Properties

Label 693.1.bl.a.142.1
Level $693$
Weight $1$
Character 693.142
Analytic conductor $0.346$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,1,Mod(142,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.142");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 693.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.345852053755\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.480249.1
Artin image: $\SL(2,3):C_2$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{16} - \cdots)\)

Embedding invariants

Embedding label 142.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 693.142
Dual form 693.1.bl.a.571.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} -1.00000 q^{3} +(0.866025 - 0.500000i) q^{6} +1.00000i q^{7} -1.00000i q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} -1.00000 q^{3} +(0.866025 - 0.500000i) q^{6} +1.00000i q^{7} -1.00000i q^{8} +1.00000 q^{9} +1.00000 q^{11} +(-0.866025 + 0.500000i) q^{13} +(-0.500000 - 0.866025i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-0.866025 + 0.500000i) q^{17} +(-0.866025 + 0.500000i) q^{18} +(0.866025 + 0.500000i) q^{19} -1.00000i q^{21} +(-0.866025 + 0.500000i) q^{22} +1.00000i q^{24} -1.00000 q^{25} +(0.500000 - 0.866025i) q^{26} -1.00000 q^{27} +(-0.866025 - 0.500000i) q^{29} +(-0.500000 + 0.866025i) q^{31} -1.00000 q^{33} +(0.500000 - 0.866025i) q^{34} +(-0.500000 + 0.866025i) q^{37} -1.00000 q^{38} +(0.866025 - 0.500000i) q^{39} +(-0.866025 + 0.500000i) q^{41} +(0.500000 + 0.866025i) q^{42} +(0.866025 + 0.500000i) q^{43} +(0.500000 + 0.866025i) q^{47} +(-0.500000 - 0.866025i) q^{48} -1.00000 q^{49} +(0.866025 - 0.500000i) q^{50} +(0.866025 - 0.500000i) q^{51} +(-0.500000 - 0.866025i) q^{53} +(0.866025 - 0.500000i) q^{54} +1.00000 q^{56} +(-0.866025 - 0.500000i) q^{57} +1.00000 q^{58} +(-0.500000 + 0.866025i) q^{59} +(0.866025 - 0.500000i) q^{61} -1.00000i q^{62} +1.00000i q^{63} -1.00000 q^{64} +(0.866025 - 0.500000i) q^{66} +(0.500000 - 0.866025i) q^{67} -1.00000i q^{72} +(0.866025 - 0.500000i) q^{73} -1.00000i q^{74} +1.00000 q^{75} +1.00000i q^{77} +(-0.500000 + 0.866025i) q^{78} +(-0.866025 + 0.500000i) q^{79} +1.00000 q^{81} +(0.500000 - 0.866025i) q^{82} +(0.866025 + 0.500000i) q^{83} -1.00000 q^{86} +(0.866025 + 0.500000i) q^{87} -1.00000i q^{88} +(-0.500000 + 0.866025i) q^{89} +(-0.500000 - 0.866025i) q^{91} +(0.500000 - 0.866025i) q^{93} +(-0.866025 - 0.500000i) q^{94} +(0.500000 - 0.866025i) q^{97} +(0.866025 - 0.500000i) q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{3} + 4 q^{9} + 4 q^{11} - 2 q^{14} + 2 q^{16} - 4 q^{25} + 2 q^{26} - 4 q^{27} - 2 q^{31} - 4 q^{33} + 2 q^{34} - 2 q^{37} - 4 q^{38} + 2 q^{42} + 2 q^{47} - 2 q^{48} - 4 q^{49} - 2 q^{53} + 4 q^{56} + 4 q^{58} - 2 q^{59} - 4 q^{64} + 2 q^{67} + 4 q^{75} - 2 q^{78} + 4 q^{81} + 2 q^{82} - 4 q^{86} - 2 q^{89} - 2 q^{91} + 2 q^{93} + 2 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/693\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(3\) −1.00000 −1.00000
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0.866025 0.500000i 0.866025 0.500000i
\(7\) 1.00000i 1.00000i
\(8\) 1.00000i 1.00000i
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) 1.00000 1.00000
\(12\) 0 0
\(13\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(14\) −0.500000 0.866025i −0.500000 0.866025i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(17\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(18\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(19\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 1.00000i 1.00000i
\(22\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 1.00000i 1.00000i
\(25\) −1.00000 −1.00000
\(26\) 0.500000 0.866025i 0.500000 0.866025i
\(27\) −1.00000 −1.00000
\(28\) 0 0
\(29\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0 0
\(31\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) −1.00000 −1.00000
\(34\) 0.500000 0.866025i 0.500000 0.866025i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(38\) −1.00000 −1.00000
\(39\) 0.866025 0.500000i 0.866025 0.500000i
\(40\) 0 0
\(41\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(42\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(43\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) −0.500000 0.866025i −0.500000 0.866025i
\(49\) −1.00000 −1.00000
\(50\) 0.866025 0.500000i 0.866025 0.500000i
\(51\) 0.866025 0.500000i 0.866025 0.500000i
\(52\) 0 0
\(53\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(54\) 0.866025 0.500000i 0.866025 0.500000i
\(55\) 0 0
\(56\) 1.00000 1.00000
\(57\) −0.866025 0.500000i −0.866025 0.500000i
\(58\) 1.00000 1.00000
\(59\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) 1.00000i 1.00000i
\(63\) 1.00000i 1.00000i
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0.866025 0.500000i 0.866025 0.500000i
\(67\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.00000i 1.00000i
