\) 0 0
\(85\) 22.7477 2.46734
\(86\) −2.83485 −0.305690
\(87\) 0 0
\(88\) 1.41742 0.151098
\(89\) −9.16515 −0.971504 −0.485752 0.874097i \(-0.661454\pi\)
−0.485752 + 0.874097i \(0.661454\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 6.74773 0.703499
\(93\) 0 0
\(94\) 2.53901 0.261879
\(95\) 19.7477 2.02607
\(96\) 0 0
\(97\) −2.41742 −0.245452 −0.122726 0.992441i \(-0.539164\pi\)
−0.122726 + 0.992441i \(0.539164\pi\)
\(98\) −1.79129 −0.180947
\(99\) 0 0
\(100\) 4.83485 0.483485
\(101\) −11.5826 −1.15251 −0.576255 0.817270i \(-0.695486\pi\)
−0.576255 + 0.817270i \(0.695486\pi\)
\(102\) 0 0
\(103\) −1.16515 −0.114806 −0.0574029 0.998351i \(-0.518282\pi\)
−0.0574029 + 0.998351i \(0.518282\pi\)
\(104\) 1.41742 0.138990
\(105\) 0 0
\(106\) −17.1652 −1.66723
\(107\) 12.5826 1.21640 0.608202 0.793782i \(-0.291891\pi\)
0.608202 + 0.793782i \(0.291891\pi\)
\(108\) 0 0
\(109\) 3.58258 0.343149 0.171574 0.985171i \(-0.445115\pi\)
0.171574 + 0.985171i \(0.445115\pi\)
\(110\) 5.37386 0.512378
\(111\) 0 0
\(112\) −4.95644 −0.468339
\(113\) −9.16515 −0.862185 −0.431092 0.902308i \(-0.641872\pi\)
−0.431092 + 0.902308i \(0.641872\pi\)
\(114\) 0 0
\(115\) −16.7477 −1.56173
\(116\) 9.86932 0.916343
\(117\) 0 0
\(118\) 8.20871 0.755673
\(119\) −7.58258 −0.695094
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −17.9129 −1.62176
\(123\) 0 0
\(124\) 4.33030 0.388873
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −11.5826 −1.02779 −0.513894 0.857854i \(-0.671797\pi\)
−0.513894 + 0.857854i \(0.671797\pi\)
\(128\) −10.4519 −0.923826
\(129\) 0 0
\(130\) 5.37386 0.471319
\(131\) 16.0000 1.39793 0.698963 0.715158i \(-0.253645\pi\)
0.698963 + 0.715158i \(0.253645\pi\)
\(132\) 0 0
\(133\) −6.58258 −0.570782
\(134\) −15.3739 −1.32810
\(135\) 0 0
\(136\) −10.7477 −0.921610
\(137\) 11.5826 0.989566 0.494783 0.869016i \(-0.335248\pi\)
0.494783 + 0.869016i \(0.335248\pi\)
\(138\) 0 0
\(139\) 11.1652 0.947016 0.473508 0.880790i \(-0.342988\pi\)
0.473508 + 0.880790i \(0.342988\pi\)
\(140\) −3.62614 −0.306464
\(141\) 0 0
\(142\) 20.0000 1.67836
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) −24.4955 −2.03424
\(146\) −12.5390 −1.03774
\(147\) 0 0
\(148\) 1.20871 0.0993555
\(149\) −6.16515 −0.505069 −0.252534 0.967588i \(-0.581264\pi\)
−0.252534 + 0.967588i \(0.581264\pi\)
\(150\) 0 0
\(151\) 3.58258 0.291546 0.145773 0.989318i \(-0.453433\pi\)
0.145773 + 0.989318i \(0.453433\pi\)
\(152\) −9.33030 −0.756787
\(153\) 0 0
\(154\) −1.79129 −0.144346
\(155\) −10.7477 −0.863278
\(156\) 0 0
\(157\) 19.1652 1.52955 0.764773 0.644300i \(-0.222851\pi\)
0.764773 + 0.644300i \(0.222851\pi\)
\(158\) −12.8348 −1.02109
\(159\) 0 0
\(160\) −18.1307 −1.43336
\(161\) 5.58258 0.439969
\(162\) 0 0
\(163\) 8.58258 0.672239 0.336120 0.941819i \(-0.390885\pi\)
0.336120 + 0.941819i \(0.390885\pi\)
\(164\) 13.4955 1.05382
\(165\) 0 0
\(166\) −20.7477 −1.61034
\(167\) 4.74773 0.367390 0.183695 0.982983i \(-0.441194\pi\)
0.183695 + 0.982983i \(0.441194\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) −40.7477 −3.12521
\(171\) 0 0
\(172\) 1.91288 0.145856
\(173\) 7.16515 0.544756 0.272378 0.962190i \(-0.412190\pi\)
0.272378 + 0.962190i \(0.412190\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) −4.95644 −0.373606
\(177\) 0 0
\(178\) 16.4174 1.23054
\(179\) −14.3303 −1.07110 −0.535549 0.844504i \(-0.679895\pi\)
−0.535549 + 0.844504i \(0.679895\pi\)
\(180\) 0 0
\(181\) −5.58258 −0.414950 −0.207475 0.978240i \(-0.566524\pi\)
−0.207475 + 0.978240i \(0.566524\pi\)
\(182\) −1.79129 −0.132779
\(183\) 0 0
\(184\) 7.91288 0.583345
\(185\) −3.00000 −0.220564
\(186\) 0 0
\(187\) −7.58258 −0.554493
\(188\) −1.71326 −0.124952
\(189\) 0 0
\(190\) −35.3739 −2.56629
\(191\) −11.5826 −0.838086 −0.419043 0.907966i \(-0.637634\pi\)
−0.419043 + 0.907966i \(0.637634\pi\)
