Properties

Label 693.1.o.a.373.2
Level $693$
Weight $1$
Character 693.373
Analytic conductor $0.346$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,1,Mod(340,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.340");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 693.o (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.345852053755\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.480249.1

Embedding invariants

Embedding label 373.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 693.373
Dual form 693.1.o.a.340.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(0.500000 - 0.866025i) q^{3} +(0.866025 + 0.500000i) q^{6} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+1.00000i q^{2} +(0.500000 - 0.866025i) q^{3} +(0.866025 + 0.500000i) q^{6} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.500000 + 0.866025i) q^{11} +(-0.866025 - 0.500000i) q^{13} +(-0.500000 + 0.866025i) q^{14} -1.00000 q^{16} +(0.866025 - 0.500000i) q^{17} +(0.866025 - 0.500000i) q^{18} +(-0.866025 - 0.500000i) q^{19} +(0.866025 - 0.500000i) q^{21} +(-0.866025 - 0.500000i) q^{22} +(0.866025 + 0.500000i) q^{24} +(0.500000 - 0.866025i) q^{25} +(0.500000 - 0.866025i) q^{26} -1.00000 q^{27} +(-0.866025 + 0.500000i) q^{29} +1.00000 q^{31} +(0.500000 + 0.866025i) q^{33} +(0.500000 + 0.866025i) q^{34} +(-0.500000 + 0.866025i) q^{37} +(0.500000 - 0.866025i) q^{38} +(-0.866025 + 0.500000i) q^{39} +(-0.866025 - 0.500000i) q^{41} +(0.500000 + 0.866025i) q^{42} +(0.866025 - 0.500000i) q^{43} -1.00000 q^{47} +(-0.500000 + 0.866025i) q^{48} +(0.500000 + 0.866025i) q^{49} +(0.866025 + 0.500000i) q^{50} -1.00000i q^{51} +(-0.500000 - 0.866025i) q^{53} -1.00000i q^{54} +(-0.500000 + 0.866025i) q^{56} +(-0.866025 + 0.500000i) q^{57} +(-0.500000 - 0.866025i) q^{58} +1.00000 q^{59} -1.00000i q^{61} +1.00000i q^{62} -1.00000i q^{63} -1.00000 q^{64} +(-0.866025 + 0.500000i) q^{66} -1.00000 q^{67} +(0.866025 - 0.500000i) q^{72} +(-0.866025 + 0.500000i) q^{73} +(-0.866025 - 0.500000i) q^{74} +(-0.500000 - 0.866025i) q^{75} +(-0.866025 + 0.500000i) q^{77} +(-0.500000 - 0.866025i) q^{78} +1.00000i q^{79} +(-0.500000 + 0.866025i) q^{81} +(0.500000 - 0.866025i) q^{82} +(0.866025 - 0.500000i) q^{83} +(0.500000 + 0.866025i) q^{86} +1.00000i q^{87} +(-0.866025 - 0.500000i) q^{88} +(-0.500000 + 0.866025i) q^{89} +(-0.500000 - 0.866025i) q^{91} +(0.500000 - 0.866025i) q^{93} -1.00000i q^{94} +(0.500000 + 0.866025i) q^{97} +(-0.866025 + 0.500000i) q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{3} - 2 q^{9} - 2 q^{11} - 2 q^{14} - 4 q^{16} + 2 q^{25} + 2 q^{26} - 4 q^{27} + 4 q^{31} + 2 q^{33} + 2 q^{34} - 2 q^{37} + 2 q^{38} + 2 q^{42} - 4 q^{47} - 2 q^{48} + 2 q^{49} - 2 q^{53} - 2 q^{56} - 2 q^{58} + 4 q^{59} - 4 q^{64} - 4 q^{67} - 2 q^{75} - 2 q^{78} - 2 q^{81} + 2 q^{82} + 2 q^{86} - 2 q^{89} - 2 q^{91} + 2 q^{93} + 2 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/693\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) 0.500000 0.866025i 0.500000 0.866025i
\(4\) 0 0
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(7\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(8\) 1.00000i 1.00000i
\(9\) −0.500000 0.866025i −0.500000 0.866025i
\(10\) 0 0
\(11\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(12\) 0 0
\(13\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(14\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(15\) 0 0
\(16\) −1.00000 −1.00000
\(17\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0.866025 0.500000i 0.866025 0.500000i
\(19\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 0 0
\(21\) 0.866025 0.500000i 0.866025 0.500000i
\(22\) −0.866025 0.500000i −0.866025 0.500000i
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(25\) 0.500000 0.866025i 0.500000 0.866025i
\(26\) 0.500000 0.866025i 0.500000 0.866025i
\(27\) −1.00000 −1.00000
\(28\) 0 0
\(29\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 0 0
\(33\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(34\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(38\) 0.500000 0.866025i 0.500000 0.866025i
\(39\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(40\) 0 0
\(41\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(43\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(49\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(50\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(51\) 1.00000i 1.00000i
\(52\) 0 0
\(53\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(54\) 1.00000i 1.00000i
\(55\) 0 0
\(56\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(57\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(58\) −0.500000 0.866025i −0.500000 0.866025i
\(59\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0 0
\(61\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(62\) 1.00000i 1.00000i
\(63\) 1.00000i 1.00000i
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(67\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0.866025 0.500000i 0.866025 0.500000i
