Properties

Label 693.2.a.g.1.1
Level $693$
Weight $2$
Character 693.1
Self dual yes
Analytic conductor $5.534$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.53363286007\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.30278\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30278 q^{2} +3.30278 q^{4} -1.00000 q^{5} -1.00000 q^{7} -3.00000 q^{8} +O(q^{10})\) \(q-2.30278 q^{2} +3.30278 q^{4} -1.00000 q^{5} -1.00000 q^{7} -3.00000 q^{8} +2.30278 q^{10} -1.00000 q^{11} +3.60555 q^{13} +2.30278 q^{14} +0.302776 q^{16} -4.00000 q^{17} +3.00000 q^{19} -3.30278 q^{20} +2.30278 q^{22} -2.00000 q^{23} -4.00000 q^{25} -8.30278 q^{26} -3.30278 q^{28} +5.60555 q^{29} -2.00000 q^{31} +5.30278 q^{32} +9.21110 q^{34} +1.00000 q^{35} -8.21110 q^{37} -6.90833 q^{38} +3.00000 q^{40} +7.21110 q^{41} -5.21110 q^{43} -3.30278 q^{44} +4.60555 q^{46} -2.39445 q^{47} +1.00000 q^{49} +9.21110 q^{50} +11.9083 q^{52} +1.00000 q^{55} +3.00000 q^{56} -12.9083 q^{58} -7.60555 q^{59} -11.2111 q^{61} +4.60555 q^{62} -12.8167 q^{64} -3.60555 q^{65} +1.60555 q^{67} -13.2111 q^{68} -2.30278 q^{70} -11.2111 q^{71} -12.8167 q^{73} +18.9083 q^{74} +9.90833 q^{76} +1.00000 q^{77} -3.21110 q^{79} -0.302776 q^{80} -16.6056 q^{82} -12.0000 q^{83} +4.00000 q^{85} +12.0000 q^{86} +3.00000 q^{88} -6.00000 q^{89} -3.60555 q^{91} -6.60555 q^{92} +5.51388 q^{94} -3.00000 q^{95} +1.21110 q^{97} -2.30278 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 3 q^{4} - 2 q^{5} - 2 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + 3 q^{4} - 2 q^{5} - 2 q^{7} - 6 q^{8} + q^{10} - 2 q^{11} + q^{14} - 3 q^{16} - 8 q^{17} + 6 q^{19} - 3 q^{20} + q^{22} - 4 q^{23} - 8 q^{25} - 13 q^{26} - 3 q^{28} + 4 q^{29} - 4 q^{31} + 7 q^{32} + 4 q^{34} + 2 q^{35} - 2 q^{37} - 3 q^{38} + 6 q^{40} + 4 q^{43} - 3 q^{44} + 2 q^{46} - 12 q^{47} + 2 q^{49} + 4 q^{50} + 13 q^{52} + 2 q^{55} + 6 q^{56} - 15 q^{58} - 8 q^{59} - 8 q^{61} + 2 q^{62} - 4 q^{64} - 4 q^{67} - 12 q^{68} - q^{70} - 8 q^{71} - 4 q^{73} + 27 q^{74} + 9 q^{76} + 2 q^{77} + 8 q^{79} + 3 q^{80} - 26 q^{82} - 24 q^{83} + 8 q^{85} + 24 q^{86} + 6 q^{88} - 12 q^{89} - 6 q^{92} - 7 q^{94} - 6 q^{95} - 12 q^{97} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.30278 −1.62831 −0.814154 0.580649i \(-0.802799\pi\)
−0.814154 + 0.580649i \(0.802799\pi\)
\(3\) 0 0
\(4\) 3.30278 1.65139
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) 2.30278 0.728202
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 3.60555 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) 2.30278 0.615443
\(15\) 0 0
\(16\) 0.302776 0.0756939
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) −3.30278 −0.738523
\(21\) 0 0
\(22\) 2.30278 0.490953
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) −8.30278 −1.62831
\(27\) 0 0
\(28\) −3.30278 −0.624166
\(29\) 5.60555 1.04092 0.520462 0.853885i \(-0.325760\pi\)
0.520462 + 0.853885i \(0.325760\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 5.30278 0.937407
\(33\) 0 0
\(34\) 9.21110 1.57969
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −8.21110 −1.34990 −0.674948 0.737865i \(-0.735834\pi\)
−0.674948 + 0.737865i \(0.735834\pi\)
\(38\) −6.90833 −1.12068
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 7.21110 1.12619 0.563093 0.826394i \(-0.309611\pi\)
0.563093 + 0.826394i \(0.309611\pi\)
\(42\) 0 0
\(43\) −5.21110 −0.794686 −0.397343 0.917670i \(-0.630068\pi\)
−0.397343 + 0.917670i \(0.630068\pi\)
\(44\) −3.30278 −0.497912
\(45\) 0 0
\(46\) 4.60555 0.679051
\(47\) −2.39445 −0.349266 −0.174633 0.984634i \(-0.555874\pi\)
−0.174633 + 0.984634i \(0.555874\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 9.21110 1.30265
\(51\) 0 0
\(52\) 11.9083 1.65139
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) −12.9083 −1.69495
\(59\) −7.60555 −0.990158 −0.495079 0.868848i \(-0.664861\pi\)
−0.495079 + 0.868848i \(0.664861\pi\)
\(60\) 0 0
\(61\) −11.2111 −1.43543 −0.717717 0.696335i \(-0.754813\pi\)
−0.717717 + 0.696335i \(0.754813\pi\)
\(62\) 4.60555 0.584906
\(63\) 0 0
\(64\) −12.8167 −1.60208
\(65\) −3.60555 −0.447214
\(66\) 0 0
\(67\) 1.60555 0.196149 0.0980747 0.995179i \(-0.468732\pi\)
0.0980747 + 0.995179i \(0.468732\pi\)
\(68\) −13.2111 −1.60208
\(69\) 0 0
\(70\) −2.30278 −0.275234
\(71\) −11.2111 −1.33051 −0.665257 0.746615i \(-0.731678\pi\)
−0.665257 + 0.746615i \(0.731678\pi\)
