Properties

Label 693.2.a.e.1.2
Level $693$
Weight $2$
Character 693.1
Self dual yes
Analytic conductor $5.534$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.53363286007\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.381966 q^{2} -1.85410 q^{4} -1.00000 q^{5} +1.00000 q^{7} +1.47214 q^{8} +O(q^{10})\) \(q-0.381966 q^{2} -1.85410 q^{4} -1.00000 q^{5} +1.00000 q^{7} +1.47214 q^{8} +0.381966 q^{10} +1.00000 q^{11} +0.236068 q^{13} -0.381966 q^{14} +3.14590 q^{16} -6.47214 q^{17} +3.47214 q^{19} +1.85410 q^{20} -0.381966 q^{22} -8.47214 q^{23} -4.00000 q^{25} -0.0901699 q^{26} -1.85410 q^{28} -1.76393 q^{29} -0.472136 q^{31} -4.14590 q^{32} +2.47214 q^{34} -1.00000 q^{35} -5.47214 q^{37} -1.32624 q^{38} -1.47214 q^{40} -4.47214 q^{41} -4.00000 q^{43} -1.85410 q^{44} +3.23607 q^{46} +0.236068 q^{47} +1.00000 q^{49} +1.52786 q^{50} -0.437694 q^{52} -5.52786 q^{53} -1.00000 q^{55} +1.47214 q^{56} +0.673762 q^{58} -15.1803 q^{59} +8.47214 q^{61} +0.180340 q^{62} -4.70820 q^{64} -0.236068 q^{65} +9.18034 q^{67} +12.0000 q^{68} +0.381966 q^{70} +4.47214 q^{71} -9.76393 q^{73} +2.09017 q^{74} -6.43769 q^{76} +1.00000 q^{77} +4.47214 q^{79} -3.14590 q^{80} +1.70820 q^{82} +11.4164 q^{83} +6.47214 q^{85} +1.52786 q^{86} +1.47214 q^{88} +10.0000 q^{89} +0.236068 q^{91} +15.7082 q^{92} -0.0901699 q^{94} -3.47214 q^{95} -8.00000 q^{97} -0.381966 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 3 q^{4} - 2 q^{5} + 2 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{2} + 3 q^{4} - 2 q^{5} + 2 q^{7} - 6 q^{8} + 3 q^{10} + 2 q^{11} - 4 q^{13} - 3 q^{14} + 13 q^{16} - 4 q^{17} - 2 q^{19} - 3 q^{20} - 3 q^{22} - 8 q^{23} - 8 q^{25} + 11 q^{26} + 3 q^{28} - 8 q^{29} + 8 q^{31} - 15 q^{32} - 4 q^{34} - 2 q^{35} - 2 q^{37} + 13 q^{38} + 6 q^{40} - 8 q^{43} + 3 q^{44} + 2 q^{46} - 4 q^{47} + 2 q^{49} + 12 q^{50} - 21 q^{52} - 20 q^{53} - 2 q^{55} - 6 q^{56} + 17 q^{58} - 8 q^{59} + 8 q^{61} - 22 q^{62} + 4 q^{64} + 4 q^{65} - 4 q^{67} + 24 q^{68} + 3 q^{70} - 24 q^{73} - 7 q^{74} - 33 q^{76} + 2 q^{77} - 13 q^{80} - 10 q^{82} - 4 q^{83} + 4 q^{85} + 12 q^{86} - 6 q^{88} + 20 q^{89} - 4 q^{91} + 18 q^{92} + 11 q^{94} + 2 q^{95} - 16 q^{97} - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.381966 −0.270091 −0.135045 0.990839i \(-0.543118\pi\)
−0.135045 + 0.990839i \(0.543118\pi\)
\(3\) 0 0
\(4\) −1.85410 −0.927051
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.47214 0.520479
\(9\) 0 0
\(10\) 0.381966 0.120788
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 0.236068 0.0654735 0.0327367 0.999464i \(-0.489578\pi\)
0.0327367 + 0.999464i \(0.489578\pi\)
\(14\) −0.381966 −0.102085
\(15\) 0 0
\(16\) 3.14590 0.786475
\(17\) −6.47214 −1.56972 −0.784862 0.619671i \(-0.787266\pi\)
−0.784862 + 0.619671i \(0.787266\pi\)
\(18\) 0 0
\(19\) 3.47214 0.796563 0.398281 0.917263i \(-0.369607\pi\)
0.398281 + 0.917263i \(0.369607\pi\)
\(20\) 1.85410 0.414590
\(21\) 0 0
\(22\) −0.381966 −0.0814354
\(23\) −8.47214 −1.76656 −0.883281 0.468844i \(-0.844671\pi\)
−0.883281 + 0.468844i \(0.844671\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) −0.0901699 −0.0176838
\(27\) 0 0
\(28\) −1.85410 −0.350392
\(29\) −1.76393 −0.327554 −0.163777 0.986497i \(-0.552368\pi\)
−0.163777 + 0.986497i \(0.552368\pi\)
\(30\) 0 0
\(31\) −0.472136 −0.0847981 −0.0423991 0.999101i \(-0.513500\pi\)
−0.0423991 + 0.999101i \(0.513500\pi\)
\(32\) −4.14590 −0.732898
\(33\) 0 0
\(34\) 2.47214 0.423968
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −5.47214 −0.899614 −0.449807 0.893126i \(-0.648507\pi\)
−0.449807 + 0.893126i \(0.648507\pi\)
\(38\) −1.32624 −0.215144
\(39\) 0 0
\(40\) −1.47214 −0.232765
\(41\) −4.47214 −0.698430 −0.349215 0.937043i \(-0.613552\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −1.85410 −0.279516
\(45\) 0 0
\(46\) 3.23607 0.477132
\(47\) 0.236068 0.0344341 0.0172170 0.999852i \(-0.494519\pi\)
0.0172170 + 0.999852i \(0.494519\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.52786 0.216073
\(51\) 0 0
\(52\) −0.437694 −0.0606973
\(53\) −5.52786 −0.759311 −0.379655 0.925128i \(-0.623957\pi\)
−0.379655 + 0.925128i \(0.623957\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 1.47214 0.196722
\(57\) 0 0
\(58\) 0.673762 0.0884693
\(59\) −15.1803 −1.97631 −0.988156 0.153453i \(-0.950961\pi\)
−0.988156 + 0.153453i \(0.950961\pi\)
\(60\) 0 0
\(61\) 8.47214 1.08475 0.542373 0.840138i \(-0.317526\pi\)
0.542373 + 0.840138i \(0.317526\pi\)
\(62\) 0.180340 0.0229032
\(63\) 0 0
\(64\) −4.70820 −0.588525