\(73\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(74\) 1.00000i 1.00000i
\(75\) 1.00000 1.00000
\(76\) 0 0
\(77\) 1.00000i 1.00000i
\(78\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(79\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) 0.500000 0.866025i 0.500000 0.866025i
\(83\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.00000 −1.00000
\(87\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(88\) 1.00000i 1.00000i
\(89\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −0.500000 0.866025i −0.500000 0.866025i
\(92\) 0 0
\(93\) 0.500000 0.866025i 0.500000 0.866025i
\(94\) −0.866025 0.500000i −0.866025 0.500000i
\(95\) 0 0
\(96\) 0 0
\(97\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(98\) 0.866025 0.500000i 0.866025 0.500000i
\(99\) 1.00000 1.00000
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(105\) 0 0
\(106\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(107\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(110\) 0 0
\(111\) 0.500000 0.866025i 0.500000 0.866025i
\(112\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(113\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 1.00000 1.00000
\(115\) 0 0
\(116\) 0 0
\(117\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(118\) 1.00000i 1.00000i
\(119\) −0.500000 0.866025i −0.500000 0.866025i
\(120\) 0 0
\(121\) 1.00000 1.00000
\(122\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(123\) 0.866025 0.500000i 0.866025 0.500000i
\(124\) 0 0
\(125\) 0 0
\(126\) −0.500000 0.866025i −0.500000 0.866025i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.866025 0.500000i 0.866025 0.500000i
\(129\) −0.866025 0.500000i −0.866025 0.500000i
\(130\) 0 0
\(131\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(132\) 0 0
\(133\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(134\) 1.00000i 1.00000i
\(135\) 0 0
\(136\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(140\) 0 0
\(141\) −0.500000 0.866025i −0.500000 0.866025i
\(142\) 0 0
\(143\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(144\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(145\) 0 0
\(146\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(147\) 1.00000 1.00000
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(151\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0.500000 0.866025i 0.500000 0.866025i
\(153\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(154\) −0.500000 0.866025i −0.500000 0.866025i
\(155\) 0 0
\(156\) 0 0
\(157\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(158\) 0.500000 0.866025i 0.500000 0.866025i
\(159\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(160\) 0 0
\(161\) 0 0
\(162\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(163\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.00000 −1.00000
\(167\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(168\) −1.00000 −1.00000
\(169\) 0 0
\(170\) 0 0
\(171\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(172\) 0 0
\(173\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(174\) −1.00000 −1.00000
\(175\) 1.00000i 1.00000i
\(176\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(177\) 0.500000 0.866025i 0.500000 0.866025i
\(178\) 1.00000i 1.00000i
\(179\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(183\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(184\) 0 0
\(185\) 0 0
\(186\) 1.00000i 1.00000i
\(187\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(188\) 0 0
\(189\) 1.00000i 1.00000i
\(190\) 0 0
\(191\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(192\) 1.00000 1.00000
\(193\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(194\) 1.00000i 1.00000i
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(199\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(200\) 1.00000i 1.00000i
\(201\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(202\) 0 0
\(203\) 0.500000 0.866025i 0.500000 0.866025i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −0.866025 0.500000i −0.866025 0.500000i
\(209\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(210\) 0 0
\(211\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −1.00000 −1.00000
\(215\) 0 0
\(216\) 1.00000i 1.00000i
\(217\) −0.866025 0.500000i −0.866025 0.500000i
\(218\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(219\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(220\) 0 0
\(221\) 0.500000 0.866025i 0.500000 0.866025i
\(222\) 1.00000i 1.00000i
\(223\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(224\) 0 0
\(225\) −1.00000 −1.00000
\(226\) −0.866025 0.500000i −0.866025 0.500000i
\(227\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 1.00000i 1.00000i
\(232\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(233\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(234\) 0.500000 0.866025i 0.500000 0.866025i
\(235\) 0 0
\(236\) 0 0
\(237\) 0.866025 0.500000i 0.866025 0.500000i