\(72\) 0 0
\(73\) −12.8167 −1.50008 −0.750038 0.661395i \(-0.769965\pi\)
−0.750038 + 0.661395i \(0.769965\pi\)
\(74\) 18.9083 2.19805
\(75\) 0 0
\(76\) 9.90833 1.13656
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) −3.21110 −0.361277 −0.180639 0.983550i \(-0.557816\pi\)
−0.180639 + 0.983550i \(0.557816\pi\)
\(80\) −0.302776 −0.0338513
\(81\) 0 0
\(82\) −16.6056 −1.83378
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 12.0000 1.29399
\(87\) 0 0
\(88\) 3.00000 0.319801
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −3.60555 −0.377964
\(92\) −6.60555 −0.688676
\(93\) 0 0
\(94\) 5.51388 0.568713
\(95\) −3.00000 −0.307794
\(96\) 0 0
\(97\) 1.21110 0.122969 0.0614844 0.998108i \(-0.480417\pi\)
0.0614844 + 0.998108i \(0.480417\pi\)
\(98\) −2.30278 −0.232615
\(99\) 0 0
\(100\) −13.2111 −1.32111
\(101\) −12.4222 −1.23606 −0.618028 0.786156i \(-0.712068\pi\)
−0.618028 + 0.786156i \(0.712068\pi\)
\(102\) 0 0
\(103\) −9.21110 −0.907597 −0.453798 0.891104i \(-0.649931\pi\)
−0.453798 + 0.891104i \(0.649931\pi\)
\(104\) −10.8167 −1.06066
\(105\) 0 0
\(106\) 0 0
\(107\) 2.21110 0.213755 0.106878 0.994272i \(-0.465915\pi\)
0.106878 + 0.994272i \(0.465915\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) −2.30278 −0.219561
\(111\) 0 0
\(112\) −0.302776 −0.0286096
\(113\) 5.21110 0.490219 0.245110 0.969495i \(-0.421176\pi\)
0.245110 + 0.969495i \(0.421176\pi\)
\(114\) 0 0
\(115\) 2.00000 0.186501
\(116\) 18.5139 1.71897
\(117\) 0 0
\(118\) 17.5139 1.61228
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 25.8167 2.33733
\(123\) 0 0
\(124\) −6.60555 −0.593196
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −10.0000 −0.887357 −0.443678 0.896186i \(-0.646327\pi\)
−0.443678 + 0.896186i \(0.646327\pi\)
\(128\) 18.9083 1.67128
\(129\) 0 0
\(130\) 8.30278 0.728202
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) 0 0
\(133\) −3.00000 −0.260133
\(134\) −3.69722 −0.319392
\(135\) 0 0
\(136\) 12.0000 1.02899
\(137\) −6.42221 −0.548686 −0.274343 0.961632i \(-0.588460\pi\)
−0.274343 + 0.961632i \(0.588460\pi\)
\(138\) 0 0
\(139\) 14.4222 1.22328 0.611638 0.791138i \(-0.290511\pi\)
0.611638 + 0.791138i \(0.290511\pi\)
\(140\) 3.30278 0.279135
\(141\) 0 0
\(142\) 25.8167 2.16649
\(143\) −3.60555 −0.301511
\(144\) 0 0
\(145\) −5.60555 −0.465516
\(146\) 29.5139 2.44259
\(147\) 0 0
\(148\) −27.1194 −2.22920
\(149\) 21.6056 1.77000 0.884998 0.465595i \(-0.154160\pi\)
0.884998 + 0.465595i \(0.154160\pi\)
\(150\) 0 0
\(151\) 18.4222 1.49918 0.749589 0.661904i \(-0.230251\pi\)
0.749589 + 0.661904i \(0.230251\pi\)
\(152\) −9.00000 −0.729996
\(153\) 0 0
\(154\) −2.30278 −0.185563
\(155\) 2.00000 0.160644
\(156\) 0 0
\(157\) −4.78890 −0.382196 −0.191098 0.981571i \(-0.561205\pi\)
−0.191098 + 0.981571i \(0.561205\pi\)
\(158\) 7.39445 0.588271
\(159\) 0 0
\(160\) −5.30278 −0.419221
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) −12.8167 −1.00388 −0.501939 0.864903i \(-0.667380\pi\)
−0.501939 + 0.864903i \(0.667380\pi\)
\(164\) 23.8167 1.85977
\(165\) 0 0
\(166\) 27.6333 2.14476
\(167\) −23.2111 −1.79613 −0.898065 0.439864i \(-0.855027\pi\)
−0.898065 + 0.439864i \(0.855027\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −9.21110 −0.706459
\(171\) 0 0
\(172\) −17.2111 −1.31233
\(173\) 16.4222 1.24856 0.624279 0.781202i \(-0.285393\pi\)
0.624279 + 0.781202i \(0.285393\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) −0.302776 −0.0228226
\(177\) 0 0
\(178\) 13.8167 1.03560
\(179\) 16.4222 1.22745 0.613727 0.789519i \(-0.289670\pi\)
0.613727 + 0.789519i \(0.289670\pi\)
\(180\) 0 0
\(181\) 8.42221 0.626018 0.313009 0.949750i \(-0.398663\pi\)
0.313009 + 0.949750i \(0.398663\pi\)
\(182\) 8.30278 0.615443
\(183\) 0 0
\(184\) 6.00000 0.442326
\(185\) 8.21110 0.603692
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) −7.90833 −0.576774
\(189\) 0 0
\(190\) 6.90833 0.501183
\(191\) 4.78890 0.346512 0.173256 0.984877i \(-0.444571\pi\)
0.173256 + 0.984877i \(0.444571\pi\)
\(192\) 0 0
\(193\) 26.4222 1.90191 0.950956 0.309326i \(-0.100104\pi\)
0.950956 + 0.309326i \(0.100104\pi\)
\(194\) −2.78890 −0.200231
\(195\) 0 0
\(196\) 3.30278 0.235913
\(197\) −15.2111 −1.08375 −0.541873 0.840460i \(-0.682285\pi\)
−0.541873 + 0.840460i \(0.682285\pi\)
\(198\) 0 0
\(199\) −17.2111 −1.22006 −0.610031 0.792377i \(-0.708843\pi\)