\(65\) −0.236068 −0.0292806
\(66\) 0 0
\(67\) 9.18034 1.12156 0.560779 0.827966i \(-0.310502\pi\)
0.560779 + 0.827966i \(0.310502\pi\)
\(68\) 12.0000 1.45521
\(69\) 0 0
\(70\) 0.381966 0.0456537
\(71\) 4.47214 0.530745 0.265372 0.964146i \(-0.414505\pi\)
0.265372 + 0.964146i \(0.414505\pi\)
\(72\) 0 0
\(73\) −9.76393 −1.14278 −0.571391 0.820678i \(-0.693596\pi\)
−0.571391 + 0.820678i \(0.693596\pi\)
\(74\) 2.09017 0.242977
\(75\) 0 0
\(76\) −6.43769 −0.738454
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 4.47214 0.503155 0.251577 0.967837i \(-0.419051\pi\)
0.251577 + 0.967837i \(0.419051\pi\)
\(80\) −3.14590 −0.351722
\(81\) 0 0
\(82\) 1.70820 0.188640
\(83\) 11.4164 1.25311 0.626557 0.779376i \(-0.284464\pi\)
0.626557 + 0.779376i \(0.284464\pi\)
\(84\) 0 0
\(85\) 6.47214 0.702002
\(86\) 1.52786 0.164754
\(87\) 0 0
\(88\) 1.47214 0.156930
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 0.236068 0.0247466
\(92\) 15.7082 1.63769
\(93\) 0 0
\(94\) −0.0901699 −0.00930032
\(95\) −3.47214 −0.356234
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) −0.381966 −0.0385844
\(99\) 0 0
\(100\) 7.41641 0.741641
\(101\) 8.47214 0.843009 0.421505 0.906826i \(-0.361502\pi\)
0.421505 + 0.906826i \(0.361502\pi\)
\(102\) 0 0
\(103\) −15.4164 −1.51902 −0.759512 0.650493i \(-0.774562\pi\)
−0.759512 + 0.650493i \(0.774562\pi\)
\(104\) 0.347524 0.0340775
\(105\) 0 0
\(106\) 2.11146 0.205083
\(107\) −17.0000 −1.64345 −0.821726 0.569883i \(-0.806989\pi\)
−0.821726 + 0.569883i \(0.806989\pi\)
\(108\) 0 0
\(109\) −16.4721 −1.57774 −0.788872 0.614557i \(-0.789335\pi\)
−0.788872 + 0.614557i \(0.789335\pi\)
\(110\) 0.381966 0.0364190
\(111\) 0 0
\(112\) 3.14590 0.297259
\(113\) 11.4164 1.07397 0.536983 0.843593i \(-0.319564\pi\)
0.536983 + 0.843593i \(0.319564\pi\)
\(114\) 0 0
\(115\) 8.47214 0.790031
\(116\) 3.27051 0.303659
\(117\) 0 0
\(118\) 5.79837 0.533784
\(119\) −6.47214 −0.593300
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −3.23607 −0.292980
\(123\) 0 0
\(124\) 0.875388 0.0786122
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 4.47214 0.396838 0.198419 0.980117i \(-0.436419\pi\)
0.198419 + 0.980117i \(0.436419\pi\)
\(128\) 10.0902 0.891853
\(129\) 0 0
\(130\) 0.0901699 0.00790843
\(131\) 10.9443 0.956205 0.478103 0.878304i \(-0.341325\pi\)
0.478103 + 0.878304i \(0.341325\pi\)
\(132\) 0 0
\(133\) 3.47214 0.301072
\(134\) −3.50658 −0.302922
\(135\) 0 0
\(136\) −9.52786 −0.817008
\(137\) 1.52786 0.130534 0.0652671 0.997868i \(-0.479210\pi\)
0.0652671 + 0.997868i \(0.479210\pi\)
\(138\) 0 0
\(139\) −8.94427 −0.758643 −0.379322 0.925265i \(-0.623843\pi\)
−0.379322 + 0.925265i \(0.623843\pi\)
\(140\) 1.85410 0.156700
\(141\) 0 0
\(142\) −1.70820 −0.143349
\(143\) 0.236068 0.0197410
\(144\) 0 0
\(145\) 1.76393 0.146487
\(146\) 3.72949 0.308655
\(147\) 0 0
\(148\) 10.1459 0.833988
\(149\) −14.7082 −1.20494 −0.602472 0.798140i \(-0.705817\pi\)
−0.602472 + 0.798140i \(0.705817\pi\)
\(150\) 0 0
\(151\) −10.4721 −0.852210 −0.426105 0.904674i \(-0.640115\pi\)
−0.426105 + 0.904674i \(0.640115\pi\)
\(152\) 5.11146 0.414594
\(153\) 0 0
\(154\) −0.381966 −0.0307797
\(155\) 0.472136 0.0379229
\(156\) 0 0
\(157\) 15.5279 1.23926 0.619629 0.784895i \(-0.287283\pi\)
0.619629 + 0.784895i \(0.287283\pi\)
\(158\) −1.70820 −0.135897
\(159\) 0 0
\(160\) 4.14590 0.327762
\(161\) −8.47214 −0.667698
\(162\) 0 0
\(163\) 3.29180 0.257833 0.128917 0.991655i \(-0.458850\pi\)
0.128917 + 0.991655i \(0.458850\pi\)
\(164\) 8.29180 0.647480
\(165\) 0 0
\(166\) −4.36068 −0.338454
\(167\) 1.05573 0.0816947 0.0408473 0.999165i \(-0.486994\pi\)
0.0408473 + 0.999165i \(0.486994\pi\)
\(168\) 0 0
\(169\) −12.9443 −0.995713
\(170\) −2.47214 −0.189604
\(171\) 0 0
\(172\) 7.41641 0.565496
\(173\) 23.8885 1.81621 0.908106 0.418740i \(-0.137528\pi\)
0.908106 + 0.418740i \(0.137528\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 3.14590 0.237131
\(177\) 0 0
\(178\) −3.81966 −0.286296
\(179\) −23.8885 −1.78551 −0.892757 0.450539i \(-0.851232\pi\)
−0.892757 + 0.450539i \(0.851232\pi\)
\(180\) 0 0
\(181\) 13.4164 0.997234 0.498617 0.866822i \(-0.333841\pi\)
0.498617 + 0.866822i \(0.333841\pi\)
\(182\) −0.0901699 −0.00668384
\(183\) 0 0
\(184\) −12.4721 −0.919458
\(185\) 5.47214 0.402319
\(186\) 0 0
\(187\) −6.47214 −0.473289
\(188\) −0.437694 −0.0319221
\(189\) 0 0
\(190\) 1.32624 0.0962154
\(191\) 11.8885 0.860225 0.430112 0.902775i \(-0.358474\pi\)
0.430112 + 0.902775i \(0.358474\pi\)
\(192\) 0 0
\(193\) 10.4721 0.753801 0.376900 0.926254i \(-0.376990\pi\)