\(238\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(239\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(243\) −1.00000 −1.00000
\(244\) 0 0
\(245\) 0 0
\(246\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(247\) −1.00000 −1.00000
\(248\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(249\) −0.866025 0.500000i −0.866025 0.500000i
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 1.00000 1.00000
\(259\) −0.866025 0.500000i −0.866025 0.500000i
\(260\) 0 0
\(261\) −0.866025 0.500000i −0.866025 0.500000i
\(262\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(263\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 1.00000i 1.00000i
\(265\) 0 0
\(266\) 1.00000i 1.00000i
\(267\) 0.500000 0.866025i 0.500000 0.866025i
\(268\) 0 0
\(269\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) −0.866025 0.500000i −0.866025 0.500000i
\(273\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(274\) 0 0
\(275\) −1.00000 −1.00000
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(279\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(280\) 0 0
\(281\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(282\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(283\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0.500000 0.866025i 0.500000 0.866025i
\(287\) −0.500000 0.866025i −0.500000 0.866025i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(292\) 0 0
\(293\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(295\) 0 0
\(296\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(297\) −1.00000 −1.00000
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(302\) −1.00000 1.73205i −1.00000 1.73205i
\(303\) 0 0
\(304\) 1.00000i 1.00000i
\(305\) 0 0
\(306\) 0.500000 0.866025i 0.500000 0.866025i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(312\) −0.500000 0.866025i −0.500000 0.866025i
\(313\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 1.00000i 1.00000i
\(315\) 0 0
\(316\) 0 0
\(317\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(318\) −0.866025 0.500000i −0.866025 0.500000i
\(319\) −0.866025 0.500000i −0.866025 0.500000i
\(320\) 0 0
\(321\) −0.866025 0.500000i −0.866025 0.500000i
\(322\) 0 0
\(323\) −1.00000 −1.00000
\(324\) 0 0
\(325\) 0.866025 0.500000i 0.866025 0.500000i
\(326\) 1.00000i 1.00000i
\(327\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(328\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(329\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(330\) 0 0
\(331\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(334\) 0.500000 0.866025i 0.500000 0.866025i
\(335\) 0 0
\(336\) 0.866025 0.500000i 0.866025 0.500000i
\(337\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(338\) 0 0
\(339\) −0.500000 0.866025i −0.500000 0.866025i
\(340\) 0 0
\(341\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(342\) −1.00000 −1.00000
\(343\) 1.00000i 1.00000i
\(344\) 0.500000 0.866025i 0.500000 0.866025i
\(345\) 0 0
\(346\) 0.500000 0.866025i 0.500000 0.866025i
\(347\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(350\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(351\) 0.866025 0.500000i 0.866025 0.500000i
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 1.00000i 1.00000i
\(355\) 0 0
\(356\) 0 0
\(357\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(358\) −0.866025 0.500000i −0.866025 0.500000i
\(359\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −1.00000 −1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) 0.500000 0.866025i 0.500000 0.866025i
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(370\) 0 0
\(371\) 0.866025 0.500000i 0.866025 0.500000i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0.500000 0.866025i 0.500000 0.866025i
\(375\) 0 0
\(376\) 0.866025 0.500000i 0.866025 0.500000i
\(377\) 1.00000 1.00000
\(378\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(379\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(383\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(384\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(385\) 0 0
\(386\) 1.00000 1.00000
\(387\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000i 1.00000i
\(393\) 2.00000i 2.00000i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(398\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(399\) 0.500000 0.866025i 0.500000 0.866025i
\(400\) −0.500000 0.866025i −0.500000 0.866025i
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 1.00000i 1.00000i
\(403\) 1.00000i 1.00000i
\(404\) 0 0
\(405\) 0 0
\(406\) 1.00000i 1.00000i
\(407\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(408\) −0.500000 0.866025i −0.500000 0.866025i
\(409\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.866025 0.500000i −0.866025 0.500000i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(418\) −1.00000 −1.00000
\(419\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(422\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(423\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(424\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(425\) 0.866025 0.500000i 0.866025 0.500000i