−0.610031 + 0.792377i \(0.708843\pi\)
\(200\) 12.0000 0.848528
\(201\) 0 0
\(202\) 28.6056 2.01268
\(203\) −5.60555 −0.393433
\(204\) 0 0
\(205\) −7.21110 −0.503645
\(206\) 21.2111 1.47785
\(207\) 0 0
\(208\) 1.09167 0.0756939
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) 10.4222 0.717494 0.358747 0.933435i \(-0.383204\pi\)
0.358747 + 0.933435i \(0.383204\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −5.09167 −0.348060
\(215\) 5.21110 0.355394
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) −23.0278 −1.55964
\(219\) 0 0
\(220\) 3.30278 0.222673
\(221\) −14.4222 −0.970143
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) −5.30278 −0.354307
\(225\) 0 0
\(226\) −12.0000 −0.798228
\(227\) 16.4222 1.08998 0.544990 0.838443i \(-0.316533\pi\)
0.544990 + 0.838443i \(0.316533\pi\)
\(228\) 0 0
\(229\) 11.2111 0.740851 0.370425 0.928862i \(-0.379212\pi\)
0.370425 + 0.928862i \(0.379212\pi\)
\(230\) −4.60555 −0.303681
\(231\) 0 0
\(232\) −16.8167 −1.10407
\(233\) −21.6333 −1.41725 −0.708623 0.705588i \(-0.750683\pi\)
−0.708623 + 0.705588i \(0.750683\pi\)
\(234\) 0 0
\(235\) 2.39445 0.156197
\(236\) −25.1194 −1.63514
\(237\) 0 0
\(238\) −9.21110 −0.597067
\(239\) 1.42221 0.0919948 0.0459974 0.998942i \(-0.485353\pi\)
0.0459974 + 0.998942i \(0.485353\pi\)
\(240\) 0 0
\(241\) 10.3944 0.669565 0.334783 0.942295i \(-0.391337\pi\)
0.334783 + 0.942295i \(0.391337\pi\)
\(242\) −2.30278 −0.148028
\(243\) 0 0
\(244\) −37.0278 −2.37046
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) 10.8167 0.688247
\(248\) 6.00000 0.381000
\(249\) 0 0
\(250\) −20.7250 −1.31076
\(251\) −16.3944 −1.03481 −0.517404 0.855741i \(-0.673102\pi\)
−0.517404 + 0.855741i \(0.673102\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 23.0278 1.44489
\(255\) 0 0
\(256\) −17.9083 −1.11927
\(257\) −18.2111 −1.13598 −0.567989 0.823036i \(-0.692278\pi\)
−0.567989 + 0.823036i \(0.692278\pi\)
\(258\) 0 0
\(259\) 8.21110 0.510213
\(260\) −11.9083 −0.738523
\(261\) 0 0
\(262\) 13.8167 0.853596
\(263\) −21.4222 −1.32095 −0.660475 0.750848i \(-0.729645\pi\)
−0.660475 + 0.750848i \(0.729645\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6.90833 0.423577
\(267\) 0 0
\(268\) 5.30278 0.323919
\(269\) 24.4222 1.48905 0.744524 0.667596i \(-0.232676\pi\)
0.744524 + 0.667596i \(0.232676\pi\)
\(270\) 0 0
\(271\) 28.2111 1.71370 0.856851 0.515564i \(-0.172417\pi\)
0.856851 + 0.515564i \(0.172417\pi\)
\(272\) −1.21110 −0.0734339
\(273\) 0 0
\(274\) 14.7889 0.893430
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) −2.78890 −0.167569 −0.0837843 0.996484i \(-0.526701\pi\)
−0.0837843 + 0.996484i \(0.526701\pi\)
\(278\) −33.2111 −1.99187
\(279\) 0 0
\(280\) −3.00000 −0.179284
\(281\) 12.3944 0.739391 0.369695 0.929153i \(-0.379462\pi\)
0.369695 + 0.929153i \(0.379462\pi\)
\(282\) 0 0
\(283\) −15.4222 −0.916755 −0.458377 0.888758i \(-0.651569\pi\)
−0.458377 + 0.888758i \(0.651569\pi\)
\(284\) −37.0278 −2.19719
\(285\) 0 0
\(286\) 8.30278 0.490953
\(287\) −7.21110 −0.425658
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 12.9083 0.758003
\(291\) 0 0
\(292\) −42.3305 −2.47721
\(293\) −24.0000 −1.40209 −0.701047 0.713115i \(-0.747284\pi\)
−0.701047 + 0.713115i \(0.747284\pi\)
\(294\) 0 0
\(295\) 7.60555 0.442812
\(296\) 24.6333 1.43178
\(297\) 0 0
\(298\) −49.7527 −2.88210
\(299\) −7.21110 −0.417029
\(300\) 0 0
\(301\) 5.21110 0.300363
\(302\) −42.4222 −2.44112
\(303\) 0 0
\(304\) 0.908327 0.0520961
\(305\) 11.2111 0.641946
\(306\) 0 0
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) 3.30278 0.188193
\(309\) 0 0
\(310\) −4.60555 −0.261578
\(311\) 1.57779 0.0894685 0.0447343 0.998999i \(-0.485756\pi\)
0.0447343 + 0.998999i \(0.485756\pi\)
\(312\) 0 0
\(313\) −26.4222 −1.49347 −0.746736 0.665121i \(-0.768380\pi\)
−0.746736 + 0.665121i \(0.768380\pi\)
\(314\) 11.0278 0.622332
\(315\) 0 0
\(316\) −10.6056 −0.596609
\(317\) 24.4222 1.37169 0.685844 0.727749i \(-0.259433\pi\)
0.685844 + 0.727749i \(0.259433\pi\)
\(318\) 0 0
\(319\) −5.60555 −0.313851
\(320\) 12.8167 0.716473
\(321\) 0 0
\(322\) −4.60555 −0.256657
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) −14.4222 −0.800000
\(326\) 29.5139 1.63462
\(327\) 0 0
\(328\) −21.6333 −1.19450
\(329\) 2.39445 0.132010
\(330\) 0 0
\(331\) −32.0000 −1.75888 −0.879440 0.476011i \(-0.842082\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(332\) −39.6333 −2.17516