0.376900 + 0.926254i \(0.376990\pi\)
\(194\) 3.05573 0.219388
\(195\) 0 0
\(196\) −1.85410 −0.132436
\(197\) −5.41641 −0.385903 −0.192952 0.981208i \(-0.561806\pi\)
−0.192952 + 0.981208i \(0.561806\pi\)
\(198\) 0 0
\(199\) 20.9443 1.48470 0.742350 0.670012i \(-0.233711\pi\)
0.742350 + 0.670012i \(0.233711\pi\)
\(200\) −5.88854 −0.416383
\(201\) 0 0
\(202\) −3.23607 −0.227689
\(203\) −1.76393 −0.123804
\(204\) 0 0
\(205\) 4.47214 0.312348
\(206\) 5.88854 0.410274
\(207\) 0 0
\(208\) 0.742646 0.0514932
\(209\) 3.47214 0.240173
\(210\) 0 0
\(211\) 12.9443 0.891120 0.445560 0.895252i \(-0.353005\pi\)
0.445560 + 0.895252i \(0.353005\pi\)
\(212\) 10.2492 0.703920
\(213\) 0 0
\(214\) 6.49342 0.443881
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) −0.472136 −0.0320507
\(218\) 6.29180 0.426134
\(219\) 0 0
\(220\) 1.85410 0.125004
\(221\) −1.52786 −0.102775
\(222\) 0 0
\(223\) 0.944272 0.0632331 0.0316166 0.999500i \(-0.489934\pi\)
0.0316166 + 0.999500i \(0.489934\pi\)
\(224\) −4.14590 −0.277009
\(225\) 0 0
\(226\) −4.36068 −0.290068
\(227\) −9.05573 −0.601050 −0.300525 0.953774i \(-0.597162\pi\)
−0.300525 + 0.953774i \(0.597162\pi\)
\(228\) 0 0
\(229\) 14.9443 0.987545 0.493773 0.869591i \(-0.335618\pi\)
0.493773 + 0.869591i \(0.335618\pi\)
\(230\) −3.23607 −0.213380
\(231\) 0 0
\(232\) −2.59675 −0.170485
\(233\) −9.41641 −0.616889 −0.308445 0.951242i \(-0.599808\pi\)
−0.308445 + 0.951242i \(0.599808\pi\)
\(234\) 0 0
\(235\) −0.236068 −0.0153994
\(236\) 28.1459 1.83214
\(237\) 0 0
\(238\) 2.47214 0.160245
\(239\) −0.527864 −0.0341447 −0.0170723 0.999854i \(-0.505435\pi\)
−0.0170723 + 0.999854i \(0.505435\pi\)
\(240\) 0 0
\(241\) −16.1246 −1.03868 −0.519339 0.854568i \(-0.673822\pi\)
−0.519339 + 0.854568i \(0.673822\pi\)
\(242\) −0.381966 −0.0245537
\(243\) 0 0
\(244\) −15.7082 −1.00561
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) 0.819660 0.0521537
\(248\) −0.695048 −0.0441356
\(249\) 0 0
\(250\) −3.43769 −0.217419
\(251\) 12.1246 0.765299 0.382649 0.923894i \(-0.375012\pi\)
0.382649 + 0.923894i \(0.375012\pi\)
\(252\) 0 0
\(253\) −8.47214 −0.532639
\(254\) −1.70820 −0.107182
\(255\) 0 0
\(256\) 5.56231 0.347644
\(257\) 10.4164 0.649758 0.324879 0.945756i \(-0.394676\pi\)
0.324879 + 0.945756i \(0.394676\pi\)
\(258\) 0 0
\(259\) −5.47214 −0.340022
\(260\) 0.437694 0.0271446
\(261\) 0 0
\(262\) −4.18034 −0.258262
\(263\) −16.4164 −1.01228 −0.506140 0.862452i \(-0.668928\pi\)
−0.506140 + 0.862452i \(0.668928\pi\)
\(264\) 0 0
\(265\) 5.52786 0.339574
\(266\) −1.32624 −0.0813169
\(267\) 0 0
\(268\) −17.0213 −1.03974
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) −20.8885 −1.26889 −0.634444 0.772969i \(-0.718771\pi\)
−0.634444 + 0.772969i \(0.718771\pi\)
\(272\) −20.3607 −1.23455
\(273\) 0 0
\(274\) −0.583592 −0.0352561
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) −6.47214 −0.388873 −0.194436 0.980915i \(-0.562288\pi\)
−0.194436 + 0.980915i \(0.562288\pi\)
\(278\) 3.41641 0.204903
\(279\) 0 0
\(280\) −1.47214 −0.0879770
\(281\) 2.81966 0.168207 0.0841034 0.996457i \(-0.473197\pi\)
0.0841034 + 0.996457i \(0.473197\pi\)
\(282\) 0 0
\(283\) −19.3607 −1.15087 −0.575436 0.817846i \(-0.695168\pi\)
−0.575436 + 0.817846i \(0.695168\pi\)
\(284\) −8.29180 −0.492028
\(285\) 0 0
\(286\) −0.0901699 −0.00533186
\(287\) −4.47214 −0.263982
\(288\) 0 0
\(289\) 24.8885 1.46403
\(290\) −0.673762 −0.0395647
\(291\) 0 0
\(292\) 18.1033 1.05942
\(293\) 8.00000 0.467365 0.233682 0.972313i \(-0.424922\pi\)
0.233682 + 0.972313i \(0.424922\pi\)
\(294\) 0 0
\(295\) 15.1803 0.883834
\(296\) −8.05573 −0.468230
\(297\) 0 0
\(298\) 5.61803 0.325444
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 4.00000 0.230174
\(303\) 0 0
\(304\) 10.9230 0.626476
\(305\) −8.47214 −0.485113
\(306\) 0 0
\(307\) −20.9443 −1.19535 −0.597676 0.801737i \(-0.703909\pi\)
−0.597676 + 0.801737i \(0.703909\pi\)
\(308\) −1.85410 −0.105647
\(309\) 0 0
\(310\) −0.180340 −0.0102426
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 28.3607 1.60304 0.801520 0.597968i \(-0.204025\pi\)
0.801520 + 0.597968i \(0.204025\pi\)
\(314\) −5.93112 −0.334712
\(315\) 0 0
\(316\) −8.29180 −0.466450
\(317\) −9.41641 −0.528878 −0.264439 0.964402i \(-0.585187\pi\)
−0.264439 + 0.964402i \(0.585187\pi\)
\(318\) 0 0
\(319\) −1.76393 −0.0987612
\(320\) 4.70820 0.263197
\(321\) 0 0
\(322\) 3.23607 0.180339
\(323\) −22.4721 −1.25038
\(324\) 0 0
\(325\) −0.944272 −0.0523788
\(326\) −1.25735 −0.0696384
\(327\) 0 0
\(328\) −6.58359 −0.363518
\(329\) 0.236068 0.0130148
