Properties

Label 693.2.a.e.1.1
Level $693$
Weight $2$
Character 693.1
Self dual yes
Analytic conductor $5.534$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.53363286007\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61803 q^{2} +4.85410 q^{4} -1.00000 q^{5} +1.00000 q^{7} -7.47214 q^{8} +O(q^{10})\) \(q-2.61803 q^{2} +4.85410 q^{4} -1.00000 q^{5} +1.00000 q^{7} -7.47214 q^{8} +2.61803 q^{10} +1.00000 q^{11} -4.23607 q^{13} -2.61803 q^{14} +9.85410 q^{16} +2.47214 q^{17} -5.47214 q^{19} -4.85410 q^{20} -2.61803 q^{22} +0.472136 q^{23} -4.00000 q^{25} +11.0902 q^{26} +4.85410 q^{28} -6.23607 q^{29} +8.47214 q^{31} -10.8541 q^{32} -6.47214 q^{34} -1.00000 q^{35} +3.47214 q^{37} +14.3262 q^{38} +7.47214 q^{40} +4.47214 q^{41} -4.00000 q^{43} +4.85410 q^{44} -1.23607 q^{46} -4.23607 q^{47} +1.00000 q^{49} +10.4721 q^{50} -20.5623 q^{52} -14.4721 q^{53} -1.00000 q^{55} -7.47214 q^{56} +16.3262 q^{58} +7.18034 q^{59} -0.472136 q^{61} -22.1803 q^{62} +8.70820 q^{64} +4.23607 q^{65} -13.1803 q^{67} +12.0000 q^{68} +2.61803 q^{70} -4.47214 q^{71} -14.2361 q^{73} -9.09017 q^{74} -26.5623 q^{76} +1.00000 q^{77} -4.47214 q^{79} -9.85410 q^{80} -11.7082 q^{82} -15.4164 q^{83} -2.47214 q^{85} +10.4721 q^{86} -7.47214 q^{88} +10.0000 q^{89} -4.23607 q^{91} +2.29180 q^{92} +11.0902 q^{94} +5.47214 q^{95} -8.00000 q^{97} -2.61803 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 3 q^{4} - 2 q^{5} + 2 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{2} + 3 q^{4} - 2 q^{5} + 2 q^{7} - 6 q^{8} + 3 q^{10} + 2 q^{11} - 4 q^{13} - 3 q^{14} + 13 q^{16} - 4 q^{17} - 2 q^{19} - 3 q^{20} - 3 q^{22} - 8 q^{23} - 8 q^{25} + 11 q^{26} + 3 q^{28} - 8 q^{29} + 8 q^{31} - 15 q^{32} - 4 q^{34} - 2 q^{35} - 2 q^{37} + 13 q^{38} + 6 q^{40} - 8 q^{43} + 3 q^{44} + 2 q^{46} - 4 q^{47} + 2 q^{49} + 12 q^{50} - 21 q^{52} - 20 q^{53} - 2 q^{55} - 6 q^{56} + 17 q^{58} - 8 q^{59} + 8 q^{61} - 22 q^{62} + 4 q^{64} + 4 q^{65} - 4 q^{67} + 24 q^{68} + 3 q^{70} - 24 q^{73} - 7 q^{74} - 33 q^{76} + 2 q^{77} - 13 q^{80} - 10 q^{82} - 4 q^{83} + 4 q^{85} + 12 q^{86} - 6 q^{88} + 20 q^{89} - 4 q^{91} + 18 q^{92} + 11 q^{94} + 2 q^{95} - 16 q^{97} - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.61803 −1.85123 −0.925615 0.378467i \(-0.876451\pi\)
−0.925615 + 0.378467i \(0.876451\pi\)
\(3\) 0 0
\(4\) 4.85410 2.42705
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −7.47214 −2.64180
\(9\) 0 0
\(10\) 2.61803 0.827895
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.23607 −1.17487 −0.587437 0.809270i \(-0.699863\pi\)
−0.587437 + 0.809270i \(0.699863\pi\)
\(14\) −2.61803 −0.699699
\(15\) 0 0
\(16\) 9.85410 2.46353
\(17\) 2.47214 0.599581 0.299791 0.954005i \(-0.403083\pi\)
0.299791 + 0.954005i \(0.403083\pi\)
\(18\) 0 0
\(19\) −5.47214 −1.25539 −0.627697 0.778458i \(-0.716002\pi\)
−0.627697 + 0.778458i \(0.716002\pi\)
\(20\) −4.85410 −1.08541
\(21\) 0 0
\(22\) −2.61803 −0.558167
\(23\) 0.472136 0.0984472 0.0492236 0.998788i \(-0.484325\pi\)
0.0492236 + 0.998788i \(0.484325\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 11.0902 2.17496
\(27\) 0 0
\(28\) 4.85410 0.917339
\(29\) −6.23607 −1.15801 −0.579004 0.815324i \(-0.696559\pi\)
−0.579004 + 0.815324i \(0.696559\pi\)
\(30\) 0 0
\(31\) 8.47214 1.52164 0.760820 0.648963i \(-0.224797\pi\)
0.760820 + 0.648963i \(0.224797\pi\)
\(32\) −10.8541 −1.91875
\(33\) 0 0
\(34\) −6.47214 −1.10996
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) 3.47214 0.570816 0.285408 0.958406i \(-0.407871\pi\)
0.285408 + 0.958406i \(0.407871\pi\)
\(38\) 14.3262 2.32402
\(39\) 0 0
\(40\) 7.47214 1.18145
\(41\) 4.47214 0.698430 0.349215 0.937043i \(-0.386448\pi\)
0.349215 + 0.937043i \(0.386448\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 4.85410 0.731783
\(45\) 0 0
\(46\) −1.23607 −0.182248
\(47\) −4.23607 −0.617894 −0.308947 0.951079i \(-0.599977\pi\)
−0.308947 + 0.951079i \(0.599977\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 10.4721 1.48098
\(51\) 0 0
\(52\) −20.5623 −2.85148
\(53\) −14.4721 −1.98790 −0.993950 0.109830i \(-0.964969\pi\)
−0.993950 + 0.109830i \(0.964969\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) −7.47214 −0.998506
\(57\) 0 0
\(58\) 16.3262 2.14374
\(59\) 7.18034 0.934801 0.467400 0.884046i \(-0.345191\pi\)
0.467400 + 0.884046i \(0.345191\pi\)
\(60\) 0 0
\(61\) −0.472136 −0.0604508 −0.0302254 0.999543i \(-0.509623\pi\)
−0.0302254 + 0.999543i \(0.509623\pi\)
\(62\) −22.1803 −2.81691
\(63\) 0 0
\(64\) 8.70820 1.08853