\(192\) 0 0
\(193\) −2.41742 −0.174010 −0.0870050 0.996208i \(-0.527730\pi\)
−0.0870050 + 0.996208i \(0.527730\pi\)
\(194\) 4.33030 0.310898
\(195\) 0 0
\(196\) 1.20871 0.0863366
\(197\) −5.16515 −0.368002 −0.184001 0.982926i \(-0.558905\pi\)
−0.184001 + 0.982926i \(0.558905\pi\)
\(198\) 0 0
\(199\) −9.58258 −0.679291 −0.339645 0.940554i \(-0.610307\pi\)
−0.339645 + 0.940554i \(0.610307\pi\)
\(200\) 5.66970 0.400908
\(201\) 0 0
\(202\) 20.7477 1.45980
\(203\) 8.16515 0.573081
\(204\) 0 0
\(205\) −33.4955 −2.33942
\(206\) 2.08712 0.145417
\(207\) 0 0
\(208\) −4.95644 −0.343667
\(209\) −6.58258 −0.455326
\(210\) 0 0
\(211\) −13.1652 −0.906326 −0.453163 0.891428i \(-0.649705\pi\)
−0.453163 + 0.891428i \(0.649705\pi\)
\(212\) 11.5826 0.795495
\(213\) 0 0
\(214\) −22.5390 −1.54074
\(215\) −4.74773 −0.323792
\(216\) 0 0
\(217\) 3.58258 0.243201
\(218\) −6.41742 −0.434643
\(219\) 0 0
\(220\) −3.62614 −0.244474
\(221\) −7.58258 −0.510059
\(222\) 0 0
\(223\) 6.00000 0.401790 0.200895 0.979613i \(-0.435615\pi\)
0.200895 + 0.979613i \(0.435615\pi\)
\(224\) 6.04356 0.403802
\(225\) 0 0
\(226\) 16.4174 1.09207
\(227\) 22.0000 1.46019 0.730096 0.683345i \(-0.239475\pi\)
0.730096 + 0.683345i \(0.239475\pi\)
\(228\) 0 0
\(229\) 0.747727 0.0494112 0.0247056 0.999695i \(-0.492135\pi\)
0.0247056 + 0.999695i \(0.492135\pi\)
\(230\) 30.0000 1.97814
\(231\) 0 0
\(232\) 11.5735 0.759836
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) 4.25227 0.277388
\(236\) −5.53901 −0.360559
\(237\) 0 0
\(238\) 13.5826 0.880428
\(239\) −16.5826 −1.07264 −0.536319 0.844015i \(-0.680186\pi\)
−0.536319 + 0.844015i \(0.680186\pi\)
\(240\) 0 0
\(241\) −10.1652 −0.654795 −0.327397 0.944887i \(-0.606172\pi\)
−0.327397 + 0.944887i \(0.606172\pi\)
\(242\) −1.79129 −0.115148
\(243\) 0 0
\(244\) 12.0871 0.773799
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −6.58258 −0.418839
\(248\) 5.07803 0.322455
\(249\) 0 0
\(250\) −5.37386 −0.339873
\(251\) −7.41742 −0.468184 −0.234092 0.972214i \(-0.575212\pi\)
−0.234092 + 0.972214i \(0.575212\pi\)
\(252\) 0 0
\(253\) 5.58258 0.350974
\(254\) 20.7477 1.30183
\(255\) 0 0
\(256\) 20.5481 1.28426
\(257\) −19.0000 −1.18519 −0.592594 0.805502i \(-0.701896\pi\)
−0.592594 + 0.805502i \(0.701896\pi\)
\(258\) 0 0
\(259\) 1.00000 0.0621370
\(260\) −3.62614 −0.224883
\(261\) 0 0
\(262\) −28.6606 −1.77066
\(263\) 22.9129 1.41287 0.706434 0.707779i \(-0.250303\pi\)
0.706434 + 0.707779i \(0.250303\pi\)
\(264\) 0 0
\(265\) −28.7477 −1.76596
\(266\) 11.7913 0.722970
\(267\) 0 0
\(268\) 10.3739 0.633685
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 5.41742 0.329085 0.164543 0.986370i \(-0.447385\pi\)
0.164543 + 0.986370i \(0.447385\pi\)
\(272\) 37.5826 2.27878
\(273\) 0 0
\(274\) −20.7477 −1.25342
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) −19.1652 −1.15152 −0.575761 0.817618i \(-0.695294\pi\)
−0.575761 + 0.817618i \(0.695294\pi\)
\(278\) −20.0000 −1.19952
\(279\) 0 0
\(280\) −4.25227 −0.254122
\(281\) 27.3303 1.63039 0.815195 0.579187i \(-0.196630\pi\)
0.815195 + 0.579187i \(0.196630\pi\)
\(282\) 0 0
\(283\) 27.7477 1.64943 0.824716 0.565548i \(-0.191335\pi\)
0.824716 + 0.565548i \(0.191335\pi\)
\(284\) −13.4955 −0.800808
\(285\) 0 0
\(286\) −1.79129 −0.105921
\(287\) 11.1652 0.659058
\(288\) 0 0
\(289\) 40.4955 2.38209
\(290\) 43.8784 2.57663
\(291\) 0 0
\(292\) 8.46099 0.495142
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 13.7477 0.800424
\(296\) 1.41742 0.0823861
\(297\) 0 0
\(298\) 11.0436 0.639736
\(299\) 5.58258 0.322849
\(300\) 0 0
\(301\) 1.58258 0.0912181
\(302\) −6.41742 −0.369281
\(303\) 0 0
\(304\) 32.6261 1.87124
\(305\) −30.0000 −1.71780
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 1.20871 0.0688728
\(309\) 0 0
\(310\) 19.2523 1.09346