\(330\) 0 0
\(331\) 12.9443 0.711482 0.355741 0.934585i \(-0.384229\pi\)
0.355741 + 0.934585i \(0.384229\pi\)
\(332\) −21.1672 −1.16170
\(333\) 0 0
\(334\) −0.403252 −0.0220650
\(335\) −9.18034 −0.501576
\(336\) 0 0
\(337\) −11.5279 −0.627963 −0.313981 0.949429i \(-0.601663\pi\)
−0.313981 + 0.949429i \(0.601663\pi\)
\(338\) 4.94427 0.268933
\(339\) 0 0
\(340\) −12.0000 −0.650791
\(341\) −0.472136 −0.0255676
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −5.88854 −0.317489
\(345\) 0 0
\(346\) −9.12461 −0.490542
\(347\) −8.94427 −0.480154 −0.240077 0.970754i \(-0.577173\pi\)
−0.240077 + 0.970754i \(0.577173\pi\)
\(348\) 0 0
\(349\) −17.6525 −0.944915 −0.472458 0.881353i \(-0.656633\pi\)
−0.472458 + 0.881353i \(0.656633\pi\)
\(350\) 1.52786 0.0816678
\(351\) 0 0
\(352\) −4.14590 −0.220977
\(353\) 26.5279 1.41194 0.705968 0.708244i \(-0.250512\pi\)
0.705968 + 0.708244i \(0.250512\pi\)
\(354\) 0 0
\(355\) −4.47214 −0.237356
\(356\) −18.5410 −0.982672
\(357\) 0 0
\(358\) 9.12461 0.482251
\(359\) −25.8885 −1.36635 −0.683173 0.730257i \(-0.739400\pi\)
−0.683173 + 0.730257i \(0.739400\pi\)
\(360\) 0 0
\(361\) −6.94427 −0.365488
\(362\) −5.12461 −0.269344
\(363\) 0 0
\(364\) −0.437694 −0.0229414
\(365\) 9.76393 0.511068
\(366\) 0 0
\(367\) 6.00000 0.313197 0.156599 0.987662i \(-0.449947\pi\)
0.156599 + 0.987662i \(0.449947\pi\)
\(368\) −26.6525 −1.38936
\(369\) 0 0
\(370\) −2.09017 −0.108663
\(371\) −5.52786 −0.286992
\(372\) 0 0
\(373\) −32.8328 −1.70002 −0.850009 0.526768i \(-0.823404\pi\)
−0.850009 + 0.526768i \(0.823404\pi\)
\(374\) 2.47214 0.127831
\(375\) 0 0
\(376\) 0.347524 0.0179222
\(377\) −0.416408 −0.0214461
\(378\) 0 0
\(379\) 18.5967 0.955251 0.477625 0.878564i \(-0.341498\pi\)
0.477625 + 0.878564i \(0.341498\pi\)
\(380\) 6.43769 0.330247
\(381\) 0 0
\(382\) −4.54102 −0.232339
\(383\) −11.0557 −0.564921 −0.282461 0.959279i \(-0.591151\pi\)
−0.282461 + 0.959279i \(0.591151\pi\)
\(384\) 0 0
\(385\) −1.00000 −0.0509647
\(386\) −4.00000 −0.203595
\(387\) 0 0
\(388\) 14.8328 0.753022
\(389\) −3.88854 −0.197157 −0.0985785 0.995129i \(-0.531430\pi\)
−0.0985785 + 0.995129i \(0.531430\pi\)
\(390\) 0 0
\(391\) 54.8328 2.77301
\(392\) 1.47214 0.0743541
\(393\) 0 0
\(394\) 2.06888 0.104229
\(395\) −4.47214 −0.225018
\(396\) 0 0
\(397\) −25.3050 −1.27002 −0.635010 0.772504i \(-0.719004\pi\)
−0.635010 + 0.772504i \(0.719004\pi\)
\(398\) −8.00000 −0.401004
\(399\) 0 0
\(400\) −12.5836 −0.629180
\(401\) 9.88854 0.493810 0.246905 0.969040i \(-0.420586\pi\)
0.246905 + 0.969040i \(0.420586\pi\)
\(402\) 0 0
\(403\) −0.111456 −0.00555203
\(404\) −15.7082 −0.781512
\(405\) 0 0
\(406\) 0.673762 0.0334383
\(407\) −5.47214 −0.271244
\(408\) 0 0
\(409\) 2.58359 0.127750 0.0638752 0.997958i \(-0.479654\pi\)
0.0638752 + 0.997958i \(0.479654\pi\)
\(410\) −1.70820 −0.0843622
\(411\) 0 0
\(412\) 28.5836 1.40821
\(413\) −15.1803 −0.746976
\(414\) 0 0
\(415\) −11.4164 −0.560409
\(416\) −0.978714 −0.0479854
\(417\) 0 0
\(418\) −1.32624 −0.0648684
\(419\) −3.65248 −0.178435 −0.0892176 0.996012i \(-0.528437\pi\)
−0.0892176 + 0.996012i \(0.528437\pi\)
\(420\) 0 0
\(421\) 4.52786 0.220675 0.110337 0.993894i \(-0.464807\pi\)
0.110337 + 0.993894i \(0.464807\pi\)
\(422\) −4.94427 −0.240683
\(423\) 0 0
\(424\) −8.13777 −0.395205
\(425\) 25.8885 1.25578
\(426\) 0 0
\(427\) 8.47214 0.409995
\(428\) 31.5197 1.52356
\(429\) 0 0
\(430\) −1.52786 −0.0736801
\(431\) 34.4164 1.65778 0.828890 0.559412i \(-0.188973\pi\)
0.828890 + 0.559412i \(0.188973\pi\)
\(432\) 0 0
\(433\) 30.3607 1.45904 0.729521 0.683959i \(-0.239743\pi\)
0.729521 + 0.683959i \(0.239743\pi\)
\(434\) 0.180340 0.00865659
\(435\) 0 0
\(436\) 30.5410 1.46265
\(437\) −29.4164 −1.40718
\(438\) 0 0
\(439\) 2.88854 0.137863 0.0689313 0.997621i \(-0.478041\pi\)
0.0689313 + 0.997621i \(0.478041\pi\)
\(440\) −1.47214 −0.0701813
\(441\) 0 0
\(442\) 0.583592 0.0277586
\(443\) −30.4721 −1.44777 −0.723887 0.689918i \(-0.757647\pi\)
−0.723887 + 0.689918i \(0.757647\pi\)
\(444\) 0 0
\(445\) −10.0000 −0.474045
\(446\) −0.360680 −0.0170787
\(447\) 0 0
\(448\) −4.70820 −0.222442
\(449\) −13.5279 −0.638419 −0.319210 0.947684i \(-0.603417\pi\)
−0.319210 + 0.947684i \(0.603417\pi\)
\(450\) 0 0
\(451\) −4.47214 −0.210585
\(452\) −21.1672 −0.995621
\(453\) 0 0
\(454\) 3.45898 0.162338
\(455\) −0.236068 −0.0110670
\(456\) 0 0
\(457\) −21.4164 −1.00182 −0.500909 0.865500i \(-0.667001\pi\)
−0.500909 + 0.865500i \(0.667001\pi\)
\(458\) −5.70820 −0.266727
\(459\) 0 0
\(460\) −15.7082 −0.732399