\(65\) 4.23607 0.525420
\(66\) 0 0
\(67\) −13.1803 −1.61023 −0.805117 0.593115i \(-0.797898\pi\)
−0.805117 + 0.593115i \(0.797898\pi\)
\(68\) 12.0000 1.45521
\(69\) 0 0
\(70\) 2.61803 0.312915
\(71\) −4.47214 −0.530745 −0.265372 0.964146i \(-0.585495\pi\)
−0.265372 + 0.964146i \(0.585495\pi\)
\(72\) 0 0
\(73\) −14.2361 −1.66621 −0.833103 0.553118i \(-0.813438\pi\)
−0.833103 + 0.553118i \(0.813438\pi\)
\(74\) −9.09017 −1.05671
\(75\) 0 0
\(76\) −26.5623 −3.04691
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) −4.47214 −0.503155 −0.251577 0.967837i \(-0.580949\pi\)
−0.251577 + 0.967837i \(0.580949\pi\)
\(80\) −9.85410 −1.10172
\(81\) 0 0
\(82\) −11.7082 −1.29295
\(83\) −15.4164 −1.69217 −0.846085 0.533048i \(-0.821047\pi\)
−0.846085 + 0.533048i \(0.821047\pi\)
\(84\) 0 0
\(85\) −2.47214 −0.268141
\(86\) 10.4721 1.12924
\(87\) 0 0
\(88\) −7.47214 −0.796532
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −4.23607 −0.444061
\(92\) 2.29180 0.238936
\(93\) 0 0
\(94\) 11.0902 1.14386
\(95\) 5.47214 0.561429
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) −2.61803 −0.264461
\(99\) 0 0
\(100\) −19.4164 −1.94164
\(101\) −0.472136 −0.0469793 −0.0234896 0.999724i \(-0.507478\pi\)
−0.0234896 + 0.999724i \(0.507478\pi\)
\(102\) 0 0
\(103\) 11.4164 1.12489 0.562446 0.826834i \(-0.309860\pi\)
0.562446 + 0.826834i \(0.309860\pi\)
\(104\) 31.6525 3.10378
\(105\) 0 0
\(106\) 37.8885 3.68006
\(107\) −17.0000 −1.64345 −0.821726 0.569883i \(-0.806989\pi\)
−0.821726 + 0.569883i \(0.806989\pi\)
\(108\) 0 0
\(109\) −7.52786 −0.721039 −0.360519 0.932752i \(-0.617401\pi\)
−0.360519 + 0.932752i \(0.617401\pi\)
\(110\) 2.61803 0.249620
\(111\) 0 0
\(112\) 9.85410 0.931125
\(113\) −15.4164 −1.45025 −0.725127 0.688615i \(-0.758219\pi\)
−0.725127 + 0.688615i \(0.758219\pi\)
\(114\) 0 0
\(115\) −0.472136 −0.0440269
\(116\) −30.2705 −2.81055
\(117\) 0 0
\(118\) −18.7984 −1.73053
\(119\) 2.47214 0.226620
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 1.23607 0.111908
\(123\) 0 0
\(124\) 41.1246 3.69310
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −4.47214 −0.396838 −0.198419 0.980117i \(-0.563581\pi\)
−0.198419 + 0.980117i \(0.563581\pi\)
\(128\) −1.09017 −0.0963583
\(129\) 0 0
\(130\) −11.0902 −0.972672
\(131\) −6.94427 −0.606724 −0.303362 0.952875i \(-0.598109\pi\)
−0.303362 + 0.952875i \(0.598109\pi\)
\(132\) 0 0
\(133\) −5.47214 −0.474494
\(134\) 34.5066 2.98091
\(135\) 0 0
\(136\) −18.4721 −1.58397
\(137\) 10.4721 0.894695 0.447347 0.894360i \(-0.352369\pi\)
0.447347 + 0.894360i \(0.352369\pi\)
\(138\) 0 0
\(139\) 8.94427 0.758643 0.379322 0.925265i \(-0.376157\pi\)
0.379322 + 0.925265i \(0.376157\pi\)
\(140\) −4.85410 −0.410246
\(141\) 0 0
\(142\) 11.7082 0.982531
\(143\) −4.23607 −0.354238
\(144\) 0 0
\(145\) 6.23607 0.517877
\(146\) 37.2705 3.08453
\(147\) 0 0
\(148\) 16.8541 1.38540
\(149\) −1.29180 −0.105828 −0.0529140 0.998599i \(-0.516851\pi\)
−0.0529140 + 0.998599i \(0.516851\pi\)
\(150\) 0 0
\(151\) −1.52786 −0.124336 −0.0621679 0.998066i \(-0.519801\pi\)
−0.0621679 + 0.998066i \(0.519801\pi\)
\(152\) 40.8885 3.31650
\(153\) 0 0
\(154\) −2.61803 −0.210967
\(155\) −8.47214 −0.680498
\(156\) 0 0
\(157\) 24.4721 1.95309 0.976545 0.215316i \(-0.0690780\pi\)
0.976545 + 0.215316i \(0.0690780\pi\)
\(158\) 11.7082 0.931455
\(159\) 0 0
\(160\) 10.8541 0.858092
\(161\) 0.472136 0.0372095
\(162\) 0 0
\(163\) 16.7082 1.30869 0.654344 0.756197i \(-0.272945\pi\)
0.654344 + 0.756197i \(0.272945\pi\)
\(164\) 21.7082 1.69513
\(165\) 0 0
\(166\) 40.3607 3.13260
\(167\) 18.9443 1.46595 0.732976 0.680255i \(-0.238131\pi\)
0.732976 + 0.680255i \(0.238131\pi\)
\(168\) 0 0
\(169\) 4.94427 0.380329
\(170\) 6.47214 0.496390
\(171\) 0 0
\(172\) −19.4164 −1.48049
\(173\) −11.8885 −0.903869 −0.451935 0.892051i \(-0.649266\pi\)
−0.451935 + 0.892051i \(0.649266\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 9.85410 0.742781
\(177\) 0 0
\(178\) −26.1803 −1.96230
\(179\) 11.8885 0.888591 0.444296 0.895880i \(-0.353454\pi\)
0.444296 + 0.895880i \(0.353454\pi\)
\(180\) 0 0
\(181\) −13.4164 −0.997234 −0.498617 0.866822i \(-0.666159\pi\)
−0.498617 + 0.866822i \(0.666159\pi\)
\(182\) 11.0902 0.822058
\(183\) 0 0
\(184\) −3.52786 −0.260078
\(185\) −3.47214 −0.255277
\(186\) 0 0
\(187\) 2.47214 0.180780
\(188\) −20.5623 −1.49966
\(189\) 0 0
\(190\) −14.3262 −1.03933
\(191\) −23.8885 −1.72851 −0.864257 0.503050i \(-0.832211\pi\)
−0.864257 + 0.503050i \(0.832211\pi\)
\(192\) 0 0
