Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6900,2,Mod(6349,6900)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6900, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6900.6349");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6900.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(55.0967773947\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 1380) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 6349.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 6900.6349 |
Dual form | 6900.2.f.d.6349.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6900\mathbb{Z}\right)^\times\).
\(n\) | \(277\) | \(1201\) | \(3451\) | \(4601\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 1.00000i | 0.577350i | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 4.00000i | 1.51186i | 0.654654 | + | 0.755929i | \(0.272814\pi\) | ||||
−0.654654 | + | 0.755929i | \(0.727186\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | −0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 2.00000i | 0.554700i | 0.960769 | + | 0.277350i | \(0.0894562\pi\) | ||||
−0.960769 | + | 0.277350i | \(0.910544\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 6.00000i | − 1.45521i | −0.685994 | − | 0.727607i | \(-0.740633\pi\) | ||||
0.685994 | − | 0.727607i | \(-0.259367\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −2.00000 | −0.458831 | −0.229416 | − | 0.973329i | \(-0.573682\pi\) | ||||
−0.229416 | + | 0.973329i | \(0.573682\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | −4.00000 | −0.872872 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 1.00000i | − 0.208514i | ||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | − 1.00000i | − 0.192450i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −6.00000 | −1.11417 | −0.557086 | − | 0.830455i | \(-0.688081\pi\) | ||||
−0.557086 | + | 0.830455i | \(0.688081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 8.00000i | − 1.31519i | −0.753371 | − | 0.657596i | \(-0.771573\pi\) | ||||
0.753371 | − | 0.657596i | \(-0.228427\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | −2.00000 | −0.320256 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.00000 | 0.937043 | 0.468521 | − | 0.883452i | \(-0.344787\pi\) | ||||
0.468521 | + | 0.883452i | \(0.344787\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 8.00000i | 1.21999i | 0.792406 | + | 0.609994i | \(0.208828\pi\) | ||||
−0.792406 | + | 0.609994i | \(0.791172\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 12.0000i | − 1.75038i | −0.483779 | − | 0.875190i | \(-0.660736\pi\) | ||||
0.483779 | − | 0.875190i | \(-0.339264\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −9.00000 | −1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 6.00000 | 0.840168 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 6.00000i | − 0.824163i | −0.911147 | − | 0.412082i | \(-0.864802\pi\) | ||||
0.911147 | − | 0.412082i | \(-0.135198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | − 2.00000i | − 0.264906i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 6.00000 | 0.781133 | 0.390567 | − | 0.920575i | \(-0.372279\pi\) | ||||
0.390567 | + | 0.920575i | \(0.372279\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | − 4.00000i | − 0.503953i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 8.00000i | − 0.977356i | −0.872464 | − | 0.488678i | \(-0.837479\pi\) | ||||
0.872464 | − | 0.488678i | \(-0.162521\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 1.00000 | 0.120386 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −6.00000 | −0.712069 | −0.356034 | − | 0.934473i | \(-0.615871\pi\) | ||||
−0.356034 | + | 0.934473i | \(0.615871\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000i | 0.234082i | 0.993127 | + | 0.117041i | \(0.0373409\pi\) | ||||
−0.993127 | + | 0.117041i | \(0.962659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 10.0000 | 1.12509 | 0.562544 | − | 0.826767i | \(-0.309823\pi\) | ||||
0.562544 | + | 0.826767i | \(0.309823\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 12.0000i | − 1.31717i | −0.752506 | − | 0.658586i | \(-0.771155\pi\) | ||||
0.752506 | − | 0.658586i | \(-0.228845\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | − 6.00000i | − 0.643268i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −6.00000 | −0.635999 | −0.317999 | − | 0.948091i | \(-0.603011\pi\) | ||||
−0.317999 | + | 0.948091i | \(0.603011\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −8.00000 | −0.838628 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | − 4.00000i | − 0.414781i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 8.00000i | − 0.812277i | −0.913812 | − | 0.406138i | \(-0.866875\pi\) | ||||
0.913812 | − | 0.406138i | \(-0.133125\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −6.00000 | −0.597022 | −0.298511 | − | 0.954406i | \(-0.596490\pi\) | ||||