\(461\) 38.4721 1.79183 0.895913 0.444230i \(-0.146523\pi\)
0.895913 + 0.444230i \(0.146523\pi\)
\(462\) 0 0
\(463\) −33.0689 −1.53684 −0.768421 0.639945i \(-0.778957\pi\)
−0.768421 + 0.639945i \(0.778957\pi\)
\(464\) −5.54915 −0.257613
\(465\) 0 0
\(466\) 3.59675 0.166616
\(467\) −18.2361 −0.843865 −0.421932 0.906627i \(-0.638648\pi\)
−0.421932 + 0.906627i \(0.638648\pi\)
\(468\) 0 0
\(469\) 9.18034 0.423909
\(470\) 0.0901699 0.00415923
\(471\) 0 0
\(472\) −22.3475 −1.02863
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) −13.8885 −0.637250
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) 0.201626 0.00922216
\(479\) 16.4721 0.752631 0.376316 0.926492i \(-0.377191\pi\)
0.376316 + 0.926492i \(0.377191\pi\)
\(480\) 0 0
\(481\) −1.29180 −0.0589008
\(482\) 6.15905 0.280537
\(483\) 0 0
\(484\) −1.85410 −0.0842774
\(485\) 8.00000 0.363261
\(486\) 0 0
\(487\) 33.8885 1.53564 0.767818 0.640668i \(-0.221342\pi\)
0.767818 + 0.640668i \(0.221342\pi\)
\(488\) 12.4721 0.564587
\(489\) 0 0
\(490\) 0.381966 0.0172555
\(491\) 3.00000 0.135388 0.0676941 0.997706i \(-0.478436\pi\)
0.0676941 + 0.997706i \(0.478436\pi\)
\(492\) 0 0
\(493\) 11.4164 0.514169
\(494\) −0.313082 −0.0140862
\(495\) 0 0
\(496\) −1.48529 −0.0666916
\(497\) 4.47214 0.200603
\(498\) 0 0
\(499\) −17.1803 −0.769098 −0.384549 0.923105i \(-0.625643\pi\)
−0.384549 + 0.923105i \(0.625643\pi\)
\(500\) −16.6869 −0.746262
\(501\) 0 0
\(502\) −4.63119 −0.206700
\(503\) 33.4164 1.48996 0.744982 0.667085i \(-0.232458\pi\)
0.744982 + 0.667085i \(0.232458\pi\)
\(504\) 0 0
\(505\) −8.47214 −0.377005
\(506\) 3.23607 0.143861
\(507\) 0 0
\(508\) −8.29180 −0.367889
\(509\) 2.94427 0.130503 0.0652513 0.997869i \(-0.479215\pi\)
0.0652513 + 0.997869i \(0.479215\pi\)
\(510\) 0 0
\(511\) −9.76393 −0.431931
\(512\) −22.3050 −0.985749
\(513\) 0 0
\(514\) −3.97871 −0.175494
\(515\) 15.4164 0.679328
\(516\) 0 0
\(517\) 0.236068 0.0103823
\(518\) 2.09017 0.0918368
\(519\) 0 0
\(520\) −0.347524 −0.0152399
\(521\) 41.4721 1.81693 0.908464 0.417964i \(-0.137256\pi\)
0.908464 + 0.417964i \(0.137256\pi\)
\(522\) 0 0
\(523\) 6.41641 0.280570 0.140285 0.990111i \(-0.455198\pi\)
0.140285 + 0.990111i \(0.455198\pi\)
\(524\) −20.2918 −0.886451
\(525\) 0 0
\(526\) 6.27051 0.273407
\(527\) 3.05573 0.133110
\(528\) 0 0
\(529\) 48.7771 2.12074
\(530\) −2.11146 −0.0917158
\(531\) 0 0
\(532\) −6.43769 −0.279109
\(533\) −1.05573 −0.0457287
\(534\) 0 0
\(535\) 17.0000 0.734974
\(536\) 13.5147 0.583746
\(537\) 0 0
\(538\) −2.29180 −0.0988063
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 25.4164 1.09274 0.546368 0.837545i \(-0.316010\pi\)
0.546368 + 0.837545i \(0.316010\pi\)
\(542\) 7.97871 0.342715
\(543\) 0 0
\(544\) 26.8328 1.15045
\(545\) 16.4721 0.705589
\(546\) 0 0
\(547\) −15.4164 −0.659158 −0.329579 0.944128i \(-0.606907\pi\)
−0.329579 + 0.944128i \(0.606907\pi\)
\(548\) −2.83282 −0.121012
\(549\) 0 0
\(550\) 1.52786 0.0651483
\(551\) −6.12461 −0.260917
\(552\) 0 0
\(553\) 4.47214 0.190175
\(554\) 2.47214 0.105031
\(555\) 0 0
\(556\) 16.5836 0.703301
\(557\) 41.0689 1.74014 0.870072 0.492924i \(-0.164072\pi\)
0.870072 + 0.492924i \(0.164072\pi\)
\(558\) 0 0
\(559\) −0.944272 −0.0399384
\(560\) −3.14590 −0.132938
\(561\) 0 0
\(562\) −1.07701 −0.0454311
\(563\) −45.4164 −1.91407 −0.957037 0.289967i \(-0.906356\pi\)
−0.957037 + 0.289967i \(0.906356\pi\)
\(564\) 0 0
\(565\) −11.4164 −0.480292
\(566\) 7.39512 0.310840
\(567\) 0 0
\(568\) 6.58359 0.276241
\(569\) 43.3050 1.81544 0.907719 0.419579i \(-0.137822\pi\)
0.907719 + 0.419579i \(0.137822\pi\)
\(570\) 0 0
\(571\) −25.3050 −1.05898 −0.529490 0.848316i \(-0.677617\pi\)
−0.529490 + 0.848316i \(0.677617\pi\)
\(572\) −0.437694 −0.0183009
\(573\) 0 0
\(574\) 1.70820 0.0712991
\(575\) 33.8885 1.41325
\(576\) 0 0
\(577\) 9.05573 0.376995 0.188497 0.982074i \(-0.439638\pi\)
0.188497 + 0.982074i \(0.439638\pi\)
\(578\) −9.50658 −0.395422
\(579\) 0 0
\(580\) −3.27051 −0.135801
\(581\) 11.4164 0.473632
\(582\) 0 0
\(583\) −5.52786 −0.228941
\(584\) −14.3738 −0.594794
\(585\) 0 0
\(586\) −3.05573 −0.126231
\(587\) −22.7082 −0.937268 −0.468634 0.883392i \(-0.655254\pi\)
−0.468634 + 0.883392i \(0.655254\pi\)
\(588\) 0 0
\(589\) −1.63932 −0.0675470
\(590\) −5.79837 −0.238715
\(591\) 0 0
\(592\) −17.2148 −0.707523
\(593\) −7.41641 −0.304555 −0.152278 0.988338i \(-0.548661\pi\)
−0.152278 + 0.988338i \(0.548661\pi\)
\(594\) 0 0
\(595\) 6.47214 0.265332
\(596\) 27.2705 1.11704
\(597\) 0 0
\(598\) 0.763932 0.0312395
\(599\) 24.8328 1.01464 0.507321 0.861757i \(-0.330636\pi\)