\(193\) 1.52786 0.109978 0.0549890 0.998487i \(-0.482488\pi\)
0.0549890 + 0.998487i \(0.482488\pi\)
\(194\) 20.9443 1.50371
\(195\) 0 0
\(196\) 4.85410 0.346722
\(197\) 21.4164 1.52586 0.762928 0.646484i \(-0.223761\pi\)
0.762928 + 0.646484i \(0.223761\pi\)
\(198\) 0 0
\(199\) 3.05573 0.216615 0.108307 0.994117i \(-0.465457\pi\)
0.108307 + 0.994117i \(0.465457\pi\)
\(200\) 29.8885 2.11344
\(201\) 0 0
\(202\) 1.23607 0.0869694
\(203\) −6.23607 −0.437686
\(204\) 0 0
\(205\) −4.47214 −0.312348
\(206\) −29.8885 −2.08243
\(207\) 0 0
\(208\) −41.7426 −2.89433
\(209\) −5.47214 −0.378516
\(210\) 0 0
\(211\) −4.94427 −0.340378 −0.170189 0.985411i \(-0.554438\pi\)
−0.170189 + 0.985411i \(0.554438\pi\)
\(212\) −70.2492 −4.82474
\(213\) 0 0
\(214\) 44.5066 3.04241
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 8.47214 0.575126
\(218\) 19.7082 1.33481
\(219\) 0 0
\(220\) −4.85410 −0.327263
\(221\) −10.4721 −0.704432
\(222\) 0 0
\(223\) −16.9443 −1.13467 −0.567336 0.823486i \(-0.692026\pi\)
−0.567336 + 0.823486i \(0.692026\pi\)
\(224\) −10.8541 −0.725220
\(225\) 0 0
\(226\) 40.3607 2.68475
\(227\) −26.9443 −1.78835 −0.894177 0.447713i \(-0.852238\pi\)
−0.894177 + 0.447713i \(0.852238\pi\)
\(228\) 0 0
\(229\) −2.94427 −0.194563 −0.0972815 0.995257i \(-0.531015\pi\)
−0.0972815 + 0.995257i \(0.531015\pi\)
\(230\) 1.23607 0.0815039
\(231\) 0 0
\(232\) 46.5967 3.05923
\(233\) 17.4164 1.14099 0.570493 0.821302i \(-0.306752\pi\)
0.570493 + 0.821302i \(0.306752\pi\)
\(234\) 0 0
\(235\) 4.23607 0.276331
\(236\) 34.8541 2.26881
\(237\) 0 0
\(238\) −6.47214 −0.419526
\(239\) −9.47214 −0.612702 −0.306351 0.951919i \(-0.599108\pi\)
−0.306351 + 0.951919i \(0.599108\pi\)
\(240\) 0 0
\(241\) 24.1246 1.55400 0.777001 0.629499i \(-0.216740\pi\)
0.777001 + 0.629499i \(0.216740\pi\)
\(242\) −2.61803 −0.168294
\(243\) 0 0
\(244\) −2.29180 −0.146717
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) 23.1803 1.47493
\(248\) −63.3050 −4.01987
\(249\) 0 0
\(250\) −23.5623 −1.49021
\(251\) −28.1246 −1.77521 −0.887605 0.460606i \(-0.847632\pi\)
−0.887605 + 0.460606i \(0.847632\pi\)
\(252\) 0 0
\(253\) 0.472136 0.0296829
\(254\) 11.7082 0.734638
\(255\) 0 0
\(256\) −14.5623 −0.910144
\(257\) −16.4164 −1.02403 −0.512014 0.858977i \(-0.671100\pi\)
−0.512014 + 0.858977i \(0.671100\pi\)
\(258\) 0 0
\(259\) 3.47214 0.215748
\(260\) 20.5623 1.27522
\(261\) 0 0
\(262\) 18.1803 1.12319
\(263\) 10.4164 0.642303 0.321152 0.947028i \(-0.395930\pi\)
0.321152 + 0.947028i \(0.395930\pi\)
\(264\) 0 0
\(265\) 14.4721 0.889016
\(266\) 14.3262 0.878398
\(267\) 0 0
\(268\) −63.9787 −3.90812
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) 14.8885 0.904415 0.452207 0.891913i \(-0.350637\pi\)
0.452207 + 0.891913i \(0.350637\pi\)
\(272\) 24.3607 1.47708
\(273\) 0 0
\(274\) −27.4164 −1.65629
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) 2.47214 0.148536 0.0742681 0.997238i \(-0.476338\pi\)
0.0742681 + 0.997238i \(0.476338\pi\)
\(278\) −23.4164 −1.40442
\(279\) 0 0
\(280\) 7.47214 0.446546
\(281\) 25.1803 1.50213 0.751067 0.660226i \(-0.229540\pi\)
0.751067 + 0.660226i \(0.229540\pi\)
\(282\) 0 0
\(283\) 25.3607 1.50754 0.753768 0.657141i \(-0.228234\pi\)
0.753768 + 0.657141i \(0.228234\pi\)
\(284\) −21.7082 −1.28814
\(285\) 0 0
\(286\) 11.0902 0.655775
\(287\) 4.47214 0.263982
\(288\) 0 0
\(289\) −10.8885 −0.640503
\(290\) −16.3262 −0.958710
\(291\) 0 0
\(292\) −69.1033 −4.04397
\(293\) 8.00000 0.467365 0.233682 0.972313i \(-0.424922\pi\)
0.233682 + 0.972313i \(0.424922\pi\)
\(294\) 0 0
\(295\) −7.18034 −0.418056
\(296\) −25.9443 −1.50798
\(297\) 0 0
\(298\) 3.38197 0.195912
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 4.00000 0.230174
\(303\) 0 0
\(304\) −53.9230 −3.09270
\(305\) 0.472136 0.0270344
\(306\) 0 0
\(307\) −3.05573 −0.174400 −0.0871998 0.996191i \(-0.527792\pi\)
−0.0871998 + 0.996191i \(0.527792\pi\)
\(308\) 4.85410 0.276588
\(309\) 0 0
\(310\) 22.1803 1.25976
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) −16.3607 −0.924760 −0.462380 0.886682i \(-0.653004\pi\)
−0.462380 + 0.886682i \(0.653004\pi\)
\(314\) −64.0689 −3.61562
\(315\) 0 0
\(316\) −21.7082 −1.22118
\(317\) 17.4164 0.978203 0.489101 0.872227i \(-0.337325\pi\)
0.489101 + 0.872227i \(0.337325\pi\)
\(318\) 0 0
\(319\) −6.23607 −0.349153
\(320\) −8.70820 −0.486803
\(321\) 0 0
\(322\) −1.23607 −0.0688834
\(323\) −13.5279 −0.752710
\(324\) 0 0
\(325\) 16.9443 0.939899
\(326\) −43.7426 −2.42268
\(327\) 0 0
\(328\) −33.4164 −1.84511