\(311\) −14.3303 −0.812597 −0.406298 0.913740i \(-0.633181\pi\)
−0.406298 + 0.913740i \(0.633181\pi\)
\(312\) 0 0
\(313\) 19.5826 1.10687 0.553436 0.832891i \(-0.313316\pi\)
0.553436 + 0.832891i \(0.313316\pi\)
\(314\) −34.3303 −1.93737
\(315\) 0 0
\(316\) 8.66061 0.487197
\(317\) 22.4174 1.25909 0.629544 0.776965i \(-0.283242\pi\)
0.629544 + 0.776965i \(0.283242\pi\)
\(318\) 0 0
\(319\) 8.16515 0.457161
\(320\) 2.73864 0.153094
\(321\) 0 0
\(322\) −10.0000 −0.557278
\(323\) 49.9129 2.77723
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) −15.3739 −0.851480
\(327\) 0 0
\(328\) 15.8258 0.873831
\(329\) −1.41742 −0.0781451
\(330\) 0 0
\(331\) −3.16515 −0.173972 −0.0869862 0.996210i \(-0.527724\pi\)
−0.0869862 + 0.996210i \(0.527724\pi\)
\(332\) 14.0000 0.768350
\(333\) 0 0
\(334\) −8.50455 −0.465348
\(335\) −25.7477 −1.40675
\(336\) 0 0
\(337\) 17.5826 0.957784 0.478892 0.877874i \(-0.341039\pi\)
0.478892 + 0.877874i \(0.341039\pi\)
\(338\) 21.4955 1.16920
\(339\) 0 0
\(340\) 27.4955 1.49115
\(341\) 3.58258 0.194007
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 2.24318 0.120944
\(345\) 0 0
\(346\) −12.8348 −0.690006
\(347\) −26.3303 −1.41348 −0.706742 0.707471i \(-0.749836\pi\)
−0.706742 + 0.707471i \(0.749836\pi\)
\(348\) 0 0
\(349\) −15.0000 −0.802932 −0.401466 0.915874i \(-0.631499\pi\)
−0.401466 + 0.915874i \(0.631499\pi\)
\(350\) −7.16515 −0.382993
\(351\) 0 0
\(352\) 6.04356 0.322123
\(353\) −24.1652 −1.28618 −0.643091 0.765790i \(-0.722348\pi\)
−0.643091 + 0.765790i \(0.722348\pi\)
\(354\) 0 0
\(355\) 33.4955 1.77775
\(356\) −11.0780 −0.587134
\(357\) 0 0
\(358\) 25.6697 1.35669
\(359\) 8.83485 0.466285 0.233143 0.972443i \(-0.425099\pi\)
0.233143 + 0.972443i \(0.425099\pi\)
\(360\) 0 0
\(361\) 24.3303 1.28054
\(362\) 10.0000 0.525588
\(363\) 0 0
\(364\) 1.20871 0.0633537
\(365\) −21.0000 −1.09919
\(366\) 0 0
\(367\) 22.0000 1.14839 0.574195 0.818718i \(-0.305315\pi\)
0.574195 + 0.818718i \(0.305315\pi\)
\(368\) −27.6697 −1.44238
\(369\) 0 0
\(370\) 5.37386 0.279374
\(371\) 9.58258 0.497503
\(372\) 0 0
\(373\) −34.7477 −1.79917 −0.899585 0.436747i \(-0.856131\pi\)
−0.899585 + 0.436747i \(0.856131\pi\)
\(374\) 13.5826 0.702338
\(375\) 0 0
\(376\) −2.00909 −0.103611
\(377\) 8.16515 0.420527
\(378\) 0 0
\(379\) −12.5826 −0.646323 −0.323162 0.946344i \(-0.604746\pi\)
−0.323162 + 0.946344i \(0.604746\pi\)
\(380\) 23.8693 1.22447
\(381\) 0 0
\(382\) 20.7477 1.06155
\(383\) −10.3303 −0.527854 −0.263927 0.964543i \(-0.585018\pi\)
−0.263927 + 0.964543i \(0.585018\pi\)
\(384\) 0 0
\(385\) −3.00000 −0.152894
\(386\) 4.33030 0.220407
\(387\) 0 0
\(388\) −2.92197 −0.148341
\(389\) 26.3303 1.33500 0.667500 0.744610i \(-0.267365\pi\)
0.667500 + 0.744610i \(0.267365\pi\)
\(390\) 0 0
\(391\) −42.3303 −2.14074
\(392\) 1.41742 0.0715907
\(393\) 0 0
\(394\) 9.25227 0.466123
\(395\) −21.4955 −1.08155
\(396\) 0 0
\(397\) −31.5826 −1.58508 −0.792542 0.609817i \(-0.791243\pi\)
−0.792542 + 0.609817i \(0.791243\pi\)
\(398\) 17.1652 0.860411
\(399\) 0 0
\(400\) −19.8258 −0.991288
\(401\) −31.9129 −1.59365 −0.796827 0.604208i \(-0.793490\pi\)
−0.796827 + 0.604208i \(0.793490\pi\)
\(402\) 0 0
\(403\) 3.58258 0.178461
\(404\) −14.0000 −0.696526
\(405\) 0 0
\(406\) −14.6261 −0.725883
\(407\) 1.00000 0.0495682
\(408\) 0 0
\(409\) 8.33030 0.411907 0.205953 0.978562i \(-0.433970\pi\)
0.205953 + 0.978562i \(0.433970\pi\)
\(410\) 60.0000 2.96319
\(411\) 0 0
\(412\) −1.40833 −0.0693836
\(413\) −4.58258 −0.225494
\(414\) 0 0
\(415\) −34.7477 −1.70570
\(416\) 6.04356 0.296310
\(417\) 0 0
\(418\) 11.7913 0.576731
\(419\) −2.58258 −0.126167 −0.0630835 0.998008i \(-0.520093\pi\)
−0.0630835 + 0.998008i \(0.520093\pi\)
\(420\) 0 0
\(421\) −33.6606 −1.64052 −0.820259 0.571993i \(-0.806171\pi\)
−0.820259 + 0.571993i \(0.806171\pi\)
\(422\) 23.5826 1.14798
\(423\) 0 0