\(333\) 0 0
\(334\) 53.4500 2.92465
\(335\) −1.60555 −0.0877206
\(336\) 0 0
\(337\) 36.4222 1.98404 0.992022 0.126065i \(-0.0402348\pi\)
0.992022 + 0.126065i \(0.0402348\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 13.2111 0.716473
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 15.6333 0.842891
\(345\) 0 0
\(346\) −37.8167 −2.03304
\(347\) −28.0000 −1.50312 −0.751559 0.659665i \(-0.770698\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(348\) 0 0
\(349\) −33.2389 −1.77924 −0.889618 0.456706i \(-0.849029\pi\)
−0.889618 + 0.456706i \(0.849029\pi\)
\(350\) −9.21110 −0.492354
\(351\) 0 0
\(352\) −5.30278 −0.282639
\(353\) 12.6333 0.672403 0.336202 0.941790i \(-0.390858\pi\)
0.336202 + 0.941790i \(0.390858\pi\)
\(354\) 0 0
\(355\) 11.2111 0.595024
\(356\) −19.8167 −1.05028
\(357\) 0 0
\(358\) −37.8167 −1.99867
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) −19.3944 −1.01935
\(363\) 0 0
\(364\) −11.9083 −0.624166
\(365\) 12.8167 0.670854
\(366\) 0 0
\(367\) 10.0000 0.521996 0.260998 0.965339i \(-0.415948\pi\)
0.260998 + 0.965339i \(0.415948\pi\)
\(368\) −0.605551 −0.0315665
\(369\) 0 0
\(370\) −18.9083 −0.982997
\(371\) 0 0
\(372\) 0 0
\(373\) 4.78890 0.247960 0.123980 0.992285i \(-0.460434\pi\)
0.123980 + 0.992285i \(0.460434\pi\)
\(374\) −9.21110 −0.476295
\(375\) 0 0
\(376\) 7.18335 0.370453
\(377\) 20.2111 1.04092
\(378\) 0 0
\(379\) 8.81665 0.452881 0.226441 0.974025i \(-0.427291\pi\)
0.226441 + 0.974025i \(0.427291\pi\)
\(380\) −9.90833 −0.508286
\(381\) 0 0
\(382\) −11.0278 −0.564229
\(383\) 26.4222 1.35011 0.675056 0.737767i \(-0.264120\pi\)
0.675056 + 0.737767i \(0.264120\pi\)
\(384\) 0 0
\(385\) −1.00000 −0.0509647
\(386\) −60.8444 −3.09690
\(387\) 0 0
\(388\) 4.00000 0.203069
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) −3.00000 −0.151523
\(393\) 0 0
\(394\) 35.0278 1.76467
\(395\) 3.21110 0.161568
\(396\) 0 0
\(397\) 36.8444 1.84917 0.924584 0.380978i \(-0.124413\pi\)
0.924584 + 0.380978i \(0.124413\pi\)
\(398\) 39.6333 1.98664
\(399\) 0 0
\(400\) −1.21110 −0.0605551
\(401\) 9.21110 0.459981 0.229990 0.973193i \(-0.426131\pi\)
0.229990 + 0.973193i \(0.426131\pi\)
\(402\) 0 0
\(403\) −7.21110 −0.359211
\(404\) −41.0278 −2.04121
\(405\) 0 0
\(406\) 12.9083 0.640630
\(407\) 8.21110 0.407009
\(408\) 0 0
\(409\) −23.2111 −1.14772 −0.573858 0.818955i \(-0.694554\pi\)
−0.573858 + 0.818955i \(0.694554\pi\)
\(410\) 16.6056 0.820090
\(411\) 0 0
\(412\) −30.4222 −1.49879
\(413\) 7.60555 0.374245
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 19.1194 0.937407
\(417\) 0 0
\(418\) 6.90833 0.337897
\(419\) −30.8167 −1.50549 −0.752746 0.658311i \(-0.771271\pi\)
−0.752746 + 0.658311i \(0.771271\pi\)
\(420\) 0 0
\(421\) 22.6333 1.10308 0.551540 0.834148i \(-0.314040\pi\)
0.551540 + 0.834148i \(0.314040\pi\)
\(422\) −24.0000 −1.16830
\(423\) 0 0
\(424\) 0 0
\(425\) 16.0000 0.776114
\(426\) 0 0
\(427\) 11.2111 0.542543
\(428\) 7.30278 0.352993
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) 19.4222 0.935535 0.467767 0.883852i \(-0.345059\pi\)
0.467767 + 0.883852i \(0.345059\pi\)
\(432\) 0 0
\(433\) 16.7889 0.806823 0.403411 0.915019i \(-0.367824\pi\)
0.403411 + 0.915019i \(0.367824\pi\)
\(434\) −4.60555 −0.221074
\(435\) 0 0
\(436\) 33.0278 1.58174
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) −20.6333 −0.984774 −0.492387 0.870376i \(-0.663876\pi\)
−0.492387 + 0.870376i \(0.663876\pi\)
\(440\) −3.00000 −0.143019
\(441\) 0 0
\(442\) 33.2111 1.57969
\(443\) −21.2111 −1.00777 −0.503885 0.863771i \(-0.668096\pi\)
−0.503885 + 0.863771i \(0.668096\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) −9.21110 −0.436158
\(447\) 0 0
\(448\) 12.8167 0.605530
\(449\) 33.2111 1.56733 0.783664 0.621184i \(-0.213348\pi\)
0.783664 + 0.621184i \(0.213348\pi\)
\(450\) 0 0
\(451\) −7.21110 −0.339558
\(452\) 17.2111 0.809542
\(453\) 0 0
\(454\) −37.8167 −1.77482
\(455\) 3.60555 0.169031
\(456\) 0 0
\(457\) 38.8444 1.81706 0.908532 0.417814i \(-0.137204\pi\)
0.908532 + 0.417814i \(0.137204\pi\)
\(458\) −25.8167 −1.20633
\(459\) 0 0
\(460\) 6.60555 0.307985
\(461\) −15.6333 −0.728116 −0.364058 0.931376i \(-0.618609\pi\)
−0.364058 + 0.931376i \(0.618609\pi\)
\(462\) 0 0
\(463\) 2.81665 0.130901 0.0654505 0.997856i \(-0.479152\pi\)
0.0654505 + 0.997856i \(0.479152\pi\)