\(73\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(74\) −0.866025 0.500000i −0.866025 0.500000i
\(75\) −0.500000 0.866025i −0.500000 0.866025i
\(76\) 0 0
\(77\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(78\) −0.500000 0.866025i −0.500000 0.866025i
\(79\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(82\) 0.500000 0.866025i 0.500000 0.866025i
\(83\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(87\) 1.00000i 1.00000i
\(88\) −0.866025 0.500000i −0.866025 0.500000i
\(89\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −0.500000 0.866025i −0.500000 0.866025i
\(92\) 0 0
\(93\) 0.500000 0.866025i 0.500000 0.866025i
\(94\) 1.00000i 1.00000i
\(95\) 0 0
\(96\) 0 0
\(97\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(99\) 1.00000 1.00000
\(100\) 0 0
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 1.00000 1.00000
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 0.500000 0.866025i 0.500000 0.866025i
\(105\) 0 0
\(106\) 0.866025 0.500000i 0.866025 0.500000i
\(107\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(112\) −0.866025 0.500000i −0.866025 0.500000i
\(113\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(114\) −0.500000 0.866025i −0.500000 0.866025i
\(115\) 0 0
\(116\) 0 0
\(117\) 1.00000i 1.00000i
\(118\) 1.00000i 1.00000i
\(119\) 1.00000 1.00000
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.500000 0.866025i
\(122\) 1.00000 1.00000
\(123\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(124\) 0 0
\(125\) 0 0
\(126\) 1.00000 1.00000
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.00000i 1.00000i
\(129\) 1.00000i 1.00000i
\(130\) 0 0
\(131\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(132\) 0 0
\(133\) −0.500000 0.866025i −0.500000 0.866025i
\(134\) 1.00000i 1.00000i
\(135\) 0 0
\(136\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(142\) 0 0
\(143\) 0.866025 0.500000i 0.866025 0.500000i
\(144\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(145\) 0 0
\(146\) −0.500000 0.866025i −0.500000 0.866025i
\(147\) 1.00000 1.00000
\(148\) 0 0
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0.866025 0.500000i 0.866025 0.500000i
\(151\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 0.500000 0.866025i 0.500000 0.866025i
\(153\) −0.866025 0.500000i −0.866025 0.500000i
\(154\) −0.500000 0.866025i −0.500000 0.866025i
\(155\) 0 0
\(156\) 0 0
\(157\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) −1.00000 −1.00000
\(159\) −1.00000 −1.00000
\(160\) 0 0
\(161\) 0 0
\(162\) −0.866025 0.500000i −0.866025 0.500000i
\(163\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(167\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(169\) 0 0
\(170\) 0 0
\(171\) 1.00000i 1.00000i
\(172\) 0 0
\(173\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) −1.00000 −1.00000
\(175\) 0.866025 0.500000i 0.866025 0.500000i
\(176\) 0.500000 0.866025i 0.500000 0.866025i
\(177\) 0.500000 0.866025i 0.500000 0.866025i
\(178\) −0.866025 0.500000i −0.866025 0.500000i
\(179\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0.866025 0.500000i 0.866025 0.500000i
\(183\) −0.866025 0.500000i −0.866025 0.500000i
\(184\) 0 0
\(185\) 0 0
\(186\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(187\) 1.00000i 1.00000i
\(188\) 0 0
\(189\) −0.866025 0.500000i −0.866025 0.500000i
\(190\) 0 0
\(191\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(193\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(194\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 1.00000i 1.00000i
\(199\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(200\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(201\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(202\) 0 0
\(203\) −1.00000 −1.00000
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(209\) 0.866025 0.500000i 0.866025 0.500000i
\(210\) 0 0
\(211\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.500000 0.866025i 0.500000 0.866025i
\(215\) 0 0
\(216\) 1.00000i 1.00000i
\(217\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(218\) −0.500000 0.866025i −0.500000 0.866025i
\(219\) 1.00000i 1.00000i
\(220\) 0 0
\(221\) −1.00000 −1.00000
\(222\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(223\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) −1.00000 −1.00000
\(226\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(227\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(228\) 0 0
\(229\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(230\) 0 0
\(231\) 1.00000i 1.00000i
\(232\) −0.500000 0.866025i −0.500000 0.866025i
\(233\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(234\) −1.00000 −1.00000
\(235\) 0 0
\(236\) 0 0
\(237\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(238\) 1.00000i 1.00000i
\(239\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 0.866025 0.500000i 0.866025 0.500000i