\(424\) 13.5826 0.659628
\(425\) −30.3303 −1.47124
\(426\) 0 0
\(427\) 10.0000 0.483934
\(428\) 15.2087 0.735141
\(429\) 0 0
\(430\) 8.50455 0.410126
\(431\) −17.7477 −0.854878 −0.427439 0.904044i \(-0.640584\pi\)
−0.427439 + 0.904044i \(0.640584\pi\)
\(432\) 0 0
\(433\) −11.1652 −0.536563 −0.268281 0.963341i \(-0.586456\pi\)
−0.268281 + 0.963341i \(0.586456\pi\)
\(434\) −6.41742 −0.308046
\(435\) 0 0
\(436\) 4.33030 0.207384
\(437\) −36.7477 −1.75788
\(438\) 0 0
\(439\) 17.4174 0.831288 0.415644 0.909527i \(-0.363556\pi\)
0.415644 + 0.909527i \(0.363556\pi\)
\(440\) −4.25227 −0.202719
\(441\) 0 0
\(442\) 13.5826 0.646057
\(443\) 23.1652 1.10061 0.550305 0.834964i \(-0.314512\pi\)
0.550305 + 0.834964i \(0.314512\pi\)
\(444\) 0 0
\(445\) 27.4955 1.30341
\(446\) −10.7477 −0.508920
\(447\) 0 0
\(448\) −0.912878 −0.0431295
\(449\) 18.3303 0.865060 0.432530 0.901619i \(-0.357621\pi\)
0.432530 + 0.901619i \(0.357621\pi\)
\(450\) 0 0
\(451\) 11.1652 0.525746
\(452\) −11.0780 −0.521067
\(453\) 0 0
\(454\) −39.4083 −1.84952
\(455\) −3.00000 −0.140642
\(456\) 0 0
\(457\) −19.9129 −0.931485 −0.465743 0.884920i \(-0.654213\pi\)
−0.465743 + 0.884920i \(0.654213\pi\)
\(458\) −1.33939 −0.0625858
\(459\) 0 0
\(460\) −20.2432 −0.943843
\(461\) −18.3303 −0.853727 −0.426864 0.904316i \(-0.640382\pi\)
−0.426864 + 0.904316i \(0.640382\pi\)
\(462\) 0 0
\(463\) 8.58258 0.398866 0.199433 0.979911i \(-0.436090\pi\)
0.199433 + 0.979911i \(0.436090\pi\)
\(464\) −40.4701 −1.87878
\(465\) 0 0
\(466\) −25.0780 −1.16172
\(467\) 38.5826 1.78539 0.892694 0.450663i \(-0.148812\pi\)
0.892694 + 0.450663i \(0.148812\pi\)
\(468\) 0 0
\(469\) 8.58258 0.396307
\(470\) −7.61704 −0.351348
\(471\) 0 0
\(472\) −6.49545 −0.298978
\(473\) 1.58258 0.0727669
\(474\) 0 0
\(475\) −26.3303 −1.20812
\(476\) −9.16515 −0.420084
\(477\) 0 0
\(478\) 29.7042 1.35864
\(479\) 15.5826 0.711986 0.355993 0.934489i \(-0.384143\pi\)
0.355993 + 0.934489i \(0.384143\pi\)
\(480\) 0 0
\(481\) 1.00000 0.0455961
\(482\) 18.2087 0.829384
\(483\) 0 0
\(484\) 1.20871 0.0549415
\(485\) 7.25227 0.329309
\(486\) 0 0
\(487\) 10.3303 0.468111 0.234055 0.972223i \(-0.424800\pi\)
0.234055 + 0.972223i \(0.424800\pi\)
\(488\) 14.1742 0.641638
\(489\) 0 0
\(490\) 5.37386 0.242766
\(491\) 22.9129 1.03404 0.517022 0.855972i \(-0.327041\pi\)
0.517022 + 0.855972i \(0.327041\pi\)
\(492\) 0 0
\(493\) −61.9129 −2.78842
\(494\) 11.7913 0.530515
\(495\) 0 0
\(496\) −17.7568 −0.797305
\(497\) −11.1652 −0.500825
\(498\) 0 0
\(499\) 41.7477 1.86888 0.934442 0.356114i \(-0.115899\pi\)
0.934442 + 0.356114i \(0.115899\pi\)
\(500\) 3.62614 0.162166
\(501\) 0 0
\(502\) 13.2867 0.593016
\(503\) 0.747727 0.0333395 0.0166698 0.999861i \(-0.494694\pi\)
0.0166698 + 0.999861i \(0.494694\pi\)
\(504\) 0 0
\(505\) 34.7477 1.54625
\(506\) −10.0000 −0.444554
\(507\) 0 0
\(508\) −14.0000 −0.621150
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 7.00000 0.309662
\(512\) −15.9038 −0.702855
\(513\) 0 0
\(514\) 34.0345 1.50120
\(515\) 3.49545 0.154028
\(516\) 0 0
\(517\) −1.41742 −0.0623382
\(518\) −1.79129 −0.0787047
\(519\) 0 0
\(520\) −4.25227 −0.186475
\(521\) −15.8348 −0.693737 −0.346869 0.937914i \(-0.612755\pi\)
−0.346869 + 0.937914i \(0.612755\pi\)
\(522\) 0 0
\(523\) 15.4174 0.674157 0.337078 0.941477i \(-0.390561\pi\)
0.337078 + 0.941477i \(0.390561\pi\)
\(524\) 19.3394 0.844845
\(525\) 0 0
\(526\) −41.0436 −1.78958
\(527\) −27.1652 −1.18333
\(528\) 0 0
\(529\) 8.16515 0.355007
\(530\) 51.4955 2.23682
\(531\) 0 0
\(532\) −7.95644 −0.344955
\(533\) 11.1652 0.483616
\(534\) 0 0
\(535\) −37.7477 −1.63198
\(536\) 12.1652 0.525455
\(537\) 0 0
\(538\) 17.9129 0.772279
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 18.3303 0.788081 0.394041 0.919093i \(-0.371077\pi\)
0.394041 + 0.919093i \(0.371077\pi\)