0.507321 + 0.861757i \(0.330636\pi\)
\(600\) 0 0
\(601\) −38.7082 −1.57894 −0.789470 0.613789i \(-0.789645\pi\)
−0.789470 + 0.613789i \(0.789645\pi\)
\(602\) 1.52786 0.0622711
\(603\) 0 0
\(604\) 19.4164 0.790042
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 33.9443 1.37776 0.688878 0.724878i \(-0.258104\pi\)
0.688878 + 0.724878i \(0.258104\pi\)
\(608\) −14.3951 −0.583799
\(609\) 0 0
\(610\) 3.23607 0.131025
\(611\) 0.0557281 0.00225452
\(612\) 0 0
\(613\) 1.88854 0.0762776 0.0381388 0.999272i \(-0.487857\pi\)
0.0381388 + 0.999272i \(0.487857\pi\)
\(614\) 8.00000 0.322854
\(615\) 0 0
\(616\) 1.47214 0.0593140
\(617\) 5.41641 0.218056 0.109028 0.994039i \(-0.465226\pi\)
0.109028 + 0.994039i \(0.465226\pi\)
\(618\) 0 0
\(619\) −36.0000 −1.44696 −0.723481 0.690344i \(-0.757459\pi\)
−0.723481 + 0.690344i \(0.757459\pi\)
\(620\) −0.875388 −0.0351564
\(621\) 0 0
\(622\) 4.58359 0.183785
\(623\) 10.0000 0.400642
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) −10.8328 −0.432966
\(627\) 0 0
\(628\) −28.7902 −1.14886
\(629\) 35.4164 1.41214
\(630\) 0 0
\(631\) −36.0000 −1.43314 −0.716569 0.697517i \(-0.754288\pi\)
−0.716569 + 0.697517i \(0.754288\pi\)
\(632\) 6.58359 0.261881
\(633\) 0 0
\(634\) 3.59675 0.142845
\(635\) −4.47214 −0.177471
\(636\) 0 0
\(637\) 0.236068 0.00935335
\(638\) 0.673762 0.0266745
\(639\) 0 0
\(640\) −10.0902 −0.398849
\(641\) 22.9443 0.906244 0.453122 0.891448i \(-0.350310\pi\)
0.453122 + 0.891448i \(0.350310\pi\)
\(642\) 0 0
\(643\) −24.0000 −0.946468 −0.473234 0.880937i \(-0.656913\pi\)
−0.473234 + 0.880937i \(0.656913\pi\)
\(644\) 15.7082 0.618990
\(645\) 0 0
\(646\) 8.58359 0.337717
\(647\) −0.236068 −0.00928079 −0.00464039 0.999989i \(-0.501477\pi\)
−0.00464039 + 0.999989i \(0.501477\pi\)
\(648\) 0 0
\(649\) −15.1803 −0.595880
\(650\) 0.360680 0.0141470
\(651\) 0 0
\(652\) −6.10333 −0.239025
\(653\) −21.8885 −0.856565 −0.428282 0.903645i \(-0.640881\pi\)
−0.428282 + 0.903645i \(0.640881\pi\)
\(654\) 0 0
\(655\) −10.9443 −0.427628
\(656\) −14.0689 −0.549298
\(657\) 0 0
\(658\) −0.0901699 −0.00351519
\(659\) −17.9443 −0.699010 −0.349505 0.936935i \(-0.613650\pi\)
−0.349505 + 0.936935i \(0.613650\pi\)
\(660\) 0 0
\(661\) 23.4164 0.910793 0.455396 0.890289i \(-0.349498\pi\)
0.455396 + 0.890289i \(0.349498\pi\)
\(662\) −4.94427 −0.192165
\(663\) 0 0
\(664\) 16.8065 0.652219
\(665\) −3.47214 −0.134644
\(666\) 0 0
\(667\) 14.9443 0.578645
\(668\) −1.95743 −0.0757351
\(669\) 0 0
\(670\) 3.50658 0.135471
\(671\) 8.47214 0.327063
\(672\) 0 0
\(673\) 12.8328 0.494669 0.247334 0.968930i \(-0.420445\pi\)
0.247334 + 0.968930i \(0.420445\pi\)
\(674\) 4.40325 0.169607
\(675\) 0 0
\(676\) 24.0000 0.923077
\(677\) −7.41641 −0.285036 −0.142518 0.989792i \(-0.545520\pi\)
−0.142518 + 0.989792i \(0.545520\pi\)
\(678\) 0 0
\(679\) −8.00000 −0.307012
\(680\) 9.52786 0.365377
\(681\) 0 0
\(682\) 0.180340 0.00690557
\(683\) 3.05573 0.116924 0.0584621 0.998290i \(-0.481380\pi\)
0.0584621 + 0.998290i \(0.481380\pi\)
\(684\) 0 0
\(685\) −1.52786 −0.0583767
\(686\) −0.381966 −0.0145835
\(687\) 0 0
\(688\) −12.5836 −0.479745
\(689\) −1.30495 −0.0497147
\(690\) 0 0
\(691\) 30.0000 1.14125 0.570627 0.821209i \(-0.306700\pi\)
0.570627 + 0.821209i \(0.306700\pi\)
\(692\) −44.2918 −1.68372
\(693\) 0 0
\(694\) 3.41641 0.129685
\(695\) 8.94427 0.339276
\(696\) 0 0
\(697\) 28.9443 1.09634
\(698\) 6.74265 0.255213
\(699\) 0 0
\(700\) 7.41641 0.280314
\(701\) 3.52786 0.133246 0.0666228 0.997778i \(-0.478778\pi\)
0.0666228 + 0.997778i \(0.478778\pi\)
\(702\) 0 0
\(703\) −19.0000 −0.716599
\(704\) −4.70820 −0.177447
\(705\) 0 0
\(706\) −10.1327 −0.381351
\(707\) 8.47214 0.318627
\(708\) 0 0
\(709\) −10.5279 −0.395382 −0.197691 0.980264i \(-0.563344\pi\)
−0.197691 + 0.980264i \(0.563344\pi\)
\(710\) 1.70820 0.0641078
\(711\) 0 0
\(712\) 14.7214 0.551706
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) −0.236068 −0.00882844
\(716\) 44.2918 1.65526
\(717\) 0 0
\(718\) 9.88854 0.369037
\(719\) −5.18034 −0.193194 −0.0965970 0.995324i \(-0.530796\pi\)
−0.0965970 + 0.995324i \(0.530796\pi\)
\(720\) 0 0
\(721\) −15.4164 −0.574137
\(722\) 2.65248 0.0987149
\(723\) 0 0
\(724\) −24.8754 −0.924487
\(725\) 7.05573 0.262043
\(726\) 0 0
\(727\) 36.4721 1.35268 0.676338 0.736591i \(-0.263566\pi\)
0.676338 + 0.736591i \(0.263566\pi\)
\(728\) 0.347524 0.0128801
\(729\) 0 0
\(730\) −3.72949 −0.138035
\(731\) 25.8885 0.957522
\(732\) 0 0
\(733\) −26.3607 −0.973654 −0.486827 0.873498i \(-0.661846\pi\)