−0.298511 | + | 0.954406i | \(0.596490\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 8.00000i | 0.788263i | 0.919054 | + | 0.394132i | \(0.128955\pi\) | ||||
−0.919054 | + | 0.394132i | \(0.871045\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000i | 1.16008i | 0.814587 | + | 0.580042i | \(0.196964\pi\) | ||||
−0.814587 | + | 0.580042i | \(0.803036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −2.00000 | −0.191565 | −0.0957826 | − | 0.995402i | \(-0.530535\pi\) | ||||
−0.0957826 | + | 0.995402i | \(0.530535\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 8.00000 | 0.759326 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 6.00000i | − 0.564433i | −0.959351 | − | 0.282216i | \(-0.908930\pi\) | ||||
0.959351 | − | 0.282216i | \(-0.0910696\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | − 2.00000i | − 0.184900i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 24.0000 | 2.20008 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 6.00000i | 0.541002i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 8.00000i | − 0.709885i | −0.934888 | − | 0.354943i | \(-0.884500\pi\) | ||||
0.934888 | − | 0.354943i | \(-0.115500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −8.00000 | −0.704361 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 6.00000 | 0.524222 | 0.262111 | − | 0.965038i | \(-0.415581\pi\) | ||||
0.262111 | + | 0.965038i | \(0.415581\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 8.00000i | − 0.693688i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 6.00000i | 0.512615i | 0.966595 | + | 0.256307i | \(0.0825059\pi\) | ||||
−0.966595 | + | 0.256307i | \(0.917494\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −20.0000 | −1.69638 | −0.848189 | − | 0.529694i | \(-0.822307\pi\) | ||||
−0.848189 | + | 0.529694i | \(0.822307\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 12.0000 | 1.01058 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | − 9.00000i | − 0.742307i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 6.00000 | 0.491539 | 0.245770 | − | 0.969328i | \(-0.420959\pi\) | ||||
0.245770 | + | 0.969328i | \(0.420959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 8.00000 | 0.651031 | 0.325515 | − | 0.945537i | \(-0.394462\pi\) | ||||
0.325515 | + | 0.945537i | \(0.394462\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 6.00000i | 0.485071i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 4.00000i | 0.319235i | 0.987179 | + | 0.159617i | \(0.0510260\pi\) | ||||
−0.987179 | + | 0.159617i | \(0.948974\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 6.00000 | 0.475831 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 4.00000 | 0.315244 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 20.0000i | 1.56652i | 0.621694 | + | 0.783260i | \(0.286445\pi\) | ||||
−0.621694 | + | 0.783260i | \(0.713555\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 9.00000 | 0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 2.00000 | 0.152944 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 24.0000i | − 1.82469i | −0.409426 | − | 0.912343i | \(-0.634271\pi\) | ||||
0.409426 | − | 0.912343i | \(-0.365729\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 6.00000i | 0.450988i | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 6.00000 | 0.448461 | 0.224231 | − | 0.974536i | \(-0.428013\pi\) | ||||
0.224231 | + | 0.974536i | \(0.428013\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 2.00000 | 0.148659 | 0.0743294 | − | 0.997234i | \(-0.476318\pi\) | ||||
0.0743294 | + | 0.997234i | \(0.476318\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | − 10.0000i | − 0.739221i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 4.00000 | 0.290957 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 14.0000i | 1.00774i | 0.863779 | + | 0.503871i | \(0.168091\pi\) | ||||
−0.863779 | + | 0.503871i | \(0.831909\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 10.0000 | 0.708881 | 0.354441 | − | 0.935079i | \(-0.384671\pi\) | ||||
0.354441 | + | 0.935079i | \(0.384671\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 8.00000 | 0.564276 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 24.0000i | − 1.68447i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 1.00000i | 0.0695048i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 8.00000 | 0.550743 | 0.275371 | − | 0.961338i | \(-0.411199\pi\) | ||||
0.275371 | + | 0.961338i | \(0.411199\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | − 6.00000i | − 0.411113i | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 16.0000i | − 1.08615i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −2.00000 | −0.135147 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 12.0000 | 0.807207 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 16.0000i | − 1.07144i | −0.844396 | − | 0.535720i | \(-0.820040\pi\) | ||||