\(329\) −4.23607 −0.233542
\(330\) 0 0
\(331\) −4.94427 −0.271762 −0.135881 0.990725i \(-0.543386\pi\)
−0.135881 + 0.990725i \(0.543386\pi\)
\(332\) −74.8328 −4.10698
\(333\) 0 0
\(334\) −49.5967 −2.71381
\(335\) 13.1803 0.720119
\(336\) 0 0
\(337\) −20.4721 −1.11519 −0.557594 0.830114i \(-0.688275\pi\)
−0.557594 + 0.830114i \(0.688275\pi\)
\(338\) −12.9443 −0.704076
\(339\) 0 0
\(340\) −12.0000 −0.650791
\(341\) 8.47214 0.458792
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 29.8885 1.61148
\(345\) 0 0
\(346\) 31.1246 1.67327
\(347\) 8.94427 0.480154 0.240077 0.970754i \(-0.422827\pi\)
0.240077 + 0.970754i \(0.422827\pi\)
\(348\) 0 0
\(349\) 13.6525 0.730800 0.365400 0.930851i \(-0.380932\pi\)
0.365400 + 0.930851i \(0.380932\pi\)
\(350\) 10.4721 0.559759
\(351\) 0 0
\(352\) −10.8541 −0.578526
\(353\) 35.4721 1.88799 0.943996 0.329958i \(-0.107035\pi\)
0.943996 + 0.329958i \(0.107035\pi\)
\(354\) 0 0
\(355\) 4.47214 0.237356
\(356\) 48.5410 2.57267
\(357\) 0 0
\(358\) −31.1246 −1.64499
\(359\) 9.88854 0.521897 0.260949 0.965353i \(-0.415965\pi\)
0.260949 + 0.965353i \(0.415965\pi\)
\(360\) 0 0
\(361\) 10.9443 0.576014
\(362\) 35.1246 1.84611
\(363\) 0 0
\(364\) −20.5623 −1.07776
\(365\) 14.2361 0.745150
\(366\) 0 0
\(367\) 6.00000 0.313197 0.156599 0.987662i \(-0.449947\pi\)
0.156599 + 0.987662i \(0.449947\pi\)
\(368\) 4.65248 0.242527
\(369\) 0 0
\(370\) 9.09017 0.472575
\(371\) −14.4721 −0.751356
\(372\) 0 0
\(373\) 20.8328 1.07868 0.539341 0.842087i \(-0.318673\pi\)
0.539341 + 0.842087i \(0.318673\pi\)
\(374\) −6.47214 −0.334666
\(375\) 0 0
\(376\) 31.6525 1.63235
\(377\) 26.4164 1.36051
\(378\) 0 0
\(379\) −30.5967 −1.57165 −0.785825 0.618449i \(-0.787761\pi\)
−0.785825 + 0.618449i \(0.787761\pi\)
\(380\) 26.5623 1.36262
\(381\) 0 0
\(382\) 62.5410 3.19988
\(383\) −28.9443 −1.47898 −0.739492 0.673166i \(-0.764934\pi\)
−0.739492 + 0.673166i \(0.764934\pi\)
\(384\) 0 0
\(385\) −1.00000 −0.0509647
\(386\) −4.00000 −0.203595
\(387\) 0 0
\(388\) −38.8328 −1.97144
\(389\) 31.8885 1.61681 0.808407 0.588624i \(-0.200330\pi\)
0.808407 + 0.588624i \(0.200330\pi\)
\(390\) 0 0
\(391\) 1.16718 0.0590270
\(392\) −7.47214 −0.377400
\(393\) 0 0
\(394\) −56.0689 −2.82471
\(395\) 4.47214 0.225018
\(396\) 0 0
\(397\) 37.3050 1.87228 0.936141 0.351625i \(-0.114371\pi\)
0.936141 + 0.351625i \(0.114371\pi\)
\(398\) −8.00000 −0.401004
\(399\) 0 0
\(400\) −39.4164 −1.97082
\(401\) −25.8885 −1.29281 −0.646406 0.762994i \(-0.723729\pi\)
−0.646406 + 0.762994i \(0.723729\pi\)
\(402\) 0 0
\(403\) −35.8885 −1.78774
\(404\) −2.29180 −0.114021
\(405\) 0 0
\(406\) 16.3262 0.810258
\(407\) 3.47214 0.172107
\(408\) 0 0
\(409\) 29.4164 1.45455 0.727274 0.686347i \(-0.240787\pi\)
0.727274 + 0.686347i \(0.240787\pi\)
\(410\) 11.7082 0.578227
\(411\) 0 0
\(412\) 55.4164 2.73017
\(413\) 7.18034 0.353321
\(414\) 0 0
\(415\) 15.4164 0.756762
\(416\) 45.9787 2.25429
\(417\) 0 0
\(418\) 14.3262 0.700719
\(419\) 27.6525 1.35091 0.675456 0.737400i \(-0.263947\pi\)
0.675456 + 0.737400i \(0.263947\pi\)
\(420\) 0 0
\(421\) 13.4721 0.656592 0.328296 0.944575i \(-0.393526\pi\)
0.328296 + 0.944575i \(0.393526\pi\)
\(422\) 12.9443 0.630117
\(423\) 0 0
\(424\) 108.138 5.25163
\(425\) −9.88854 −0.479665
\(426\) 0 0
\(427\) −0.472136 −0.0228483
\(428\) −82.5197 −3.98874
\(429\) 0 0
\(430\) −10.4721 −0.505011
\(431\) 7.58359 0.365289 0.182644 0.983179i \(-0.441534\pi\)
0.182644 + 0.983179i \(0.441534\pi\)
\(432\) 0 0
\(433\) −14.3607 −0.690130 −0.345065 0.938579i \(-0.612143\pi\)
−0.345065 + 0.938579i \(0.612143\pi\)
\(434\) −22.1803 −1.06469
\(435\) 0 0
\(436\) −36.5410 −1.75000
\(437\) −2.58359 −0.123590
\(438\) 0 0
\(439\) −32.8885 −1.56968 −0.784842 0.619696i \(-0.787256\pi\)
−0.784842 + 0.619696i \(0.787256\pi\)
\(440\) 7.47214 0.356220
\(441\) 0 0
\(442\) 27.4164 1.30407
\(443\) −21.5279 −1.02282 −0.511410 0.859337i \(-0.670877\pi\)
−0.511410 + 0.859337i \(0.670877\pi\)
\(444\) 0 0
\(445\) −10.0000 −0.474045
\(446\) 44.3607 2.10054
\(447\) 0 0
\(448\) 8.70820 0.411424
\(449\) −22.4721 −1.06053 −0.530263 0.847833i \(-0.677907\pi\)
−0.530263 + 0.847833i \(0.677907\pi\)
\(450\) 0 0
\(451\) 4.47214 0.210585
\(452\) −74.8328 −3.51984
\(453\) 0 0
\(454\) 70.5410 3.31065
\(455\) 4.23607 0.198590
\(456\) 0 0
\(457\) 5.41641 0.253369 0.126684 0.991943i \(-0.459566\pi\)
0.126684 + 0.991943i \(0.459566\pi\)
\(458\) 7.70820 0.360181
\(459\) 0 0
\(460\) −2.29180 −0.106856
\(461\) 29.5279 1.37525 0.687625 0.726066i \(-0.258653\pi\)