\(542\) −9.70417 −0.416830
\(543\) 0 0
\(544\) −45.8258 −1.96476
\(545\) −10.7477 −0.460382
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 14.0000 0.598050
\(549\) 0 0
\(550\) −7.16515 −0.305523
\(551\) −53.7477 −2.28973
\(552\) 0 0
\(553\) 7.16515 0.304693
\(554\) 34.3303 1.45855
\(555\) 0 0
\(556\) 13.4955 0.572335
\(557\) −9.33030 −0.395338 −0.197669 0.980269i \(-0.563337\pi\)
−0.197669 + 0.980269i \(0.563337\pi\)
\(558\) 0 0
\(559\) 1.58258 0.0669358
\(560\) 14.8693 0.628343
\(561\) 0 0
\(562\) −48.9564 −2.06510
\(563\) 37.5826 1.58392 0.791958 0.610575i \(-0.209062\pi\)
0.791958 + 0.610575i \(0.209062\pi\)
\(564\) 0 0
\(565\) 27.4955 1.15674
\(566\) −49.7042 −2.08922
\(567\) 0 0
\(568\) −15.8258 −0.664034
\(569\) 26.6606 1.11767 0.558835 0.829279i \(-0.311248\pi\)
0.558835 + 0.829279i \(0.311248\pi\)
\(570\) 0 0
\(571\) 28.8348 1.20670 0.603350 0.797476i \(-0.293832\pi\)
0.603350 + 0.797476i \(0.293832\pi\)
\(572\) 1.20871 0.0505388
\(573\) 0 0
\(574\) −20.0000 −0.834784
\(575\) 22.3303 0.931238
\(576\) 0 0
\(577\) −21.9129 −0.912245 −0.456123 0.889917i \(-0.650762\pi\)
−0.456123 + 0.889917i \(0.650762\pi\)
\(578\) −72.5390 −3.01723
\(579\) 0 0
\(580\) −29.6080 −1.22940
\(581\) 11.5826 0.480526
\(582\) 0 0
\(583\) 9.58258 0.396870
\(584\) 9.92197 0.410574
\(585\) 0 0
\(586\) 0 0
\(587\) −37.7477 −1.55802 −0.779008 0.627014i \(-0.784277\pi\)
−0.779008 + 0.627014i \(0.784277\pi\)
\(588\) 0 0
\(589\) −23.5826 −0.971703
\(590\) −24.6261 −1.01384
\(591\) 0 0
\(592\) −4.95644 −0.203708
\(593\) −16.0000 −0.657041 −0.328521 0.944497i \(-0.606550\pi\)
−0.328521 + 0.944497i \(0.606550\pi\)
\(594\) 0 0
\(595\) 22.7477 0.932566
\(596\) −7.45189 −0.305241
\(597\) 0 0
\(598\) −10.0000 −0.408930
\(599\) −7.16515 −0.292760 −0.146380 0.989228i \(-0.546762\pi\)
−0.146380 + 0.989228i \(0.546762\pi\)
\(600\) 0 0
\(601\) 24.4955 0.999190 0.499595 0.866259i \(-0.333482\pi\)
0.499595 + 0.866259i \(0.333482\pi\)
\(602\) −2.83485 −0.115540
\(603\) 0 0
\(604\) 4.33030 0.176198
\(605\) −3.00000 −0.121967
\(606\) 0 0
\(607\) −21.7477 −0.882713 −0.441357 0.897332i \(-0.645503\pi\)
−0.441357 + 0.897332i \(0.645503\pi\)
\(608\) −39.7822 −1.61338
\(609\) 0 0
\(610\) 53.7386 2.17581
\(611\) −1.41742 −0.0573428
\(612\) 0 0
\(613\) −26.7477 −1.08033 −0.540165 0.841559i \(-0.681638\pi\)
−0.540165 + 0.841559i \(0.681638\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 1.41742 0.0571097
\(617\) −2.83485 −0.114127 −0.0570634 0.998371i \(-0.518174\pi\)
−0.0570634 + 0.998371i \(0.518174\pi\)
\(618\) 0 0
\(619\) −29.0780 −1.16874 −0.584372 0.811486i \(-0.698659\pi\)
−0.584372 + 0.811486i \(0.698659\pi\)
\(620\) −12.9909 −0.521727
\(621\) 0 0
\(622\) 25.6697 1.02926
\(623\) −9.16515 −0.367194
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) −35.0780 −1.40200
\(627\) 0 0
\(628\) 23.1652 0.924390
\(629\) −7.58258 −0.302337
\(630\) 0 0
\(631\) 23.1652 0.922190 0.461095 0.887351i \(-0.347457\pi\)
0.461095 + 0.887351i \(0.347457\pi\)
\(632\) 10.1561 0.403986
\(633\) 0 0
\(634\) −40.1561 −1.59480
\(635\) 34.7477 1.37892
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) −14.6261 −0.579054
\(639\) 0 0
\(640\) 31.3557 1.23944
\(641\) −43.5826 −1.72141 −0.860704 0.509106i \(-0.829976\pi\)
−0.860704 + 0.509106i \(0.829976\pi\)
\(642\) 0 0
\(643\) 38.2432 1.50816 0.754082 0.656780i \(-0.228082\pi\)
0.754082 + 0.656780i \(0.228082\pi\)
\(644\) 6.74773 0.265898
\(645\) 0 0
\(646\) −89.4083 −3.51772
\(647\) 10.9129 0.429030 0.214515 0.976721i \(-0.431183\pi\)
0.214515 + 0.976721i \(0.431183\pi\)
\(648\) 0 0
\(649\) −4.58258 −0.179882
\(650\) −7.16515 −0.281040
\(651\) 0 0
\(652\) 10.3739 0.406272
\(653\) 30.3303 1.18692 0.593458 0.804865i \(-0.297762\pi\)
0.593458 + 0.804865i \(0.297762\pi\)
\(654\) 0 0
\(655\) −48.0000 −1.87552
\(656\) −55.3394 −2.16064