\(464\) 1.69722 0.0787917
\(465\) 0 0
\(466\) 49.8167 2.30771
\(467\) −13.1833 −0.610053 −0.305026 0.952344i \(-0.598665\pi\)
−0.305026 + 0.952344i \(0.598665\pi\)
\(468\) 0 0
\(469\) −1.60555 −0.0741375
\(470\) −5.51388 −0.254336
\(471\) 0 0
\(472\) 22.8167 1.05022
\(473\) 5.21110 0.239607
\(474\) 0 0
\(475\) −12.0000 −0.550598
\(476\) 13.2111 0.605530
\(477\) 0 0
\(478\) −3.27502 −0.149796
\(479\) −34.8444 −1.59208 −0.796041 0.605243i \(-0.793076\pi\)
−0.796041 + 0.605243i \(0.793076\pi\)
\(480\) 0 0
\(481\) −29.6056 −1.34990
\(482\) −23.9361 −1.09026
\(483\) 0 0
\(484\) 3.30278 0.150126
\(485\) −1.21110 −0.0549933
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 33.6333 1.52251
\(489\) 0 0
\(490\) 2.30278 0.104029
\(491\) −12.2111 −0.551079 −0.275540 0.961290i \(-0.588857\pi\)
−0.275540 + 0.961290i \(0.588857\pi\)
\(492\) 0 0
\(493\) −22.4222 −1.00985
\(494\) −24.9083 −1.12068
\(495\) 0 0
\(496\) −0.605551 −0.0271901
\(497\) 11.2111 0.502887
\(498\) 0 0
\(499\) 0.816654 0.0365584 0.0182792 0.999833i \(-0.494181\pi\)
0.0182792 + 0.999833i \(0.494181\pi\)
\(500\) 29.7250 1.32934
\(501\) 0 0
\(502\) 37.7527 1.68499
\(503\) 24.4222 1.08893 0.544466 0.838783i \(-0.316732\pi\)
0.544466 + 0.838783i \(0.316732\pi\)
\(504\) 0 0
\(505\) 12.4222 0.552781
\(506\) −4.60555 −0.204742
\(507\) 0 0
\(508\) −33.0278 −1.46537
\(509\) −4.42221 −0.196011 −0.0980054 0.995186i \(-0.531246\pi\)
−0.0980054 + 0.995186i \(0.531246\pi\)
\(510\) 0 0
\(511\) 12.8167 0.566975
\(512\) 3.42221 0.151242
\(513\) 0 0
\(514\) 41.9361 1.84972
\(515\) 9.21110 0.405890
\(516\) 0 0
\(517\) 2.39445 0.105308
\(518\) −18.9083 −0.830784
\(519\) 0 0
\(520\) 10.8167 0.474342
\(521\) −14.2111 −0.622600 −0.311300 0.950312i \(-0.600764\pi\)
−0.311300 + 0.950312i \(0.600764\pi\)
\(522\) 0 0
\(523\) −43.0000 −1.88026 −0.940129 0.340818i \(-0.889296\pi\)
−0.940129 + 0.340818i \(0.889296\pi\)
\(524\) −19.8167 −0.865695
\(525\) 0 0
\(526\) 49.3305 2.15091
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) −9.90833 −0.429580
\(533\) 26.0000 1.12619
\(534\) 0 0
\(535\) −2.21110 −0.0955943
\(536\) −4.81665 −0.208048
\(537\) 0 0
\(538\) −56.2389 −2.42463
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) −7.21110 −0.310030 −0.155015 0.987912i \(-0.549543\pi\)
−0.155015 + 0.987912i \(0.549543\pi\)
\(542\) −64.9638 −2.79044
\(543\) 0 0
\(544\) −21.2111 −0.909419
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) −9.21110 −0.393838 −0.196919 0.980420i \(-0.563094\pi\)
−0.196919 + 0.980420i \(0.563094\pi\)
\(548\) −21.2111 −0.906093
\(549\) 0 0
\(550\) −9.21110 −0.392763
\(551\) 16.8167 0.716414
\(552\) 0 0
\(553\) 3.21110 0.136550
\(554\) 6.42221 0.272853
\(555\) 0 0
\(556\) 47.6333 2.02010
\(557\) 15.1833 0.643339 0.321670 0.946852i \(-0.395756\pi\)
0.321670 + 0.946852i \(0.395756\pi\)
\(558\) 0 0
\(559\) −18.7889 −0.794686
\(560\) 0.302776 0.0127946
\(561\) 0 0
\(562\) −28.5416 −1.20396
\(563\) −41.2666 −1.73918 −0.869590 0.493774i \(-0.835617\pi\)
−0.869590 + 0.493774i \(0.835617\pi\)
\(564\) 0 0
\(565\) −5.21110 −0.219233
\(566\) 35.5139 1.49276
\(567\) 0 0
\(568\) 33.6333 1.41122
\(569\) −9.63331 −0.403849 −0.201925 0.979401i \(-0.564720\pi\)
−0.201925 + 0.979401i \(0.564720\pi\)
\(570\) 0 0
\(571\) 25.2111 1.05505 0.527526 0.849539i \(-0.323120\pi\)
0.527526 + 0.849539i \(0.323120\pi\)
\(572\) −11.9083 −0.497912
\(573\) 0 0
\(574\) 16.6056 0.693102
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) 23.2111 0.966291 0.483145 0.875540i \(-0.339494\pi\)
0.483145 + 0.875540i \(0.339494\pi\)
\(578\) 2.30278 0.0957828
\(579\) 0 0
\(580\) −18.5139 −0.768747
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 0 0
\(584\) 38.4500 1.59107
\(585\) 0 0
\(586\) 55.2666 2.28304
\(587\) −4.39445 −0.181378 −0.0906892 0.995879i \(-0.528907\pi\)
−0.0906892 + 0.995879i \(0.528907\pi\)
\(588\) 0 0
\(589\) −6.00000 −0.247226
\(590\) −17.5139 −0.721035
\(591\) 0 0
\(592\) −2.48612 −0.102179
\(593\) 33.2111 1.36382 0.681908 0.731438i \(-0.261150\pi\)
0.681908 + 0.731438i \(0.261150\pi\)
\(594\) 0 0
\(595\) −4.00000 −0.163984
\(596\) 71.3583 2.92295
\(597\) 0 0
\(598\) 16.6056 0.679051
\(599\) 0.422205 0.0172508 0.00862542 0.999963i \(-0.497254\pi\)
0.00862542 + 0.999963i \(0.497254\pi\)
\(600\) 0 0
\(601\) 3.18335 0.129851 0.0649257 0.997890i \(-0.479319\pi\)
0.0649257 + 0.997890i \(0.479319\pi\)