0.687625 + 0.726066i \(0.258653\pi\)
\(462\) 0 0
\(463\) 25.0689 1.16505 0.582525 0.812813i \(-0.302065\pi\)
0.582525 + 0.812813i \(0.302065\pi\)
\(464\) −61.4508 −2.85278
\(465\) 0 0
\(466\) −45.5967 −2.11223
\(467\) −13.7639 −0.636919 −0.318459 0.947936i \(-0.603165\pi\)
−0.318459 + 0.947936i \(0.603165\pi\)
\(468\) 0 0
\(469\) −13.1803 −0.608612
\(470\) −11.0902 −0.511551
\(471\) 0 0
\(472\) −53.6525 −2.46956
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) 21.8885 1.00432
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) 24.7984 1.13425
\(479\) 7.52786 0.343957 0.171978 0.985101i \(-0.444984\pi\)
0.171978 + 0.985101i \(0.444984\pi\)
\(480\) 0 0
\(481\) −14.7082 −0.670636
\(482\) −63.1591 −2.87682
\(483\) 0 0
\(484\) 4.85410 0.220641
\(485\) 8.00000 0.363261
\(486\) 0 0
\(487\) −1.88854 −0.0855781 −0.0427890 0.999084i \(-0.513624\pi\)
−0.0427890 + 0.999084i \(0.513624\pi\)
\(488\) 3.52786 0.159699
\(489\) 0 0
\(490\) 2.61803 0.118271
\(491\) 3.00000 0.135388 0.0676941 0.997706i \(-0.478436\pi\)
0.0676941 + 0.997706i \(0.478436\pi\)
\(492\) 0 0
\(493\) −15.4164 −0.694320
\(494\) −60.6869 −2.73043
\(495\) 0 0
\(496\) 83.4853 3.74860
\(497\) −4.47214 −0.200603
\(498\) 0 0
\(499\) 5.18034 0.231904 0.115952 0.993255i \(-0.463008\pi\)
0.115952 + 0.993255i \(0.463008\pi\)
\(500\) 43.6869 1.95374
\(501\) 0 0
\(502\) 73.6312 3.28632
\(503\) 6.58359 0.293548 0.146774 0.989170i \(-0.453111\pi\)
0.146774 + 0.989170i \(0.453111\pi\)
\(504\) 0 0
\(505\) 0.472136 0.0210098
\(506\) −1.23607 −0.0549499
\(507\) 0 0
\(508\) −21.7082 −0.963146
\(509\) −14.9443 −0.662393 −0.331197 0.943562i \(-0.607452\pi\)
−0.331197 + 0.943562i \(0.607452\pi\)
\(510\) 0 0
\(511\) −14.2361 −0.629767
\(512\) 40.3050 1.78124
\(513\) 0 0
\(514\) 42.9787 1.89571
\(515\) −11.4164 −0.503067
\(516\) 0 0
\(517\) −4.23607 −0.186302
\(518\) −9.09017 −0.399399
\(519\) 0 0
\(520\) −31.6525 −1.38805
\(521\) 32.5279 1.42507 0.712536 0.701636i \(-0.247547\pi\)
0.712536 + 0.701636i \(0.247547\pi\)
\(522\) 0 0
\(523\) −20.4164 −0.892747 −0.446374 0.894847i \(-0.647285\pi\)
−0.446374 + 0.894847i \(0.647285\pi\)
\(524\) −33.7082 −1.47255
\(525\) 0 0
\(526\) −27.2705 −1.18905
\(527\) 20.9443 0.912347
\(528\) 0 0
\(529\) −22.7771 −0.990308
\(530\) −37.8885 −1.64577
\(531\) 0 0
\(532\) −26.5623 −1.15162
\(533\) −18.9443 −0.820568
\(534\) 0 0
\(535\) 17.0000 0.734974
\(536\) 98.4853 4.25392
\(537\) 0 0
\(538\) −15.7082 −0.677229
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) −1.41641 −0.0608961 −0.0304481 0.999536i \(-0.509693\pi\)
−0.0304481 + 0.999536i \(0.509693\pi\)
\(542\) −38.9787 −1.67428
\(543\) 0 0
\(544\) −26.8328 −1.15045
\(545\) 7.52786 0.322458
\(546\) 0 0
\(547\) 11.4164 0.488130 0.244065 0.969759i \(-0.421519\pi\)
0.244065 + 0.969759i \(0.421519\pi\)
\(548\) 50.8328 2.17147
\(549\) 0 0
\(550\) 10.4721 0.446533
\(551\) 34.1246 1.45376
\(552\) 0 0
\(553\) −4.47214 −0.190175
\(554\) −6.47214 −0.274975
\(555\) 0 0
\(556\) 43.4164 1.84127
\(557\) −17.0689 −0.723232 −0.361616 0.932327i \(-0.617775\pi\)
−0.361616 + 0.932327i \(0.617775\pi\)
\(558\) 0 0
\(559\) 16.9443 0.716666
\(560\) −9.85410 −0.416412
\(561\) 0 0
\(562\) −65.9230 −2.78079
\(563\) −18.5836 −0.783205 −0.391603 0.920134i \(-0.628079\pi\)
−0.391603 + 0.920134i \(0.628079\pi\)
\(564\) 0 0
\(565\) 15.4164 0.648573
\(566\) −66.3951 −2.79080
\(567\) 0 0
\(568\) 33.4164 1.40212
\(569\) −19.3050 −0.809306 −0.404653 0.914470i \(-0.632608\pi\)
−0.404653 + 0.914470i \(0.632608\pi\)
\(570\) 0 0
\(571\) 37.3050 1.56116 0.780582 0.625054i \(-0.214923\pi\)
0.780582 + 0.625054i \(0.214923\pi\)
\(572\) −20.5623 −0.859753
\(573\) 0 0
\(574\) −11.7082 −0.488691
\(575\) −1.88854 −0.0787577
\(576\) 0 0
\(577\) 26.9443 1.12170 0.560852 0.827916i \(-0.310474\pi\)
0.560852 + 0.827916i \(0.310474\pi\)
\(578\) 28.5066 1.18572
\(579\) 0 0
\(580\) 30.2705 1.25691
\(581\) −15.4164 −0.639580
\(582\) 0 0
\(583\) −14.4721 −0.599375
\(584\) 106.374 4.40178
\(585\) 0 0
\(586\) −20.9443 −0.865200
\(587\) −9.29180 −0.383513 −0.191757 0.981442i \(-0.561418\pi\)
−0.191757 + 0.981442i \(0.561418\pi\)
\(588\) 0 0
\(589\) −46.3607 −1.91026
\(590\) 18.7984 0.773917
\(591\) 0 0
\(592\) 34.2148 1.40622
\(593\) 19.4164 0.797336 0.398668 0.917095i \(-0.369473\pi\)
0.398668 + 0.917095i \(0.369473\pi\)
\(594\) 0 0
\(595\) −2.47214 −0.101348
\(596\) −6.27051 −0.256850
\(597\) 0 0
\(598\) 5.23607 0.214119
\(599\) −28.8328 −1.17808 −0.589038 0.808105i \(-0.700493\pi\)