0.844396 | − | 0.535720i | \(-0.179960\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 12.0000i | 0.796468i | 0.917284 | + | 0.398234i | \(0.130377\pi\) | ||||
−0.917284 | + | 0.398234i | \(0.869623\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 10.0000 | 0.660819 | 0.330409 | − | 0.943838i | \(-0.392813\pi\) | ||||
0.330409 | + | 0.943838i | \(0.392813\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 24.0000i | 1.57229i | 0.618041 | + | 0.786146i | \(0.287927\pi\) | ||||
−0.618041 | + | 0.786146i | \(0.712073\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 10.0000i | 0.649570i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 6.00000 | 0.388108 | 0.194054 | − | 0.980991i | \(-0.437836\pi\) | ||||
0.194054 | + | 0.980991i | \(0.437836\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −10.0000 | −0.644157 | −0.322078 | − | 0.946713i | \(-0.604381\pi\) | ||||
−0.322078 | + | 0.946713i | \(0.604381\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 1.00000i | 0.0641500i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 4.00000i | − 0.254514i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 12.0000 | 0.760469 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −12.0000 | −0.757433 | −0.378717 | − | 0.925513i | \(-0.623635\pi\) | ||||
−0.378717 | + | 0.925513i | \(0.623635\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 12.0000i | − 0.748539i | −0.927320 | − | 0.374270i | \(-0.877893\pi\) | ||||
0.927320 | − | 0.374270i | \(-0.122107\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 32.0000 | 1.98838 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 6.00000 | 0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 24.0000i | − 1.47990i | −0.672660 | − | 0.739952i | \(-0.734848\pi\) | ||||
0.672660 | − | 0.739952i | \(-0.265152\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | − 6.00000i | − 0.367194i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 6.00000 | 0.365826 | 0.182913 | − | 0.983129i | \(-0.441447\pi\) | ||||
0.182913 | + | 0.983129i | \(0.441447\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 32.0000 | 1.94386 | 0.971931 | − | 0.235267i | \(-0.0755965\pi\) | ||||
0.971931 | + | 0.235267i | \(0.0755965\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | − 8.00000i | − 0.484182i | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 14.0000i | − 0.841178i | −0.907251 | − | 0.420589i | \(-0.861823\pi\) | ||||
0.907251 | − | 0.420589i | \(-0.138177\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 4.00000 | 0.239474 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −6.00000 | −0.357930 | −0.178965 | − | 0.983855i | \(-0.557275\pi\) | ||||
−0.178965 | + | 0.983855i | \(0.557275\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 28.0000i | − 1.66443i | −0.554455 | − | 0.832214i | \(-0.687073\pi\) | ||||
0.554455 | − | 0.832214i | \(-0.312927\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 24.0000i | 1.41668i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −19.0000 | −1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 8.00000 | 0.468968 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 6.00000i | − 0.350524i | −0.984522 | − | 0.175262i | \(-0.943923\pi\) | ||||
0.984522 | − | 0.175262i | \(-0.0560772\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 2.00000 | 0.115663 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −32.0000 | −1.84445 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | − 6.00000i | − 0.344691i | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 28.0000i | 1.59804i | 0.601302 | + | 0.799022i | \(0.294649\pi\) | ||||
−0.601302 | + | 0.799022i | \(0.705351\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | −8.00000 | −0.455104 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −18.0000 | −1.02069 | −0.510343 | − | 0.859971i | \(-0.670482\pi\) | ||||
−0.510343 | + | 0.859971i | \(0.670482\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 28.0000i | − 1.58265i | −0.611393 | − | 0.791327i | \(-0.709391\pi\) | ||||
0.611393 | − | 0.791327i | \(-0.290609\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 12.0000i | − 0.673987i | −0.941507 | − | 0.336994i | \(-0.890590\pi\) | ||||
0.941507 | − | 0.336994i | \(-0.109410\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | −12.0000 | −0.669775 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 12.0000i | 0.667698i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | − 2.00000i | − 0.110600i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 48.0000 | 2.64633 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −28.0000 | −1.53902 | −0.769510 | − | 0.638635i | \(-0.779499\pi\) | ||||