\(657\) 0 0
\(658\) 2.53901 0.0989811
\(659\) 28.5826 1.11342 0.556710 0.830707i \(-0.312064\pi\)
0.556710 + 0.830707i \(0.312064\pi\)
\(660\) 0 0
\(661\) −39.0780 −1.51996 −0.759980 0.649947i \(-0.774791\pi\)
−0.759980 + 0.649947i \(0.774791\pi\)
\(662\) 5.66970 0.220359
\(663\) 0 0
\(664\) 16.4174 0.637120
\(665\) 19.7477 0.765784
\(666\) 0 0
\(667\) 45.5826 1.76496
\(668\) 5.73864 0.222034
\(669\) 0 0
\(670\) 46.1216 1.78183
\(671\) 10.0000 0.386046
\(672\) 0 0
\(673\) 11.2523 0.433743 0.216872 0.976200i \(-0.430415\pi\)
0.216872 + 0.976200i \(0.430415\pi\)
\(674\) −31.4955 −1.21316
\(675\) 0 0
\(676\) −14.5045 −0.557867
\(677\) 45.1652 1.73584 0.867919 0.496706i \(-0.165457\pi\)
0.867919 + 0.496706i \(0.165457\pi\)
\(678\) 0 0
\(679\) −2.41742 −0.0927722
\(680\) 32.2432 1.23647
\(681\) 0 0
\(682\) −6.41742 −0.245736
\(683\) 33.0780 1.26570 0.632848 0.774276i \(-0.281886\pi\)
0.632848 + 0.774276i \(0.281886\pi\)
\(684\) 0 0
\(685\) −34.7477 −1.32764
\(686\) −1.79129 −0.0683917
\(687\) 0 0
\(688\) −7.84394 −0.299047
\(689\) 9.58258 0.365067
\(690\) 0 0
\(691\) 10.0000 0.380418 0.190209 0.981744i \(-0.439083\pi\)
0.190209 + 0.981744i \(0.439083\pi\)
\(692\) 8.66061 0.329227
\(693\) 0 0
\(694\) 47.1652 1.79036
\(695\) −33.4955 −1.27055
\(696\) 0 0
\(697\) −84.6606 −3.20675
\(698\) 26.8693 1.01702
\(699\) 0 0
\(700\) 4.83485 0.182740
\(701\) −10.0000 −0.377695 −0.188847 0.982006i \(-0.560475\pi\)
−0.188847 + 0.982006i \(0.560475\pi\)
\(702\) 0 0
\(703\) −6.58258 −0.248267
\(704\) −0.912878 −0.0344054
\(705\) 0 0
\(706\) 43.2867 1.62912
\(707\) −11.5826 −0.435608
\(708\) 0 0
\(709\) 27.6606 1.03882 0.519408 0.854526i \(-0.326153\pi\)
0.519408 + 0.854526i \(0.326153\pi\)
\(710\) −60.0000 −2.25176
\(711\) 0 0
\(712\) −12.9909 −0.486855
\(713\) 20.0000 0.749006
\(714\) 0 0
\(715\) −3.00000 −0.112194
\(716\) −17.3212 −0.647324
\(717\) 0 0
\(718\) −15.8258 −0.590612
\(719\) 14.0780 0.525022 0.262511 0.964929i \(-0.415449\pi\)
0.262511 + 0.964929i \(0.415449\pi\)
\(720\) 0 0
\(721\) −1.16515 −0.0433925
\(722\) −43.5826 −1.62198
\(723\) 0 0
\(724\) −6.74773 −0.250777
\(725\) 32.6606 1.21298
\(726\) 0 0
\(727\) −15.9129 −0.590176 −0.295088 0.955470i \(-0.595349\pi\)
−0.295088 + 0.955470i \(0.595349\pi\)
\(728\) 1.41742 0.0525332
\(729\) 0 0
\(730\) 37.6170 1.39227
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) −34.0000 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(734\) −39.4083 −1.45459
\(735\) 0 0
\(736\) 33.7386 1.24362
\(737\) 8.58258 0.316143
\(738\) 0 0
\(739\) −31.9129 −1.17393 −0.586967 0.809611i \(-0.699678\pi\)
−0.586967 + 0.809611i \(0.699678\pi\)
\(740\) −3.62614 −0.133299
\(741\) 0 0
\(742\) −17.1652 −0.630153
\(743\) 53.2432 1.95330 0.976651 0.214830i \(-0.0689198\pi\)
0.976651 + 0.214830i \(0.0689198\pi\)
\(744\) 0 0
\(745\) 18.4955 0.677621
\(746\) 62.2432 2.27888
\(747\) 0 0
\(748\) −9.16515 −0.335111
\(749\) 12.5826 0.459757
\(750\) 0 0
\(751\) −8.91288 −0.325236 −0.162618 0.986689i \(-0.551994\pi\)
−0.162618 + 0.986689i \(0.551994\pi\)
\(752\) 7.02538 0.256189
\(753\) 0 0
\(754\) −14.6261 −0.532652
\(755\) −10.7477 −0.391150
\(756\) 0 0
\(757\) 27.3303 0.993337 0.496668 0.867940i \(-0.334557\pi\)
0.496668 + 0.867940i \(0.334557\pi\)
\(758\) 22.5390 0.818654
\(759\) 0 0
\(760\) 27.9909 1.01534
\(761\) −42.3303 −1.53447 −0.767236 0.641365i \(-0.778369\pi\)
−0.767236 + 0.641365i \(0.778369\pi\)
\(762\) 0 0
\(763\) 3.58258 0.129698
\(764\) −14.0000 −0.506502
\(765\) 0 0
\(766\) 18.5045 0.668596
\(767\) −4.58258 −0.165467
\(768\) 0 0
\(769\) 6.49545 0.234232 0.117116 0.993118i \(-0.462635\pi\)
0.117116 + 0.993118i \(0.462635\pi\)
\(770\) 5.37386 0.193661
\(771\) 0 0
\(772\) −2.92197 −0.105164
\(773\) −6.16515 −0.221745 −0.110873 0.993835i \(-0.535365\pi\)
−0.110873 + 0.993835i \(0.535365\pi\)