−0.589038 + 0.808105i \(0.700493\pi\)
\(600\) 0 0
\(601\) −25.2918 −1.03167 −0.515837 0.856687i \(-0.672519\pi\)
−0.515837 + 0.856687i \(0.672519\pi\)
\(602\) 10.4721 0.426812
\(603\) 0 0
\(604\) −7.41641 −0.301769
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 16.0557 0.651682 0.325841 0.945425i \(-0.394353\pi\)
0.325841 + 0.945425i \(0.394353\pi\)
\(608\) 59.3951 2.40879
\(609\) 0 0
\(610\) −1.23607 −0.0500469
\(611\) 17.9443 0.725948
\(612\) 0 0
\(613\) −33.8885 −1.36875 −0.684373 0.729132i \(-0.739924\pi\)
−0.684373 + 0.729132i \(0.739924\pi\)
\(614\) 8.00000 0.322854
\(615\) 0 0
\(616\) −7.47214 −0.301061
\(617\) −21.4164 −0.862192 −0.431096 0.902306i \(-0.641873\pi\)
−0.431096 + 0.902306i \(0.641873\pi\)
\(618\) 0 0
\(619\) −36.0000 −1.44696 −0.723481 0.690344i \(-0.757459\pi\)
−0.723481 + 0.690344i \(0.757459\pi\)
\(620\) −41.1246 −1.65160
\(621\) 0 0
\(622\) 31.4164 1.25968
\(623\) 10.0000 0.400642
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 42.8328 1.71194
\(627\) 0 0
\(628\) 118.790 4.74025
\(629\) 8.58359 0.342250
\(630\) 0 0
\(631\) −36.0000 −1.43314 −0.716569 0.697517i \(-0.754288\pi\)
−0.716569 + 0.697517i \(0.754288\pi\)
\(632\) 33.4164 1.32923
\(633\) 0 0
\(634\) −45.5967 −1.81088
\(635\) 4.47214 0.177471
\(636\) 0 0
\(637\) −4.23607 −0.167839
\(638\) 16.3262 0.646362
\(639\) 0 0
\(640\) 1.09017 0.0430928
\(641\) 5.05573 0.199689 0.0998446 0.995003i \(-0.468165\pi\)
0.0998446 + 0.995003i \(0.468165\pi\)
\(642\) 0 0
\(643\) −24.0000 −0.946468 −0.473234 0.880937i \(-0.656913\pi\)
−0.473234 + 0.880937i \(0.656913\pi\)
\(644\) 2.29180 0.0903094
\(645\) 0 0
\(646\) 35.4164 1.39344
\(647\) 4.23607 0.166537 0.0832685 0.996527i \(-0.473464\pi\)
0.0832685 + 0.996527i \(0.473464\pi\)
\(648\) 0 0
\(649\) 7.18034 0.281853
\(650\) −44.3607 −1.73997
\(651\) 0 0
\(652\) 81.1033 3.17625
\(653\) 13.8885 0.543501 0.271750 0.962368i \(-0.412397\pi\)
0.271750 + 0.962368i \(0.412397\pi\)
\(654\) 0 0
\(655\) 6.94427 0.271335
\(656\) 44.0689 1.72060
\(657\) 0 0
\(658\) 11.0902 0.432340
\(659\) −0.0557281 −0.00217086 −0.00108543 0.999999i \(-0.500346\pi\)
−0.00108543 + 0.999999i \(0.500346\pi\)
\(660\) 0 0
\(661\) −3.41641 −0.132883 −0.0664414 0.997790i \(-0.521165\pi\)
−0.0664414 + 0.997790i \(0.521165\pi\)
\(662\) 12.9443 0.503093
\(663\) 0 0
\(664\) 115.193 4.47037
\(665\) 5.47214 0.212200
\(666\) 0 0
\(667\) −2.94427 −0.114003
\(668\) 91.9574 3.55794
\(669\) 0 0
\(670\) −34.5066 −1.33311
\(671\) −0.472136 −0.0182266
\(672\) 0 0
\(673\) −40.8328 −1.57399 −0.786995 0.616960i \(-0.788364\pi\)
−0.786995 + 0.616960i \(0.788364\pi\)
\(674\) 53.5967 2.06447
\(675\) 0 0
\(676\) 24.0000 0.923077
\(677\) 19.4164 0.746233 0.373117 0.927784i \(-0.378289\pi\)
0.373117 + 0.927784i \(0.378289\pi\)
\(678\) 0 0
\(679\) −8.00000 −0.307012
\(680\) 18.4721 0.708374
\(681\) 0 0
\(682\) −22.1803 −0.849329
\(683\) 20.9443 0.801410 0.400705 0.916207i \(-0.368765\pi\)
0.400705 + 0.916207i \(0.368765\pi\)
\(684\) 0 0
\(685\) −10.4721 −0.400120
\(686\) −2.61803 −0.0999570
\(687\) 0 0
\(688\) −39.4164 −1.50274
\(689\) 61.3050 2.33553
\(690\) 0 0
\(691\) 30.0000 1.14125 0.570627 0.821209i \(-0.306700\pi\)
0.570627 + 0.821209i \(0.306700\pi\)
\(692\) −57.7082 −2.19374
\(693\) 0 0
\(694\) −23.4164 −0.888875
\(695\) −8.94427 −0.339276
\(696\) 0 0
\(697\) 11.0557 0.418766
\(698\) −35.7426 −1.35288
\(699\) 0 0
\(700\) −19.4164 −0.733871
\(701\) 12.4721 0.471066 0.235533 0.971866i \(-0.424316\pi\)
0.235533 + 0.971866i \(0.424316\pi\)
\(702\) 0 0
\(703\) −19.0000 −0.716599
\(704\) 8.70820 0.328203
\(705\) 0 0
\(706\) −92.8673 −3.49511
\(707\) −0.472136 −0.0177565
\(708\) 0 0
\(709\) −19.4721 −0.731291 −0.365646 0.930754i \(-0.619152\pi\)
−0.365646 + 0.930754i \(0.619152\pi\)
\(710\) −11.7082 −0.439401
\(711\) 0 0
\(712\) −74.7214 −2.80030
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 4.23607 0.158420
\(716\) 57.7082 2.15666
\(717\) 0 0
\(718\) −25.8885 −0.966152
\(719\) 17.1803 0.640719 0.320359 0.947296i \(-0.396196\pi\)
0.320359 + 0.947296i \(0.396196\pi\)
\(720\) 0 0
\(721\) 11.4164 0.425169
\(722\) −28.6525 −1.06633
\(723\) 0 0
\(724\) −65.1246 −2.42034
\(725\) 24.9443 0.926407
\(726\) 0 0
\(727\) 27.5279 1.02095 0.510476 0.859892i \(-0.329469\pi\)
0.510476 + 0.859892i \(0.329469\pi\)
\(728\) 31.6525 1.17312
\(729\) 0 0
\(730\) −37.2705 −1.37944
\(731\) −9.88854 −0.365741
\(732\) 0 0
\(733\) 18.3607 0.678167 0.339084 0.940756i \(-0.389883\pi\)
0.339084 + 0.940756i \(0.389883\pi\)