−0.486827 + 0.873498i \(0.661846\pi\)
\(734\) −2.29180 −0.0845917
\(735\) 0 0
\(736\) 35.1246 1.29471
\(737\) 9.18034 0.338162
\(738\) 0 0
\(739\) −31.8885 −1.17304 −0.586520 0.809935i \(-0.699502\pi\)
−0.586520 + 0.809935i \(0.699502\pi\)
\(740\) −10.1459 −0.372971
\(741\) 0 0
\(742\) 2.11146 0.0775140
\(743\) 23.3607 0.857020 0.428510 0.903537i \(-0.359039\pi\)
0.428510 + 0.903537i \(0.359039\pi\)
\(744\) 0 0
\(745\) 14.7082 0.538867
\(746\) 12.5410 0.459159
\(747\) 0 0
\(748\) 12.0000 0.438763
\(749\) −17.0000 −0.621166
\(750\) 0 0
\(751\) −4.34752 −0.158643 −0.0793217 0.996849i \(-0.525275\pi\)
−0.0793217 + 0.996849i \(0.525275\pi\)
\(752\) 0.742646 0.0270815
\(753\) 0 0
\(754\) 0.159054 0.00579239
\(755\) 10.4721 0.381120
\(756\) 0 0
\(757\) 11.4721 0.416962 0.208481 0.978026i \(-0.433148\pi\)
0.208481 + 0.978026i \(0.433148\pi\)
\(758\) −7.10333 −0.258004
\(759\) 0 0
\(760\) −5.11146 −0.185412
\(761\) −37.7771 −1.36942 −0.684709 0.728816i \(-0.740071\pi\)
−0.684709 + 0.728816i \(0.740071\pi\)
\(762\) 0 0
\(763\) −16.4721 −0.596331
\(764\) −22.0426 −0.797472
\(765\) 0 0
\(766\) 4.22291 0.152580
\(767\) −3.58359 −0.129396
\(768\) 0 0
\(769\) −28.1246 −1.01420 −0.507100 0.861887i \(-0.669282\pi\)
−0.507100 + 0.861887i \(0.669282\pi\)
\(770\) 0.381966 0.0137651
\(771\) 0 0
\(772\) −19.4164 −0.698812
\(773\) 27.9443 1.00509 0.502543 0.864552i \(-0.332398\pi\)
0.502543 + 0.864552i \(0.332398\pi\)
\(774\) 0 0
\(775\) 1.88854 0.0678385
\(776\) −11.7771 −0.422773
\(777\) 0 0
\(778\) 1.48529 0.0532503
\(779\) −15.5279 −0.556343
\(780\) 0 0
\(781\) 4.47214 0.160026
\(782\) −20.9443 −0.748966
\(783\) 0 0
\(784\) 3.14590 0.112354
\(785\) −15.5279 −0.554213
\(786\) 0 0
\(787\) 10.4164 0.371305 0.185652 0.982615i \(-0.440560\pi\)
0.185652 + 0.982615i \(0.440560\pi\)
\(788\) 10.0426 0.357752
\(789\) 0 0
\(790\) 1.70820 0.0607752
\(791\) 11.4164 0.405921
\(792\) 0 0
\(793\) 2.00000 0.0710221
\(794\) 9.66563 0.343020
\(795\) 0 0
\(796\) −38.8328 −1.37639
\(797\) −20.8885 −0.739910 −0.369955 0.929050i \(-0.620627\pi\)
−0.369955 + 0.929050i \(0.620627\pi\)
\(798\) 0 0
\(799\) −1.52786 −0.0540519
\(800\) 16.5836 0.586319
\(801\) 0 0
\(802\) −3.77709 −0.133374
\(803\) −9.76393 −0.344562
\(804\) 0 0
\(805\) 8.47214 0.298604
\(806\) 0.0425725 0.00149955
\(807\) 0 0
\(808\) 12.4721 0.438768
\(809\) 45.6525 1.60506 0.802528 0.596615i \(-0.203488\pi\)
0.802528 + 0.596615i \(0.203488\pi\)
\(810\) 0 0
\(811\) 29.2492 1.02708 0.513540 0.858066i \(-0.328334\pi\)
0.513540 + 0.858066i \(0.328334\pi\)
\(812\) 3.27051 0.114772
\(813\) 0 0
\(814\) 2.09017 0.0732604
\(815\) −3.29180 −0.115307
\(816\) 0 0
\(817\) −13.8885 −0.485899
\(818\) −0.986844 −0.0345042
\(819\) 0 0
\(820\) −8.29180 −0.289562
\(821\) 18.7082 0.652921 0.326460 0.945211i \(-0.394144\pi\)
0.326460 + 0.945211i \(0.394144\pi\)
\(822\) 0 0
\(823\) −10.2361 −0.356807 −0.178403 0.983957i \(-0.557093\pi\)
−0.178403 + 0.983957i \(0.557093\pi\)
\(824\) −22.6950 −0.790619
\(825\) 0 0
\(826\) 5.79837 0.201751
\(827\) −10.8885 −0.378632 −0.189316 0.981916i \(-0.560627\pi\)
−0.189316 + 0.981916i \(0.560627\pi\)
\(828\) 0 0
\(829\) 28.0000 0.972480 0.486240 0.873825i \(-0.338368\pi\)
0.486240 + 0.873825i \(0.338368\pi\)
\(830\) 4.36068 0.151361
\(831\) 0 0
\(832\) −1.11146 −0.0385328
\(833\) −6.47214 −0.224246
\(834\) 0 0
\(835\) −1.05573 −0.0365350
\(836\) −6.43769 −0.222652
\(837\) 0 0
\(838\) 1.39512 0.0481937
\(839\) 41.1803 1.42170 0.710852 0.703342i \(-0.248310\pi\)
0.710852 + 0.703342i \(0.248310\pi\)
\(840\) 0 0
\(841\) −25.8885 −0.892708
\(842\) −1.72949 −0.0596022
\(843\) 0 0
\(844\) −24.0000 −0.826114
\(845\) 12.9443 0.445296
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) −17.3901 −0.597178
\(849\) 0 0
\(850\) −9.88854 −0.339174
\(851\) 46.3607 1.58922
\(852\) 0 0
\(853\) 31.3050 1.07186 0.535931 0.844262i \(-0.319961\pi\)
0.535931 + 0.844262i \(0.319961\pi\)
\(854\) −3.23607 −0.110736
\(855\) 0 0
\(856\) −25.0263 −0.855382
\(857\) 35.0557 1.19748 0.598740 0.800943i \(-0.295668\pi\)
0.598740 + 0.800943i \(0.295668\pi\)
\(858\) 0 0
\(859\) −26.0000 −0.887109 −0.443554 0.896248i \(-0.646283\pi\)
−0.443554 + 0.896248i \(0.646283\pi\)
\(860\) −7.41641 −0.252897
\(861\) 0 0
\(862\) −13.1459 −0.447751
\(863\) −14.9443 −0.508709 −0.254354 0.967111i \(-0.581863\pi\)
−0.254354 + 0.967111i \(0.581863\pi\)
\(864\) 0 0
\(865\) −23.8885 −0.812235
\(866\) −11.5967 −0.394074
\(867\) 0 0
\(868\) 0.875388 0.0297126
\(869\) 4.47214 0.151707
\(870\) 0 0
\(871\) 2.16718 0.0734322