\(602\) −12.0000 −0.489083
\(603\) 0 0
\(604\) 60.8444 2.47572
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 14.6333 0.593948 0.296974 0.954886i \(-0.404023\pi\)
0.296974 + 0.954886i \(0.404023\pi\)
\(608\) 15.9083 0.645168
\(609\) 0 0
\(610\) −25.8167 −1.04529
\(611\) −8.63331 −0.349266
\(612\) 0 0
\(613\) 25.2111 1.01827 0.509133 0.860688i \(-0.329966\pi\)
0.509133 + 0.860688i \(0.329966\pi\)
\(614\) −18.4222 −0.743460
\(615\) 0 0
\(616\) −3.00000 −0.120873
\(617\) 2.36669 0.0952794 0.0476397 0.998865i \(-0.484830\pi\)
0.0476397 + 0.998865i \(0.484830\pi\)
\(618\) 0 0
\(619\) −31.6333 −1.27145 −0.635725 0.771916i \(-0.719299\pi\)
−0.635725 + 0.771916i \(0.719299\pi\)
\(620\) 6.60555 0.265285
\(621\) 0 0
\(622\) −3.63331 −0.145682
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 60.8444 2.43183
\(627\) 0 0
\(628\) −15.8167 −0.631153
\(629\) 32.8444 1.30959
\(630\) 0 0
\(631\) 24.8444 0.989040 0.494520 0.869166i \(-0.335344\pi\)
0.494520 + 0.869166i \(0.335344\pi\)
\(632\) 9.63331 0.383192
\(633\) 0 0
\(634\) −56.2389 −2.23353
\(635\) 10.0000 0.396838
\(636\) 0 0
\(637\) 3.60555 0.142857
\(638\) 12.9083 0.511046
\(639\) 0 0
\(640\) −18.9083 −0.747417
\(641\) 21.6333 0.854464 0.427232 0.904142i \(-0.359489\pi\)
0.427232 + 0.904142i \(0.359489\pi\)
\(642\) 0 0
\(643\) −30.0555 −1.18527 −0.592637 0.805470i \(-0.701913\pi\)
−0.592637 + 0.805470i \(0.701913\pi\)
\(644\) 6.60555 0.260295
\(645\) 0 0
\(646\) 27.6333 1.08722
\(647\) 41.6611 1.63787 0.818933 0.573890i \(-0.194566\pi\)
0.818933 + 0.573890i \(0.194566\pi\)
\(648\) 0 0
\(649\) 7.60555 0.298544
\(650\) 33.2111 1.30265
\(651\) 0 0
\(652\) −42.3305 −1.65779
\(653\) 40.8444 1.59837 0.799183 0.601088i \(-0.205266\pi\)
0.799183 + 0.601088i \(0.205266\pi\)
\(654\) 0 0
\(655\) 6.00000 0.234439
\(656\) 2.18335 0.0852453
\(657\) 0 0
\(658\) −5.51388 −0.214953
\(659\) −33.0555 −1.28766 −0.643830 0.765169i \(-0.722656\pi\)
−0.643830 + 0.765169i \(0.722656\pi\)
\(660\) 0 0
\(661\) −28.8444 −1.12192 −0.560959 0.827844i \(-0.689567\pi\)
−0.560959 + 0.827844i \(0.689567\pi\)
\(662\) 73.6888 2.86400
\(663\) 0 0
\(664\) 36.0000 1.39707
\(665\) 3.00000 0.116335
\(666\) 0 0
\(667\) −11.2111 −0.434096
\(668\) −76.6611 −2.96611
\(669\) 0 0
\(670\) 3.69722 0.142836
\(671\) 11.2111 0.432800
\(672\) 0 0
\(673\) −24.0555 −0.927272 −0.463636 0.886026i \(-0.653455\pi\)
−0.463636 + 0.886026i \(0.653455\pi\)
\(674\) −83.8722 −3.23064
\(675\) 0 0
\(676\) 0 0
\(677\) −38.0555 −1.46259 −0.731296 0.682060i \(-0.761084\pi\)
−0.731296 + 0.682060i \(0.761084\pi\)
\(678\) 0 0
\(679\) −1.21110 −0.0464779
\(680\) −12.0000 −0.460179
\(681\) 0 0
\(682\) −4.60555 −0.176356
\(683\) −46.0555 −1.76227 −0.881133 0.472869i \(-0.843218\pi\)
−0.881133 + 0.472869i \(0.843218\pi\)
\(684\) 0 0
\(685\) 6.42221 0.245380
\(686\) 2.30278 0.0879204
\(687\) 0 0
\(688\) −1.57779 −0.0601529
\(689\) 0 0
\(690\) 0 0
\(691\) −42.8444 −1.62988 −0.814939 0.579547i \(-0.803230\pi\)
−0.814939 + 0.579547i \(0.803230\pi\)
\(692\) 54.2389 2.06185
\(693\) 0 0
\(694\) 64.4777 2.44754
\(695\) −14.4222 −0.547065
\(696\) 0 0
\(697\) −28.8444 −1.09256
\(698\) 76.5416 2.89714
\(699\) 0 0
\(700\) 13.2111 0.499333
\(701\) 39.2111 1.48098 0.740491 0.672066i \(-0.234593\pi\)
0.740491 + 0.672066i \(0.234593\pi\)
\(702\) 0 0
\(703\) −24.6333 −0.929063
\(704\) 12.8167 0.483046
\(705\) 0 0
\(706\) −29.0917 −1.09488
\(707\) 12.4222 0.467185
\(708\) 0 0
\(709\) 5.78890 0.217407 0.108703 0.994074i \(-0.465330\pi\)
0.108703 + 0.994074i \(0.465330\pi\)
\(710\) −25.8167 −0.968882
\(711\) 0 0
\(712\) 18.0000 0.674579
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 3.60555 0.134840
\(716\) 54.2389 2.02700
\(717\) 0 0
\(718\) −18.4222 −0.687511
\(719\) 7.97224 0.297315 0.148657 0.988889i \(-0.452505\pi\)
0.148657 + 0.988889i \(0.452505\pi\)
\(720\) 0 0
\(721\) 9.21110 0.343039
\(722\) 23.0278 0.857004
\(723\) 0 0
\(724\) 27.8167 1.03380
\(725\) −22.4222 −0.832740
\(726\) 0 0
\(727\) −4.42221 −0.164011 −0.0820053 0.996632i \(-0.526132\pi\)
−0.0820053 + 0.996632i \(0.526132\pi\)
\(728\) 10.8167 0.400892
\(729\) 0 0
\(730\) −29.5139 −1.09236
\(731\) 20.8444 0.770958
\(732\) 0 0
\(733\) 35.2111 1.30055 0.650276 0.759698i \(-0.274653\pi\)
0.650276 + 0.759698i \(0.274653\pi\)
\(734\) −23.0278 −0.849970
\(735\) 0 0
\(736\) −10.6056 −0.390926