\(734\) −15.7082 −0.579800
\(735\) 0 0
\(736\) −5.12461 −0.188896
\(737\) −13.1803 −0.485504
\(738\) 0 0
\(739\) 3.88854 0.143042 0.0715212 0.997439i \(-0.477215\pi\)
0.0715212 + 0.997439i \(0.477215\pi\)
\(740\) −16.8541 −0.619569
\(741\) 0 0
\(742\) 37.8885 1.39093
\(743\) −21.3607 −0.783647 −0.391824 0.920040i \(-0.628156\pi\)
−0.391824 + 0.920040i \(0.628156\pi\)
\(744\) 0 0
\(745\) 1.29180 0.0473277
\(746\) −54.5410 −1.99689
\(747\) 0 0
\(748\) 12.0000 0.438763
\(749\) −17.0000 −0.621166
\(750\) 0 0
\(751\) −35.6525 −1.30098 −0.650489 0.759516i \(-0.725436\pi\)
−0.650489 + 0.759516i \(0.725436\pi\)
\(752\) −41.7426 −1.52220
\(753\) 0 0
\(754\) −69.1591 −2.51862
\(755\) 1.52786 0.0556047
\(756\) 0 0
\(757\) 2.52786 0.0918768 0.0459384 0.998944i \(-0.485372\pi\)
0.0459384 + 0.998944i \(0.485372\pi\)
\(758\) 80.1033 2.90948
\(759\) 0 0
\(760\) −40.8885 −1.48318
\(761\) 33.7771 1.22442 0.612209 0.790696i \(-0.290281\pi\)
0.612209 + 0.790696i \(0.290281\pi\)
\(762\) 0 0
\(763\) −7.52786 −0.272527
\(764\) −115.957 −4.19519
\(765\) 0 0
\(766\) 75.7771 2.73794
\(767\) −30.4164 −1.09827
\(768\) 0 0
\(769\) 12.1246 0.437225 0.218612 0.975812i \(-0.429847\pi\)
0.218612 + 0.975812i \(0.429847\pi\)
\(770\) 2.61803 0.0943474
\(771\) 0 0
\(772\) 7.41641 0.266922
\(773\) 10.0557 0.361679 0.180840 0.983513i \(-0.442118\pi\)
0.180840 + 0.983513i \(0.442118\pi\)
\(774\) 0 0
\(775\) −33.8885 −1.21731
\(776\) 59.7771 2.14587
\(777\) 0 0
\(778\) −83.4853 −2.99309
\(779\) −24.4721 −0.876805
\(780\) 0 0
\(781\) −4.47214 −0.160026
\(782\) −3.05573 −0.109273
\(783\) 0 0
\(784\) 9.85410 0.351932
\(785\) −24.4721 −0.873448
\(786\) 0 0
\(787\) −16.4164 −0.585182 −0.292591 0.956238i \(-0.594517\pi\)
−0.292591 + 0.956238i \(0.594517\pi\)
\(788\) 103.957 3.70333
\(789\) 0 0
\(790\) −11.7082 −0.416559
\(791\) −15.4164 −0.548144
\(792\) 0 0
\(793\) 2.00000 0.0710221
\(794\) −97.6656 −3.46602
\(795\) 0 0
\(796\) 14.8328 0.525735
\(797\) 14.8885 0.527379 0.263690 0.964608i \(-0.415061\pi\)
0.263690 + 0.964608i \(0.415061\pi\)
\(798\) 0 0
\(799\) −10.4721 −0.370478
\(800\) 43.4164 1.53500
\(801\) 0 0
\(802\) 67.7771 2.39329
\(803\) −14.2361 −0.502380
\(804\) 0 0
\(805\) −0.472136 −0.0166406
\(806\) 93.9574 3.30951
\(807\) 0 0
\(808\) 3.52786 0.124110
\(809\) 14.3475 0.504432 0.252216 0.967671i \(-0.418841\pi\)
0.252216 + 0.967671i \(0.418841\pi\)
\(810\) 0 0
\(811\) −51.2492 −1.79960 −0.899802 0.436299i \(-0.856289\pi\)
−0.899802 + 0.436299i \(0.856289\pi\)
\(812\) −30.2705 −1.06229
\(813\) 0 0
\(814\) −9.09017 −0.318610
\(815\) −16.7082 −0.585263
\(816\) 0 0
\(817\) 21.8885 0.765783
\(818\) −77.0132 −2.69270
\(819\) 0 0
\(820\) −21.7082 −0.758083
\(821\) 5.29180 0.184685 0.0923425 0.995727i \(-0.470565\pi\)
0.0923425 + 0.995727i \(0.470565\pi\)
\(822\) 0 0
\(823\) −5.76393 −0.200918 −0.100459 0.994941i \(-0.532031\pi\)
−0.100459 + 0.994941i \(0.532031\pi\)
\(824\) −85.3050 −2.97174
\(825\) 0 0
\(826\) −18.7984 −0.654079
\(827\) 24.8885 0.865459 0.432730 0.901524i \(-0.357550\pi\)
0.432730 + 0.901524i \(0.357550\pi\)
\(828\) 0 0
\(829\) 28.0000 0.972480 0.486240 0.873825i \(-0.338368\pi\)
0.486240 + 0.873825i \(0.338368\pi\)
\(830\) −40.3607 −1.40094
\(831\) 0 0
\(832\) −36.8885 −1.27888
\(833\) 2.47214 0.0856544
\(834\) 0 0
\(835\) −18.9443 −0.655594
\(836\) −26.5623 −0.918677
\(837\) 0 0
\(838\) −72.3951 −2.50085
\(839\) 18.8197 0.649727 0.324863 0.945761i \(-0.394682\pi\)
0.324863 + 0.945761i \(0.394682\pi\)
\(840\) 0 0
\(841\) 9.88854 0.340984
\(842\) −35.2705 −1.21550
\(843\) 0 0
\(844\) −24.0000 −0.826114
\(845\) −4.94427 −0.170088
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) −142.610 −4.89724
\(849\) 0 0
\(850\) 25.8885 0.887970
\(851\) 1.63932 0.0561952
\(852\) 0 0
\(853\) −31.3050 −1.07186 −0.535931 0.844262i \(-0.680039\pi\)
−0.535931 + 0.844262i \(0.680039\pi\)
\(854\) 1.23607 0.0422974
\(855\) 0 0
\(856\) 127.026 4.34167
\(857\) 52.9443 1.80854 0.904271 0.426959i \(-0.140415\pi\)
0.904271 + 0.426959i \(0.140415\pi\)
\(858\) 0 0
\(859\) −26.0000 −0.887109 −0.443554 0.896248i \(-0.646283\pi\)
−0.443554 + 0.896248i \(0.646283\pi\)
\(860\) 19.4164 0.662094
\(861\) 0 0
\(862\) −19.8541 −0.676233
\(863\) 2.94427 0.100224 0.0501121 0.998744i \(-0.484042\pi\)
0.0501121 + 0.998744i \(0.484042\pi\)
\(864\) 0 0
\(865\) 11.8885 0.404223
\(866\) 37.5967 1.27759
\(867\) 0 0
\(868\) 41.1246 1.39586
\(869\) −4.47214 −0.151707
\(870\) 0 0
\(871\) 55.8328 1.89182
\(872\) 56.2492 1.90484
\(873\) 0 0