\(774\) 0 0
\(775\) 14.3303 0.514760
\(776\) −3.42652 −0.123005
\(777\) 0 0
\(778\) −47.1652 −1.69095
\(779\) −73.4955 −2.63325
\(780\) 0 0
\(781\) −11.1652 −0.399521
\(782\) 75.8258 2.71152
\(783\) 0 0
\(784\) −4.95644 −0.177016
\(785\) −57.4955 −2.05210
\(786\) 0 0
\(787\) 38.5826 1.37532 0.687660 0.726033i \(-0.258638\pi\)
0.687660 + 0.726033i \(0.258638\pi\)
\(788\) −6.24318 −0.222404
\(789\) 0 0
\(790\) 38.5045 1.36993
\(791\) −9.16515 −0.325875
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) 56.5735 2.00772
\(795\) 0 0
\(796\) −11.5826 −0.410534
\(797\) 52.4955 1.85948 0.929742 0.368211i \(-0.120030\pi\)
0.929742 + 0.368211i \(0.120030\pi\)
\(798\) 0 0
\(799\) 10.7477 0.380227
\(800\) 24.1742 0.854689
\(801\) 0 0
\(802\) 57.1652 2.01857
\(803\) 7.00000 0.247025
\(804\) 0 0
\(805\) −16.7477 −0.590280
\(806\) −6.41742 −0.226044
\(807\) 0 0
\(808\) −16.4174 −0.577563
\(809\) −9.33030 −0.328036 −0.164018 0.986457i \(-0.552446\pi\)
−0.164018 + 0.986457i \(0.552446\pi\)
\(810\) 0 0
\(811\) −2.25227 −0.0790880 −0.0395440 0.999218i \(-0.512591\pi\)
−0.0395440 + 0.999218i \(0.512591\pi\)
\(812\) 9.86932 0.346345
\(813\) 0 0
\(814\) −1.79129 −0.0627846
\(815\) −25.7477 −0.901904
\(816\) 0 0
\(817\) −10.4174 −0.364460
\(818\) −14.9220 −0.521734
\(819\) 0 0
\(820\) −40.4864 −1.41385
\(821\) 47.0000 1.64031 0.820156 0.572140i \(-0.193887\pi\)
0.820156 + 0.572140i \(0.193887\pi\)
\(822\) 0 0
\(823\) −30.5826 −1.06604 −0.533021 0.846102i \(-0.678943\pi\)
−0.533021 + 0.846102i \(0.678943\pi\)
\(824\) −1.65151 −0.0575332
\(825\) 0 0
\(826\) 8.20871 0.285618
\(827\) −8.91288 −0.309931 −0.154966 0.987920i \(-0.549527\pi\)
−0.154966 + 0.987920i \(0.549527\pi\)
\(828\) 0 0
\(829\) −40.0000 −1.38926 −0.694629 0.719368i \(-0.744431\pi\)
−0.694629 + 0.719368i \(0.744431\pi\)
\(830\) 62.2432 2.16049
\(831\) 0 0
\(832\) −0.912878 −0.0316484
\(833\) −7.58258 −0.262721
\(834\) 0 0
\(835\) −14.2432 −0.492906
\(836\) −7.95644 −0.275179
\(837\) 0 0
\(838\) 4.62614 0.159807
\(839\) −7.08712 −0.244675 −0.122337 0.992489i \(-0.539039\pi\)
−0.122337 + 0.992489i \(0.539039\pi\)
\(840\) 0 0
\(841\) 37.6697 1.29896
\(842\) 60.2958 2.07793
\(843\) 0 0
\(844\) −15.9129 −0.547744
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) −47.4955 −1.63100
\(849\) 0 0
\(850\) 54.3303 1.86351
\(851\) 5.58258 0.191368
\(852\) 0 0
\(853\) 17.1652 0.587724 0.293862 0.955848i \(-0.405059\pi\)
0.293862 + 0.955848i \(0.405059\pi\)
\(854\) −17.9129 −0.612966
\(855\) 0 0
\(856\) 17.8348 0.609583
\(857\) 7.66970 0.261992 0.130996 0.991383i \(-0.458183\pi\)
0.130996 + 0.991383i \(0.458183\pi\)
\(858\) 0 0
\(859\) 12.0000 0.409435 0.204717 0.978821i \(-0.434372\pi\)
0.204717 + 0.978821i \(0.434372\pi\)
\(860\) −5.73864 −0.195686
\(861\) 0 0
\(862\) 31.7913 1.08282
\(863\) −14.4174 −0.490775 −0.245387 0.969425i \(-0.578915\pi\)
−0.245387 + 0.969425i \(0.578915\pi\)
\(864\) 0 0
\(865\) −21.4955 −0.730867
\(866\) 20.0000 0.679628
\(867\) 0 0
\(868\) 4.33030 0.146980
\(869\) 7.16515 0.243061
\(870\) 0 0
\(871\) 8.58258 0.290809
\(872\) 5.07803 0.171964
\(873\) 0 0
\(874\) 65.8258 2.22659
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) 9.49545 0.320639 0.160319 0.987065i \(-0.448748\pi\)
0.160319 + 0.987065i \(0.448748\pi\)
\(878\) −31.1996 −1.05294
\(879\) 0 0
\(880\) 14.8693 0.501245
\(881\) 37.6606 1.26882 0.634409 0.772998i \(-0.281244\pi\)
0.634409 + 0.772998i \(0.281244\pi\)
\(882\) 0 0
\(883\) −55.7477 −1.87606 −0.938030 0.346554i \(-0.887352\pi\)
−0.938030 + 0.346554i \(0.887352\pi\)
\(884\) −9.16515 −0.308257
\(885\) 0 0
\(886\) −41.4955 −1.39407
\(887\) −38.7477 −1.30102 −0.650511 0.759497i \(-0.725445\pi\)
−0.650511 + 0.759497i \(0.725445\pi\)
\(888\) 0 0
\(889\) −11.5826 −0.388467
\(890\) −49.2523 −1.65094
\(891\) 0 0
\(892\) 7.25227 0.242824