\(426\) 0 0
\(427\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(428\) 0 0
\(429\) 0.866025 0.500000i 0.866025 0.500000i
\(430\) 0 0
\(431\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) −0.500000 0.866025i −0.500000 0.866025i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 1.00000 1.00000
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0.500000 0.866025i 0.500000 0.866025i
\(439\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −1.00000 −1.00000
\(442\) 1.00000i 1.00000i
\(443\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.00000i 1.00000i
\(447\) 0 0
\(448\) 1.00000i 1.00000i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0.866025 0.500000i 0.866025 0.500000i
\(451\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(452\) 0 0
\(453\) 2.00000i 2.00000i
\(454\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(455\) 0 0
\(456\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(457\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(458\) 0 0
\(459\) 0.866025 0.500000i 0.866025 0.500000i
\(460\) 0 0
\(461\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(463\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 1.00000i 1.00000i
\(465\) 0 0
\(466\) −1.00000 −1.00000
\(467\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(468\) 0 0
\(469\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(470\) 0 0
\(471\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(472\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(473\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(474\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(475\) −0.866025 0.500000i −0.866025 0.500000i
\(476\) 0 0
\(477\) −0.500000 0.866025i −0.500000 0.866025i
\(478\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 1.00000i 1.00000i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0.866025 0.500000i 0.866025 0.500000i
\(487\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) −0.500000 0.866025i −0.500000 0.866025i
\(489\) 0.500000 0.866025i 0.500000 0.866025i
\(490\) 0 0
\(491\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 1.00000 1.00000
\(494\) 0.866025 0.500000i 0.866025 0.500000i
\(495\) 0 0
\(496\) −1.00000 −1.00000
\(497\) 0 0
\(498\) 1.00000 1.00000
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0.866025 0.500000i 0.866025 0.500000i
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 1.00000 1.00000
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(512\) 1.00000i 1.00000i
\(513\) −0.866025 0.500000i −0.866025 0.500000i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(518\) 1.00000 1.00000
\(519\) 0.866025 0.500000i 0.866025 0.500000i
\(520\) 0 0
\(521\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(522\) 1.00000 1.00000
\(523\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 1.00000i 1.00000i
\(526\) −1.00000 1.73205i −1.00000 1.73205i
\(527\) 1.00000i 1.00000i
\(528\) −0.500000 0.866025i −0.500000 0.866025i
\(529\) −1.00000 −1.00000
\(530\) 0 0
\(531\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(532\) 0 0
\(533\) 0.500000 0.866025i 0.500000 0.866025i
\(534\) 1.00000i 1.00000i
\(535\) 0 0
\(536\) −0.866025 0.500000i −0.866025 0.500000i
\(537\) −0.500000 0.866025i −0.500000 0.866025i
\(538\) −0.866025 0.500000i −0.866025 0.500000i
\(539\) −1.00000 −1.00000
\(540\) 0 0
\(541\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(542\) 1.00000 1.00000
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) −0.866025 0.500000i −0.866025 0.500000i
\(547\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(548\) 0 0
\(549\) 0.866025 0.500000i 0.866025 0.500000i
\(550\) 0.866025 0.500000i 0.866025 0.500000i
\(551\) −0.500000 0.866025i −0.500000 0.866025i
\(552\) 0 0
\(553\) −0.500000 0.866025i −0.500000 0.866025i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(558\) 1.00000i 1.00000i
\(559\) −1.00000 −1.00000
\(560\) 0 0
\(561\) 0.866025 0.500000i 0.866025 0.500000i
\(562\) −1.00000 −1.00000
\(563\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.00000 −1.00000
\(567\) 1.00000i 1.00000i
\(568\) 0 0
\(569\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(574\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(575\) 0 0
\(576\) −1.00000 −1.00000
\(577\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(580\) 0 0
\(581\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(582\) 1.00000i 1.00000i
\(583\) −0.500000 0.866025i −0.500000 0.866025i
\(584\) −0.500000 0.866025i −0.500000 0.866025i
\(585\) 0 0
\(586\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(587\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(590\) 0 0
\(591\) 0 0
\(592\) −1.00000 −1.00000
\(593\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(594\) 0.866025 0.500000i 0.866025 0.500000i
\(595\) 0 0
\(596\) 0 0