\(243\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(244\) 0 0
\(245\) 0 0
\(246\) −0.500000 0.866025i −0.500000 0.866025i
\(247\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(248\) 1.00000i 1.00000i
\(249\) 1.00000i 1.00000i
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 1.00000 1.00000
\(259\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(260\) 0 0
\(261\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(262\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(263\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(265\) 0 0
\(266\) 0.866025 0.500000i 0.866025 0.500000i
\(267\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(268\) 0 0
\(269\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(272\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(273\) −1.00000 −1.00000
\(274\) 0 0
\(275\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(279\) −0.500000 0.866025i −0.500000 0.866025i
\(280\) 0 0
\(281\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(282\) −0.866025 0.500000i −0.866025 0.500000i
\(283\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(287\) −0.500000 0.866025i −0.500000 0.866025i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 1.00000 1.00000
\(292\) 0 0
\(293\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(294\) 1.00000i 1.00000i
\(295\) 0 0
\(296\) −0.866025 0.500000i −0.866025 0.500000i
\(297\) 0.500000 0.866025i 0.500000 0.866025i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.00000 1.00000
\(302\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(303\) 0 0
\(304\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(305\) 0 0
\(306\) 0.500000 0.866025i 0.500000 0.866025i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) −0.500000 0.866025i −0.500000 0.866025i
\(313\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 1.00000i 1.00000i
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(318\) 1.00000i 1.00000i
\(319\) 1.00000i 1.00000i
\(320\) 0 0
\(321\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(322\) 0 0
\(323\) −1.00000 −1.00000
\(324\) 0 0
\(325\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(326\) −0.866025 0.500000i −0.866025 0.500000i
\(327\) 1.00000i 1.00000i
\(328\) 0.500000 0.866025i 0.500000 0.866025i
\(329\) −0.866025 0.500000i −0.866025 0.500000i
\(330\) 0 0
\(331\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) 1.00000 1.00000
\(334\) 0.500000 0.866025i 0.500000 0.866025i
\(335\) 0 0
\(336\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(337\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) −0.500000 0.866025i −0.500000 0.866025i
\(340\) 0 0
\(341\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(342\) −1.00000 −1.00000
\(343\) 1.00000i 1.00000i
\(344\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(345\) 0 0
\(346\) −1.00000 −1.00000
\(347\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(348\) 0 0
\(349\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(350\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(351\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(355\) 0 0
\(356\) 0 0
\(357\) 0.500000 0.866025i 0.500000 0.866025i
\(358\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(359\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −1.00000 −1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) 0.500000 0.866025i 0.500000 0.866025i
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 0 0
\(369\) 1.00000i 1.00000i
\(370\) 0 0
\(371\) 1.00000i 1.00000i
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) −1.00000 −1.00000
\(375\) 0 0
\(376\) 1.00000i 1.00000i
\(377\) 1.00000 1.00000
\(378\) 0.500000 0.866025i 0.500000 0.866025i
\(379\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.00000i 1.00000i
\(383\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(384\) −0.866025 0.500000i −0.866025 0.500000i
\(385\) 0 0
\(386\) 1.00000 1.00000
\(387\) −0.866025 0.500000i −0.866025 0.500000i
\(388\) 0 0
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(393\) 2.00000i 2.00000i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(398\) 0.866025 0.500000i 0.866025 0.500000i
\(399\) −1.00000 −1.00000
\(400\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) −0.866025 0.500000i −0.866025 0.500000i
\(403\) −0.866025 0.500000i −0.866025 0.500000i
\(404\) 0 0
\(405\) 0 0
\(406\) 1.00000i 1.00000i
\(407\) −0.500000 0.866025i −0.500000 0.866025i
\(408\) 1.00000 1.00000
\(409\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.866025 0.500000i 0.866025 0.500000i
\(418\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(419\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(420\) 0 0
\(421\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(423\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(424\) 0.866025 0.500000i 0.866025 0.500000i
\(425\) 1.00000i 1.00000i
\(426\) 0 0
\(427\) 0.500000 0.866025i 0.500000 0.866025i
\(428\) 0 0
\(429\) 1.00000i 1.00000i