\(874\) 6.76393 0.228793
\(875\) 9.00000 0.304256
\(876\) 0 0
\(877\) −8.00000 −0.270141 −0.135070 0.990836i \(-0.543126\pi\)
−0.135070 + 0.990836i \(0.543126\pi\)
\(878\) 86.1033 2.90585
\(879\) 0 0
\(880\) −9.85410 −0.332182
\(881\) −8.41641 −0.283556 −0.141778 0.989898i \(-0.545282\pi\)
−0.141778 + 0.989898i \(0.545282\pi\)
\(882\) 0 0
\(883\) 20.2361 0.680998 0.340499 0.940245i \(-0.389404\pi\)
0.340499 + 0.940245i \(0.389404\pi\)
\(884\) −50.8328 −1.70969
\(885\) 0 0
\(886\) 56.3607 1.89347
\(887\) −44.9443 −1.50908 −0.754540 0.656254i \(-0.772140\pi\)
−0.754540 + 0.656254i \(0.772140\pi\)
\(888\) 0 0
\(889\) −4.47214 −0.149991
\(890\) 26.1803 0.877567
\(891\) 0 0
\(892\) −82.2492 −2.75391
\(893\) 23.1803 0.775700
\(894\) 0 0
\(895\) −11.8885 −0.397390
\(896\) −1.09017 −0.0364200
\(897\) 0 0
\(898\) 58.8328 1.96328
\(899\) −52.8328 −1.76207
\(900\) 0 0
\(901\) −35.7771 −1.19191
\(902\) −11.7082 −0.389841
\(903\) 0 0
\(904\) 115.193 3.83128
\(905\) 13.4164 0.445976
\(906\) 0 0
\(907\) −3.05573 −0.101464 −0.0507319 0.998712i \(-0.516155\pi\)
−0.0507319 + 0.998712i \(0.516155\pi\)
\(908\) −130.790 −4.34043
\(909\) 0 0
\(910\) −11.0902 −0.367636
\(911\) −33.5279 −1.11083 −0.555414 0.831574i \(-0.687440\pi\)
−0.555414 + 0.831574i \(0.687440\pi\)
\(912\) 0 0
\(913\) −15.4164 −0.510209
\(914\) −14.1803 −0.469044
\(915\) 0 0
\(916\) −14.2918 −0.472214
\(917\) −6.94427 −0.229320
\(918\) 0 0
\(919\) 55.1935 1.82067 0.910333 0.413877i \(-0.135826\pi\)
0.910333 + 0.413877i \(0.135826\pi\)
\(920\) 3.52786 0.116310
\(921\) 0 0
\(922\) −77.3050 −2.54590
\(923\) 18.9443 0.623558
\(924\) 0 0
\(925\) −13.8885 −0.456653
\(926\) −65.6312 −2.15677
\(927\) 0 0
\(928\) 67.6869 2.22193
\(929\) −19.5836 −0.642517 −0.321258 0.946992i \(-0.604106\pi\)
−0.321258 + 0.946992i \(0.604106\pi\)
\(930\) 0 0
\(931\) −5.47214 −0.179342
\(932\) 84.5410 2.76923
\(933\) 0 0
\(934\) 36.0344 1.17908
\(935\) −2.47214 −0.0808475
\(936\) 0 0
\(937\) −5.63932 −0.184229 −0.0921143 0.995748i \(-0.529363\pi\)
−0.0921143 + 0.995748i \(0.529363\pi\)
\(938\) 34.5066 1.12668
\(939\) 0 0
\(940\) 20.5623 0.670668
\(941\) −18.9443 −0.617566 −0.308783 0.951133i \(-0.599922\pi\)
−0.308783 + 0.951133i \(0.599922\pi\)
\(942\) 0 0
\(943\) 2.11146 0.0687585
\(944\) 70.7558 2.30291
\(945\) 0 0
\(946\) 10.4721 0.340479
\(947\) −48.8328 −1.58685 −0.793427 0.608666i \(-0.791705\pi\)
−0.793427 + 0.608666i \(0.791705\pi\)
\(948\) 0 0
\(949\) 60.3050 1.95758
\(950\) −57.3050 −1.85922
\(951\) 0 0
\(952\) −18.4721 −0.598685
\(953\) 3.06888 0.0994109 0.0497054 0.998764i \(-0.484172\pi\)
0.0497054 + 0.998764i \(0.484172\pi\)
\(954\) 0 0
\(955\) 23.8885 0.773015
\(956\) −45.9787 −1.48706
\(957\) 0 0
\(958\) −19.7082 −0.636743
\(959\) 10.4721 0.338163
\(960\) 0 0
\(961\) 40.7771 1.31539
\(962\) 38.5066 1.24150
\(963\) 0 0
\(964\) 117.103 3.77164
\(965\) −1.52786 −0.0491837
\(966\) 0 0
\(967\) −12.3607 −0.397493 −0.198746 0.980051i \(-0.563687\pi\)
−0.198746 + 0.980051i \(0.563687\pi\)
\(968\) −7.47214 −0.240164
\(969\) 0 0
\(970\) −20.9443 −0.672480
\(971\) −17.2918 −0.554920 −0.277460 0.960737i \(-0.589493\pi\)
−0.277460 + 0.960737i \(0.589493\pi\)
\(972\) 0 0
\(973\) 8.94427 0.286740
\(974\) 4.94427 0.158425
\(975\) 0 0
\(976\) −4.65248 −0.148922
\(977\) 21.7771 0.696711 0.348355 0.937363i \(-0.386740\pi\)
0.348355 + 0.937363i \(0.386740\pi\)
\(978\) 0 0
\(979\) 10.0000 0.319601
\(980\) −4.85410 −0.155059
\(981\) 0 0
\(982\) −7.85410 −0.250634
\(983\) −15.0557 −0.480203 −0.240102 0.970748i \(-0.577181\pi\)
−0.240102 + 0.970748i \(0.577181\pi\)
\(984\) 0 0
\(985\) −21.4164 −0.682383
\(986\) 40.3607 1.28535
\(987\) 0 0
\(988\) 112.520 3.57973
\(989\) −1.88854 −0.0600522
\(990\) 0 0
\(991\) −37.5410 −1.19253 −0.596265 0.802788i \(-0.703349\pi\)
−0.596265 + 0.802788i \(0.703349\pi\)
\(992\) −91.9574 −2.91965
\(993\) 0 0
\(994\) 11.7082 0.371362
\(995\) −3.05573 −0.0968731
\(996\) 0 0
\(997\) −44.4721 −1.40845 −0.704223 0.709979i \(-0.748705\pi\)
−0.704223 + 0.709979i \(0.748705\pi\)
\(998\) −13.5623 −0.429307
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.2.a.e.1.1 2
3.2 odd 2 693.2.a.k.1.2 yes 2
7.6 odd 2 4851.2.a.u.1.1 2
11.10 odd 2 7623.2.a.bw.1.2 2
21.20 even 2 4851.2.a.bf.1.2 2
33.32 even 2 7623.2.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.2.a.e.1.1 2 1.1 even 1 trivial
693.2.a.k.1.2 yes 2 3.2 odd 2
4851.2.a.u.1.1 2 7.6 odd 2
4851.2.a.bf.1.2 2 21.20 even 2
7623.2.a.v.1.1 2 33.32 even 2
7623.2.a.bw.1.2 2 11.10 odd 2