\(597\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(598\) 0 0
\(599\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(600\) 1.00000i 1.00000i
\(601\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(602\) 1.00000i 1.00000i
\(603\) 0.500000 0.866025i 0.500000 0.866025i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(610\) 0 0
\(611\) −0.866025 0.500000i −0.866025 0.500000i
\(612\) 0 0
\(613\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 1.00000 1.00000
\(617\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1.00000i 1.00000i
\(623\) −0.866025 0.500000i −0.866025 0.500000i
\(624\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(625\) 1.00000 1.00000
\(626\) −0.866025 0.500000i −0.866025 0.500000i
\(627\) −0.866025 0.500000i −0.866025 0.500000i
\(628\) 0 0
\(629\) 1.00000i 1.00000i
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(633\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(634\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.866025 0.500000i 0.866025 0.500000i
\(638\) 1.00000 1.00000
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 1.00000 1.00000
\(643\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.866025 0.500000i 0.866025 0.500000i
\(647\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) 1.00000i 1.00000i
\(649\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(650\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(651\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0.500000 0.866025i 0.500000 0.866025i
\(655\) 0 0
\(656\) −0.866025 0.500000i −0.866025 0.500000i
\(657\) 0.866025 0.500000i 0.866025 0.500000i
\(658\) 0.500000 0.866025i 0.500000 0.866025i
\(659\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(662\) −0.866025 0.500000i −0.866025 0.500000i
\(663\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(664\) 0.500000 0.866025i 0.500000 0.866025i
\(665\) 0 0
\(666\) 1.00000i 1.00000i
\(667\) 0 0
\(668\) 0 0
\(669\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(670\) 0 0
\(671\) 0.866025 0.500000i 0.866025 0.500000i
\(672\) 0 0
\(673\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(674\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(675\) 1.00000 1.00000
\(676\) 0 0
\(677\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(678\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(679\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(680\) 0 0
\(681\) 2.00000i 2.00000i
\(682\) 1.00000i 1.00000i
\(683\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(687\) 0 0
\(688\) 1.00000i 1.00000i
\(689\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(690\) 0 0
\(691\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 1.00000i 1.00000i
\(694\) 1.00000 1.00000
\(695\) 0 0
\(696\) 0.500000 0.866025i 0.500000 0.866025i
\(697\) 0.500000 0.866025i 0.500000 0.866025i
\(698\) −1.00000 −1.00000
\(699\) −0.866025 0.500000i −0.866025 0.500000i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(703\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(704\) −1.00000 −1.00000
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(712\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(713\) 0 0
\(714\) −0.866025 0.500000i −0.866025 0.500000i
\(715\) 0 0
\(716\) 0 0
\(717\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(718\) 1.00000 1.00000
\(719\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(726\) 0.866025 0.500000i 0.866025 0.500000i
\(727\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(728\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −1.00000 −1.00000
\(732\) 0 0
\(733\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.500000 0.866025i 0.500000 0.866025i
\(738\) 0.500000 0.866025i 0.500000 0.866025i
\(739\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 1.00000 1.00000
\(742\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(743\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(744\) −0.866025 0.500000i −0.866025 0.500000i
\(745\) 0 0
\(746\) 0 0
\(747\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(748\) 0 0
\(749\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(753\) 0 0
\(754\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(755\) 0 0
\(756\) 0 0
\(757\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(758\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(764\) 0 0
\(765\) 0 0
\(766\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(767\) 1.00000i 1.00000i
\(768\) 0 0
\(769\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(774\) −1.00000 −1.00000
\(775\) 0.500000 0.866025i 0.500000 0.866025i
\(776\) −0.866025 0.500000i −0.866025 0.500000i
\(777\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(778\) 0 0
\(779\) −1.00000 −1.00000
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(784\) −0.500000 0.866025i −0.500000 0.866025i
\(785\) 0 0
\(786\) −1.00000 1.73205i −1.00000 1.73205i
\(787\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i</