\(893\) 9.33030 0.312227
\(894\) 0 0
\(895\) 42.9909 1.43703
\(896\) −10.4519 −0.349173
\(897\) 0 0
\(898\) −32.8348 −1.09571
\(899\) 29.2523 0.975618
\(900\) 0 0
\(901\) −72.6606 −2.42068
\(902\) −20.0000 −0.665927
\(903\) 0 0
\(904\) −12.9909 −0.432071
\(905\) 16.7477 0.556713
\(906\) 0 0
\(907\) 42.3303 1.40555 0.702777 0.711410i \(-0.251943\pi\)
0.702777 + 0.711410i \(0.251943\pi\)
\(908\) 26.5917 0.882475
\(909\) 0 0
\(910\) 5.37386 0.178142
\(911\) 3.49545 0.115810 0.0579048 0.998322i \(-0.481558\pi\)
0.0579048 + 0.998322i \(0.481558\pi\)
\(912\) 0 0
\(913\) 11.5826 0.383327
\(914\) 35.6697 1.17985
\(915\) 0 0
\(916\) 0.903787 0.0298620
\(917\) 16.0000 0.528367
\(918\) 0 0
\(919\) −8.08712 −0.266770 −0.133385 0.991064i \(-0.542585\pi\)
−0.133385 + 0.991064i \(0.542585\pi\)
\(920\) −23.7386 −0.782640
\(921\) 0 0
\(922\) 32.8348 1.08136
\(923\) −11.1652 −0.367505
\(924\) 0 0
\(925\) 4.00000 0.131519
\(926\) −15.3739 −0.505217
\(927\) 0 0
\(928\) 49.3466 1.61988
\(929\) 21.3303 0.699825 0.349912 0.936782i \(-0.386211\pi\)
0.349912 + 0.936782i \(0.386211\pi\)
\(930\) 0 0
\(931\) −6.58258 −0.215735
\(932\) 16.9220 0.554298
\(933\) 0 0
\(934\) −69.1125 −2.26143
\(935\) 22.7477 0.743930
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) −15.3739 −0.501974
\(939\) 0 0
\(940\) 5.13977 0.167641
\(941\) −35.1652 −1.14635 −0.573176 0.819433i \(-0.694289\pi\)
−0.573176 + 0.819433i \(0.694289\pi\)
\(942\) 0 0
\(943\) 62.3303 2.02975
\(944\) 22.7133 0.739254
\(945\) 0 0
\(946\) −2.83485 −0.0921689
\(947\) −45.1652 −1.46767 −0.733835 0.679328i \(-0.762272\pi\)
−0.733835 + 0.679328i \(0.762272\pi\)
\(948\) 0 0
\(949\) 7.00000 0.227230
\(950\) 47.1652 1.53024
\(951\) 0 0
\(952\) −10.7477 −0.348336
\(953\) 28.1652 0.912359 0.456179 0.889888i \(-0.349218\pi\)
0.456179 + 0.889888i \(0.349218\pi\)
\(954\) 0 0
\(955\) 34.7477 1.12441
\(956\) −20.0436 −0.648255
\(957\) 0 0
\(958\) −27.9129 −0.901824
\(959\) 11.5826 0.374021
\(960\) 0 0
\(961\) −18.1652 −0.585973
\(962\) −1.79129 −0.0577534
\(963\) 0 0
\(964\) −12.2867 −0.395729
\(965\) 7.25227 0.233459
\(966\) 0 0
\(967\) −13.1652 −0.423363 −0.211681 0.977339i \(-0.567894\pi\)
−0.211681 + 0.977339i \(0.567894\pi\)
\(968\) 1.41742 0.0455577
\(969\) 0 0
\(970\) −12.9909 −0.417113
\(971\) 12.5826 0.403794 0.201897 0.979407i \(-0.435289\pi\)
0.201897 + 0.979407i \(0.435289\pi\)
\(972\) 0 0
\(973\) 11.1652 0.357938
\(974\) −18.5045 −0.592924
\(975\) 0 0
\(976\) −49.5644 −1.58652
\(977\) −23.2523 −0.743906 −0.371953 0.928252i \(-0.621312\pi\)
−0.371953 + 0.928252i \(0.621312\pi\)
\(978\) 0 0
\(979\) −9.16515 −0.292920
\(980\) −3.62614 −0.115833
\(981\) 0 0
\(982\) −41.0436 −1.30975
\(983\) 4.83485 0.154208 0.0771039 0.997023i \(-0.475433\pi\)
0.0771039 + 0.997023i \(0.475433\pi\)
\(984\) 0 0
\(985\) 15.4955 0.493726
\(986\) 110.904 3.53190
\(987\) 0 0
\(988\) −7.95644 −0.253128
\(989\) 8.83485 0.280932
\(990\) 0 0
\(991\) −20.2523 −0.643335 −0.321667 0.946853i \(-0.604243\pi\)
−0.321667 + 0.946853i \(0.604243\pi\)
\(992\) 21.6515 0.687436
\(993\) 0 0
\(994\) 20.0000 0.634361
\(995\) 28.7477 0.911364
\(996\) 0 0
\(997\) 10.6606 0.337625 0.168812 0.985648i \(-0.446007\pi\)
0.168812 + 0.985648i \(0.446007\pi\)
\(998\) −74.7822 −2.36719
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.2.a.j.1.1 2
3.2 odd 2 231.2.a.b.1.2 2
7.6 odd 2 4851.2.a.ba.1.1 2
11.10 odd 2 7623.2.a.bf.1.2 2
12.11 even 2 3696.2.a.bl.1.2 2
15.14 odd 2 5775.2.a.bn.1.1 2
21.20 even 2 1617.2.a.o.1.2 2
33.32 even 2 2541.2.a.z.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.2.a.b.1.2 2 3.2 odd 2
693.2.a.j.1.1 2 1.1 even 1 trivial
1617.2.a.o.1.2 2 21.20 even 2
2541.2.a.z.1.1 2 33.32 even 2
3696.2.a.bl.1.2 2 12.11 even 2
4851.2.a.ba.1.1 2 7.6 odd 2
5775.2.a.bn.1.1 2 15.14 odd 2
7623.2.a.bf.1.2 2 11.10 odd 2