\(430\) 0 0
\(431\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(432\) 1.00000 1.00000
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −1.00000 −1.00000
\(439\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0.500000 0.866025i 0.500000 0.866025i
\(442\) 1.00000i 1.00000i
\(443\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(447\) 0 0
\(448\) −0.866025 0.500000i −0.866025 0.500000i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 1.00000i 1.00000i
\(451\) 0.866025 0.500000i 0.866025 0.500000i
\(452\) 0 0
\(453\) 1.73205 1.00000i 1.73205 1.00000i
\(454\) 1.00000 1.73205i 1.00000 1.73205i
\(455\) 0 0
\(456\) −0.500000 0.866025i −0.500000 0.866025i
\(457\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(458\) 0 0
\(459\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(460\) 0 0
\(461\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(462\) −1.00000 −1.00000
\(463\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(464\) 0.866025 0.500000i 0.866025 0.500000i
\(465\) 0 0
\(466\) 0.500000 0.866025i 0.500000 0.866025i
\(467\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(468\) 0 0
\(469\) −0.866025 0.500000i −0.866025 0.500000i
\(470\) 0 0
\(471\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(472\) 1.00000i 1.00000i
\(473\) 1.00000i 1.00000i
\(474\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(475\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(476\) 0 0
\(477\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(478\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 0.866025 0.500000i 0.866025 0.500000i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(487\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 1.00000 1.00000
\(489\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(490\) 0 0
\(491\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(494\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(495\) 0 0
\(496\) −1.00000 −1.00000
\(497\) 0 0
\(498\) 1.00000 1.00000
\(499\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(500\) 0 0
\(501\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 1.00000 1.00000
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) −1.00000 −1.00000
\(512\) 1.00000i 1.00000i
\(513\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.500000 0.866025i 0.500000 0.866025i
\(518\) −0.500000 0.866025i −0.500000 0.866025i
\(519\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(520\) 0 0
\(521\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(522\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(523\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(524\) 0 0
\(525\) 1.00000i 1.00000i
\(526\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(527\) 0.866025 0.500000i 0.866025 0.500000i
\(528\) −0.500000 0.866025i −0.500000 0.866025i
\(529\) 0.500000 0.866025i 0.500000 0.866025i
\(530\) 0 0
\(531\) −0.500000 0.866025i −0.500000 0.866025i
\(532\) 0 0
\(533\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(534\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(535\) 0 0
\(536\) 1.00000i 1.00000i
\(537\) 1.00000 1.00000
\(538\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(539\) −1.00000 −1.00000
\(540\) 0 0
\(541\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(542\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 1.00000i 1.00000i
\(547\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(550\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(551\) 1.00000 1.00000
\(552\) 0 0
\(553\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(558\) 0.866025 0.500000i 0.866025 0.500000i
\(559\) −1.00000 −1.00000
\(560\) 0 0
\(561\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(562\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(563\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.00000 −1.00000
\(567\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(568\) 0 0
\(569\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(572\) 0 0
\(573\) 0.500000 0.866025i 0.500000 0.866025i
\(574\) 0.866025 0.500000i 0.866025 0.500000i
\(575\) 0 0
\(576\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(577\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) −0.866025 0.500000i −0.866025 0.500000i
\(580\) 0 0
\(581\) 1.00000 1.00000
\(582\) 1.00000i 1.00000i
\(583\) 1.00000 1.00000
\(584\) −0.500000 0.866025i −0.500000 0.866025i
\(585\) 0 0
\(586\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(587\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) −0.866025 0.500000i −0.866025 0.500000i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.500000 0.866025i 0.500000 0.866025i
\(593\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(595\) 0 0
\(596\) 0 0
\(597\) −1.00000 −1.00000
\(598\) 0 0
\(599\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0.866025 0.500000i 0.866025 0.500000i
\(601\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(602\) 1.00000i 1.00000i