\(737\) −1.60555 −0.0591412
\(738\) 0 0
\(739\) −27.2111 −1.00098 −0.500488 0.865743i \(-0.666846\pi\)
−0.500488 + 0.865743i \(0.666846\pi\)
\(740\) 27.1194 0.996930
\(741\) 0 0
\(742\) 0 0
\(743\) 27.4222 1.00602 0.503012 0.864280i \(-0.332225\pi\)
0.503012 + 0.864280i \(0.332225\pi\)
\(744\) 0 0
\(745\) −21.6056 −0.791566
\(746\) −11.0278 −0.403755
\(747\) 0 0
\(748\) 13.2111 0.483046
\(749\) −2.21110 −0.0807919
\(750\) 0 0
\(751\) −40.4500 −1.47604 −0.738020 0.674779i \(-0.764239\pi\)
−0.738020 + 0.674779i \(0.764239\pi\)
\(752\) −0.724981 −0.0264373
\(753\) 0 0
\(754\) −46.5416 −1.69495
\(755\) −18.4222 −0.670453
\(756\) 0 0
\(757\) −46.6333 −1.69492 −0.847458 0.530862i \(-0.821868\pi\)
−0.847458 + 0.530862i \(0.821868\pi\)
\(758\) −20.3028 −0.737430
\(759\) 0 0
\(760\) 9.00000 0.326464
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 15.8167 0.572226
\(765\) 0 0
\(766\) −60.8444 −2.19840
\(767\) −27.4222 −0.990158
\(768\) 0 0
\(769\) −9.60555 −0.346385 −0.173193 0.984888i \(-0.555408\pi\)
−0.173193 + 0.984888i \(0.555408\pi\)
\(770\) 2.30278 0.0829863
\(771\) 0 0
\(772\) 87.2666 3.14079
\(773\) −40.2666 −1.44829 −0.724145 0.689648i \(-0.757765\pi\)
−0.724145 + 0.689648i \(0.757765\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) −3.63331 −0.130428
\(777\) 0 0
\(778\) −13.8167 −0.495351
\(779\) 21.6333 0.775094
\(780\) 0 0
\(781\) 11.2111 0.401165
\(782\) −18.4222 −0.658777
\(783\) 0 0
\(784\) 0.302776 0.0108134
\(785\) 4.78890 0.170923
\(786\) 0 0
\(787\) 11.4222 0.407158 0.203579 0.979059i \(-0.434743\pi\)
0.203579 + 0.979059i \(0.434743\pi\)
\(788\) −50.2389 −1.78969
\(789\) 0 0
\(790\) −7.39445 −0.263083
\(791\) −5.21110 −0.185285
\(792\) 0 0
\(793\) −40.4222 −1.43543
\(794\) −84.8444 −3.01102
\(795\) 0 0
\(796\) −56.8444 −2.01480
\(797\) −0.577795 −0.0204665 −0.0102333 0.999948i \(-0.503257\pi\)
−0.0102333 + 0.999948i \(0.503257\pi\)
\(798\) 0 0
\(799\) 9.57779 0.338838
\(800\) −21.2111 −0.749926
\(801\) 0 0
\(802\) −21.2111 −0.748990
\(803\) 12.8167 0.452290
\(804\) 0 0
\(805\) −2.00000 −0.0704907
\(806\) 16.6056 0.584906
\(807\) 0 0
\(808\) 37.2666 1.31103
\(809\) 34.8167 1.22409 0.612044 0.790824i \(-0.290347\pi\)
0.612044 + 0.790824i \(0.290347\pi\)
\(810\) 0 0
\(811\) 23.4222 0.822465 0.411232 0.911531i \(-0.365098\pi\)
0.411232 + 0.911531i \(0.365098\pi\)
\(812\) −18.5139 −0.649710
\(813\) 0 0
\(814\) −18.9083 −0.662737
\(815\) 12.8167 0.448948
\(816\) 0 0
\(817\) −15.6333 −0.546940
\(818\) 53.4500 1.86883
\(819\) 0 0
\(820\) −23.8167 −0.831714
\(821\) 11.2389 0.392239 0.196119 0.980580i \(-0.437166\pi\)
0.196119 + 0.980580i \(0.437166\pi\)
\(822\) 0 0
\(823\) −23.6056 −0.822838 −0.411419 0.911446i \(-0.634967\pi\)
−0.411419 + 0.911446i \(0.634967\pi\)
\(824\) 27.6333 0.962652
\(825\) 0 0
\(826\) −17.5139 −0.609386
\(827\) 15.0555 0.523531 0.261766 0.965131i \(-0.415695\pi\)
0.261766 + 0.965131i \(0.415695\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) −27.6333 −0.959166
\(831\) 0 0
\(832\) −46.2111 −1.60208
\(833\) −4.00000 −0.138592
\(834\) 0 0
\(835\) 23.2111 0.803253
\(836\) −9.90833 −0.342687
\(837\) 0 0
\(838\) 70.9638 2.45141
\(839\) −22.3944 −0.773142 −0.386571 0.922260i \(-0.626341\pi\)
−0.386571 + 0.922260i \(0.626341\pi\)
\(840\) 0 0
\(841\) 2.42221 0.0835243
\(842\) −52.1194 −1.79615
\(843\) 0 0
\(844\) 34.4222 1.18486
\(845\) 0 0
\(846\) 0 0
\(847\) −1.00000 −0.0343604
\(848\) 0 0
\(849\) 0 0
\(850\) −36.8444 −1.26375
\(851\) 16.4222 0.562946
\(852\) 0 0
\(853\) 10.3667 0.354949 0.177474 0.984125i \(-0.443207\pi\)
0.177474 + 0.984125i \(0.443207\pi\)
\(854\) −25.8167 −0.883428
\(855\) 0 0
\(856\) −6.63331 −0.226722
\(857\) −21.5778 −0.737083 −0.368542 0.929611i \(-0.620143\pi\)
−0.368542 + 0.929611i \(0.620143\pi\)
\(858\) 0 0
\(859\) 52.4222 1.78862 0.894311 0.447445i \(-0.147666\pi\)
0.894311 + 0.447445i \(0.147666\pi\)
\(860\) 17.2111 0.586894
\(861\) 0 0
\(862\) −44.7250 −1.52334
\(863\) 56.0555 1.90815 0.954076 0.299565i \(-0.0968415\pi\)
0.954076 + 0.299565i \(0.0968415\pi\)
\(864\) 0 0
\(865\) −16.4222 −0.558372
\(866\) −38.6611 −1.31376
\(867\) 0 0
\(868\) 6.60555 0.224207
\(869\) 3.21110 0.108929
\(870\) 0 0
\(871\) 5.78890 0.196149
\(872\) −30.0000 −1.01593
\(873\) 0 0
\(874\) 13.8167 0.467355
\(875\) −9.00000 −0.304256
\(876\) 0 0
\(877\) 10.4222 0.351933 0.175966 0.984396i \(-0.443695\pi\)