\(872\) −24.2492 −0.821182
\(873\) 0 0
\(874\) 11.2361 0.380066
\(875\) 9.00000 0.304256
\(876\) 0 0
\(877\) −8.00000 −0.270141 −0.135070 0.990836i \(-0.543126\pi\)
−0.135070 + 0.990836i \(0.543126\pi\)
\(878\) −1.10333 −0.0372354
\(879\) 0 0
\(880\) −3.14590 −0.106048
\(881\) 18.4164 0.620465 0.310232 0.950661i \(-0.399593\pi\)
0.310232 + 0.950661i \(0.399593\pi\)
\(882\) 0 0
\(883\) 15.7639 0.530499 0.265249 0.964180i \(-0.414546\pi\)
0.265249 + 0.964180i \(0.414546\pi\)
\(884\) 2.83282 0.0952779
\(885\) 0 0
\(886\) 11.6393 0.391031
\(887\) −27.0557 −0.908442 −0.454221 0.890889i \(-0.650082\pi\)
−0.454221 + 0.890889i \(0.650082\pi\)
\(888\) 0 0
\(889\) 4.47214 0.149991
\(890\) 3.81966 0.128035
\(891\) 0 0
\(892\) −1.75078 −0.0586203
\(893\) 0.819660 0.0274289
\(894\) 0 0
\(895\) 23.8885 0.798506
\(896\) 10.0902 0.337089
\(897\) 0 0
\(898\) 5.16718 0.172431
\(899\) 0.832816 0.0277760
\(900\) 0 0
\(901\) 35.7771 1.19191
\(902\) 1.70820 0.0568770
\(903\) 0 0
\(904\) 16.8065 0.558976
\(905\) −13.4164 −0.445976
\(906\) 0 0
\(907\) −20.9443 −0.695443 −0.347722 0.937598i \(-0.613045\pi\)
−0.347722 + 0.937598i \(0.613045\pi\)
\(908\) 16.7902 0.557204
\(909\) 0 0
\(910\) 0.0901699 0.00298910
\(911\) −42.4721 −1.40716 −0.703582 0.710614i \(-0.748417\pi\)
−0.703582 + 0.710614i \(0.748417\pi\)
\(912\) 0 0
\(913\) 11.4164 0.377828
\(914\) 8.18034 0.270582
\(915\) 0 0
\(916\) −27.7082 −0.915505
\(917\) 10.9443 0.361412
\(918\) 0 0
\(919\) −43.1935 −1.42482 −0.712411 0.701762i \(-0.752397\pi\)
−0.712411 + 0.701762i \(0.752397\pi\)
\(920\) 12.4721 0.411194
\(921\) 0 0
\(922\) −14.6950 −0.483956
\(923\) 1.05573 0.0347497
\(924\) 0 0
\(925\) 21.8885 0.719691
\(926\) 12.6312 0.415087
\(927\) 0 0
\(928\) 7.31308 0.240064
\(929\) −46.4164 −1.52287 −0.761436 0.648240i \(-0.775506\pi\)
−0.761436 + 0.648240i \(0.775506\pi\)
\(930\) 0 0
\(931\) 3.47214 0.113795
\(932\) 17.4590 0.571888
\(933\) 0 0
\(934\) 6.96556 0.227920
\(935\) 6.47214 0.211661
\(936\) 0 0
\(937\) −50.3607 −1.64521 −0.822606 0.568612i \(-0.807481\pi\)
−0.822606 + 0.568612i \(0.807481\pi\)
\(938\) −3.50658 −0.114494
\(939\) 0 0
\(940\) 0.437694 0.0142760
\(941\) −1.05573 −0.0344158 −0.0172079 0.999852i \(-0.505478\pi\)
−0.0172079 + 0.999852i \(0.505478\pi\)
\(942\) 0 0
\(943\) 37.8885 1.23382
\(944\) −47.7558 −1.55432
\(945\) 0 0
\(946\) 1.52786 0.0496751
\(947\) 4.83282 0.157045 0.0785227 0.996912i \(-0.474980\pi\)
0.0785227 + 0.996912i \(0.474980\pi\)
\(948\) 0 0
\(949\) −2.30495 −0.0748219
\(950\) 5.30495 0.172115
\(951\) 0 0
\(952\) −9.52786 −0.308800
\(953\) −55.0689 −1.78386 −0.891928 0.452177i \(-0.850647\pi\)
−0.891928 + 0.452177i \(0.850647\pi\)
\(954\) 0 0
\(955\) −11.8885 −0.384704
\(956\) 0.978714 0.0316539
\(957\) 0 0
\(958\) −6.29180 −0.203279
\(959\) 1.52786 0.0493373
\(960\) 0 0
\(961\) −30.7771 −0.992809
\(962\) 0.493422 0.0159086
\(963\) 0 0
\(964\) 29.8967 0.962907
\(965\) −10.4721 −0.337110
\(966\) 0 0
\(967\) 32.3607 1.04065 0.520325 0.853969i \(-0.325811\pi\)
0.520325 + 0.853969i \(0.325811\pi\)
\(968\) 1.47214 0.0473162
\(969\) 0 0
\(970\) −3.05573 −0.0981135
\(971\) −30.7082 −0.985473 −0.492737 0.870179i \(-0.664003\pi\)
−0.492737 + 0.870179i \(0.664003\pi\)
\(972\) 0 0
\(973\) −8.94427 −0.286740
\(974\) −12.9443 −0.414761
\(975\) 0 0
\(976\) 26.6525 0.853125
\(977\) −49.7771 −1.59251 −0.796255 0.604961i \(-0.793189\pi\)
−0.796255 + 0.604961i \(0.793189\pi\)
\(978\) 0 0
\(979\) 10.0000 0.319601
\(980\) 1.85410 0.0592271
\(981\) 0 0
\(982\) −1.14590 −0.0365671
\(983\) −32.9443 −1.05076 −0.525380 0.850868i \(-0.676077\pi\)
−0.525380 + 0.850868i \(0.676077\pi\)
\(984\) 0 0
\(985\) 5.41641 0.172581
\(986\) −4.36068 −0.138872
\(987\) 0 0
\(988\) −1.51973 −0.0483492
\(989\) 33.8885 1.07759
\(990\) 0 0
\(991\) 29.5410 0.938401 0.469201 0.883092i \(-0.344542\pi\)
0.469201 + 0.883092i \(0.344542\pi\)
\(992\) 1.95743 0.0621484
\(993\) 0 0
\(994\) −1.70820 −0.0541809
\(995\) −20.9443 −0.663978
\(996\) 0 0
\(997\) −35.5279 −1.12518 −0.562589 0.826736i \(-0.690195\pi\)
−0.562589 + 0.826736i \(0.690195\pi\)
\(998\) 6.56231 0.207726
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.2.a.e.1.2 2
3.2 odd 2 693.2.a.k.1.1 yes 2
7.6 odd 2 4851.2.a.u.1.2 2
11.10 odd 2 7623.2.a.bw.1.1 2
21.20 even 2 4851.2.a.bf.1.1 2
33.32 even 2 7623.2.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.2.a.e.1.2 2 1.1 even 1 trivial
693.2.a.k.1.1 yes 2 3.2 odd 2
4851.2.a.u.1.2 2 7.6 odd 2
4851.2.a.bf.1.1 2 21.20 even 2
7623.2.a.v.1.2 2 33.32 even 2
7623.2.a.bw.1.1 2 11.10 odd 2