\(603\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(610\) 0 0
\(611\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(612\) 0 0
\(613\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −0.500000 0.866025i −0.500000 0.866025i
\(617\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1.00000i 1.00000i
\(623\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(624\) 0.866025 0.500000i 0.866025 0.500000i
\(625\) −0.500000 0.866025i −0.500000 0.866025i
\(626\) 1.00000i 1.00000i
\(627\) 1.00000i 1.00000i
\(628\) 0 0
\(629\) 1.00000i 1.00000i
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) −1.00000 −1.00000
\(633\) 0.866025 0.500000i 0.866025 0.500000i
\(634\) 1.00000i 1.00000i
\(635\) 0 0
\(636\) 0 0
\(637\) 1.00000i 1.00000i
\(638\) 1.00000 1.00000
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) −0.500000 0.866025i −0.500000 0.866025i
\(643\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.00000i 1.00000i
\(647\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) −0.866025 0.500000i −0.866025 0.500000i
\(649\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(650\) −0.500000 0.866025i −0.500000 0.866025i
\(651\) 0.866025 0.500000i 0.866025 0.500000i
\(652\) 0 0
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) −1.00000 −1.00000
\(655\) 0 0
\(656\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(657\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(658\) 0.500000 0.866025i 0.500000 0.866025i
\(659\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) 1.00000i 1.00000i
\(663\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(664\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(665\) 0 0
\(666\) 1.00000i 1.00000i
\(667\) 0 0
\(668\) 0 0
\(669\) 1.00000 1.00000
\(670\) 0 0
\(671\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(672\) 0 0
\(673\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(674\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(675\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(676\) 0 0
\(677\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 0.866025 0.500000i 0.866025 0.500000i
\(679\) 1.00000i 1.00000i
\(680\) 0 0
\(681\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(682\) −0.866025 0.500000i −0.866025 0.500000i
\(683\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.00000 −1.00000
\(687\) 0 0
\(688\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(689\) 1.00000i 1.00000i
\(690\) 0 0
\(691\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(694\) 1.00000 1.00000
\(695\) 0 0
\(696\) −1.00000 −1.00000
\(697\) −1.00000 −1.00000
\(698\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(699\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(703\) 0.866025 0.500000i 0.866025 0.500000i
\(704\) 0.500000 0.866025i 0.500000 0.866025i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 0 0
\(711\) 0.866025 0.500000i 0.866025 0.500000i
\(712\) −0.866025 0.500000i −0.866025 0.500000i
\(713\) 0 0
\(714\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(715\) 0 0
\(716\) 0 0
\(717\) 0.866025 0.500000i 0.866025 0.500000i
\(718\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(719\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.00000i 1.00000i
\(726\) 1.00000i 1.00000i
\(727\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(728\) 0.866025 0.500000i 0.866025 0.500000i
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0.500000 0.866025i 0.500000 0.866025i
\(732\) 0 0
\(733\) −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i \(0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.500000 0.866025i 0.500000 0.866025i
\(738\) −1.00000 −1.00000
\(739\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(740\) 0 0
\(741\) 1.00000 1.00000
\(742\) 1.00000 1.00000
\(743\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(745\) 0 0
\(746\) 0 0
\(747\) −0.866025 0.500000i −0.866025 0.500000i
\(748\) 0 0
\(749\) −0.500000 0.866025i −0.500000 0.866025i
\(750\) 0 0
\(751\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) 1.00000 1.00000
\(753\) 0 0
\(754\) 1.00000i 1.00000i
\(755\) 0 0
\(756\) 0 0
\(757\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(758\) 2.00000i 2.00000i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0 0
\(763\) −1.00000 −1.00000
\(764\) 0 0
\(765\) 0 0
\(766\) 1.73205 1.00000i 1.73205 1.00000i
\(767\) −0.866025 0.500000i −0.866025 0.500000i
\(768\) 0 0
\(769\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(774\) 0.500000 0.866025i 0.500000 0.866025i
\(775\) 0.500000 0.866025i 0.500000 0.866025i
\(776\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(777\) 1.00000i 1.00000i
\(778\) 0 0
\(779\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.866025 0.500000i 0.866025 0.500000i
\(784\) −0.500000 0.866025i −0.500000 0.866025i
\(785\) 0 0
\(786\) 2.00000 2.00000
\(787\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(788\) 0 0
\(789\) 1.73205 1.00000i<