0.175966 + 0.984396i \(0.443695\pi\)
\(878\) 47.5139 1.60352
\(879\) 0 0
\(880\) 0.302776 0.0102066
\(881\) −31.0555 −1.04629 −0.523143 0.852245i \(-0.675241\pi\)
−0.523143 + 0.852245i \(0.675241\pi\)
\(882\) 0 0
\(883\) 44.8167 1.50820 0.754100 0.656759i \(-0.228073\pi\)
0.754100 + 0.656759i \(0.228073\pi\)
\(884\) −47.6333 −1.60208
\(885\) 0 0
\(886\) 48.8444 1.64096
\(887\) −11.6333 −0.390608 −0.195304 0.980743i \(-0.562569\pi\)
−0.195304 + 0.980743i \(0.562569\pi\)
\(888\) 0 0
\(889\) 10.0000 0.335389
\(890\) −13.8167 −0.463135
\(891\) 0 0
\(892\) 13.2111 0.442340
\(893\) −7.18335 −0.240382
\(894\) 0 0
\(895\) −16.4222 −0.548934
\(896\) −18.9083 −0.631683
\(897\) 0 0
\(898\) −76.4777 −2.55209
\(899\) −11.2111 −0.373911
\(900\) 0 0
\(901\) 0 0
\(902\) 16.6056 0.552904
\(903\) 0 0
\(904\) −15.6333 −0.519956
\(905\) −8.42221 −0.279964
\(906\) 0 0
\(907\) 44.8444 1.48903 0.744517 0.667603i \(-0.232680\pi\)
0.744517 + 0.667603i \(0.232680\pi\)
\(908\) 54.2389 1.79998
\(909\) 0 0
\(910\) −8.30278 −0.275234
\(911\) −27.6333 −0.915532 −0.457766 0.889073i \(-0.651350\pi\)
−0.457766 + 0.889073i \(0.651350\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) −89.4500 −2.95874
\(915\) 0 0
\(916\) 37.0278 1.22343
\(917\) 6.00000 0.198137
\(918\) 0 0
\(919\) −42.4222 −1.39938 −0.699690 0.714447i \(-0.746678\pi\)
−0.699690 + 0.714447i \(0.746678\pi\)
\(920\) −6.00000 −0.197814
\(921\) 0 0
\(922\) 36.0000 1.18560
\(923\) −40.4222 −1.33051
\(924\) 0 0
\(925\) 32.8444 1.07992
\(926\) −6.48612 −0.213147
\(927\) 0 0
\(928\) 29.7250 0.975770
\(929\) 48.6333 1.59561 0.797804 0.602918i \(-0.205995\pi\)
0.797804 + 0.602918i \(0.205995\pi\)
\(930\) 0 0
\(931\) 3.00000 0.0983210
\(932\) −71.4500 −2.34042
\(933\) 0 0
\(934\) 30.3583 0.993354
\(935\) −4.00000 −0.130814
\(936\) 0 0
\(937\) 16.0555 0.524511 0.262255 0.964999i \(-0.415534\pi\)
0.262255 + 0.964999i \(0.415534\pi\)
\(938\) 3.69722 0.120719
\(939\) 0 0
\(940\) 7.90833 0.257941
\(941\) −26.8444 −0.875103 −0.437551 0.899193i \(-0.644154\pi\)
−0.437551 + 0.899193i \(0.644154\pi\)
\(942\) 0 0
\(943\) −14.4222 −0.469652
\(944\) −2.30278 −0.0749490
\(945\) 0 0
\(946\) −12.0000 −0.390154
\(947\) 14.8444 0.482379 0.241189 0.970478i \(-0.422463\pi\)
0.241189 + 0.970478i \(0.422463\pi\)
\(948\) 0 0
\(949\) −46.2111 −1.50008
\(950\) 27.6333 0.896543
\(951\) 0 0
\(952\) −12.0000 −0.388922
\(953\) −24.4500 −0.792012 −0.396006 0.918248i \(-0.629604\pi\)
−0.396006 + 0.918248i \(0.629604\pi\)
\(954\) 0 0
\(955\) −4.78890 −0.154965
\(956\) 4.69722 0.151919
\(957\) 0 0
\(958\) 80.2389 2.59240
\(959\) 6.42221 0.207384
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 68.1749 2.19805
\(963\) 0 0
\(964\) 34.3305 1.10571
\(965\) −26.4222 −0.850561
\(966\) 0 0
\(967\) 10.7889 0.346948 0.173474 0.984838i \(-0.444501\pi\)
0.173474 + 0.984838i \(0.444501\pi\)
\(968\) −3.00000 −0.0964237
\(969\) 0 0
\(970\) 2.78890 0.0895461
\(971\) −51.6611 −1.65788 −0.828941 0.559336i \(-0.811056\pi\)
−0.828941 + 0.559336i \(0.811056\pi\)
\(972\) 0 0
\(973\) −14.4222 −0.462355
\(974\) −18.4222 −0.590286
\(975\) 0 0
\(976\) −3.39445 −0.108654
\(977\) −12.7889 −0.409153 −0.204577 0.978851i \(-0.565582\pi\)
−0.204577 + 0.978851i \(0.565582\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) −3.30278 −0.105503
\(981\) 0 0
\(982\) 28.1194 0.897327
\(983\) 43.2666 1.37999 0.689995 0.723814i \(-0.257613\pi\)
0.689995 + 0.723814i \(0.257613\pi\)
\(984\) 0 0
\(985\) 15.2111 0.484666
\(986\) 51.6333 1.64434
\(987\) 0 0
\(988\) 35.7250 1.13656
\(989\) 10.4222 0.331407
\(990\) 0 0
\(991\) 14.8167 0.470667 0.235333 0.971915i \(-0.424382\pi\)
0.235333 + 0.971915i \(0.424382\pi\)
\(992\) −10.6056 −0.336727
\(993\) 0 0
\(994\) −25.8167 −0.818855
\(995\) 17.2111 0.545629
\(996\) 0 0
\(997\) 16.0555 0.508483 0.254242 0.967141i \(-0.418174\pi\)
0.254242 + 0.967141i \(0.418174\pi\)
\(998\) −1.88057 −0.0595284
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.2.a.g.1.1 2
3.2 odd 2 693.2.a.i.1.2 yes 2
7.6 odd 2 4851.2.a.x.1.1 2
11.10 odd 2 7623.2.a.br.1.2 2
21.20 even 2 4851.2.a.z.1.2 2
33.32 even 2 7623.2.a.bd.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.2.a.g.1.1 2 1.1 even 1 trivial
693.2.a.i.1.2 yes 2 3.2 odd 2
4851.2.a.x.1.1 2 7.6 odd 2
4851.2.a.z.1.2 2 21.20 even 2
7623.2.a.bd.1.1 2 33.32 even 2
7623.2.a.br.1.2 2 11.10 odd 2