−0.769510 | + | 0.638635i | \(0.779499\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 8.00000i | 0.438397i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 32.0000i | − 1.74315i | −0.490261 | − | 0.871576i | \(-0.663099\pi\) | ||||
0.490261 | − | 0.871576i | \(-0.336901\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 6.00000 | 0.325875 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 8.00000i | − 0.431959i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 12.0000i | − 0.644194i | −0.946707 | − | 0.322097i | \(-0.895612\pi\) | ||||
0.946707 | − | 0.322097i | \(-0.104388\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −2.00000 | −0.107058 | −0.0535288 | − | 0.998566i | \(-0.517047\pi\) | ||||
−0.0535288 | + | 0.998566i | \(0.517047\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 2.00000 | 0.106752 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 36.0000i | 1.91609i | 0.286623 | + | 0.958043i | \(0.407467\pi\) | ||||
−0.286623 | + | 0.958043i | \(0.592533\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 24.0000i | 1.27021i | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 12.0000 | 0.633336 | 0.316668 | − | 0.948536i | \(-0.397436\pi\) | ||||
0.316668 | + | 0.948536i | \(0.397436\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | −0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − 11.0000i | − 0.577350i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 8.00000i | − 0.417597i | −0.977959 | − | 0.208798i | \(-0.933045\pi\) | ||||
0.977959 | − | 0.208798i | \(-0.0669552\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −6.00000 | −0.312348 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 24.0000 | 1.24602 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 20.0000i | 1.03556i | 0.855514 | + | 0.517780i | \(0.173242\pi\) | ||||
−0.855514 | + | 0.517780i | \(0.826758\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 12.0000i | − 0.618031i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −2.00000 | −0.102733 | −0.0513665 | − | 0.998680i | \(-0.516358\pi\) | ||||
−0.0513665 | + | 0.998680i | \(0.516358\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 8.00000 | 0.409852 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 24.0000i | 1.22634i | 0.789950 | + | 0.613171i | \(0.210106\pi\) | ||||
−0.789950 | + | 0.613171i | \(0.789894\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | − 8.00000i | − 0.406663i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 6.00000 | 0.304212 | 0.152106 | − | 0.988364i | \(-0.451394\pi\) | ||||
0.152106 | + | 0.988364i | \(0.451394\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −6.00000 | −0.303433 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 6.00000i | 0.302660i | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 14.0000i | − 0.702640i | −0.936255 | − | 0.351320i | \(-0.885733\pi\) | ||||
0.936255 | − | 0.351320i | \(-0.114267\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 8.00000 | 0.400501 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −30.0000 | −1.49813 | −0.749064 | − | 0.662497i | \(-0.769497\pi\) | ||||
−0.749064 | + | 0.662497i | \(0.769497\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 8.00000i | − 0.398508i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −14.0000 | −0.692255 | −0.346128 | − | 0.938187i | \(-0.612504\pi\) | ||||
−0.346128 | + | 0.938187i | \(0.612504\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −6.00000 | −0.295958 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 24.0000i | 1.18096i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | − 20.0000i | − 0.979404i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 12.0000 | 0.586238 | 0.293119 | − | 0.956076i | \(-0.405307\pi\) | ||||
0.293119 | + | 0.956076i | \(0.405307\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −34.0000 | −1.65706 | −0.828529 | − | 0.559946i | \(-0.810822\pi\) | ||||
−0.828529 | + | 0.559946i | \(0.810822\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 12.0000i | 0.583460i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 40.0000i | − 1.93574i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 24.0000 | 1.15604 | 0.578020 | − | 0.816023i | \(-0.303826\pi\) | ||||
0.578020 | + | 0.816023i | \(0.303826\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 16.0000i | − 0.768911i | −0.923144 | − | 0.384455i | \(-0.874389\pi\) | ||||
0.923144 | − | 0.384455i | \(-0.125611\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 2.00000i | 0.0956730i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 40.0000 | 1.90910 | 0.954548 | − | 0.298057i | \(-0.0963387\pi\) | ||||
0.954548 | + | 0.298057i | \(0.0963387\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 9.00000 | 0.428571 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 24.0000i | − 1.14027i | −0.821549 | − | 0.570137i | \(-0.806890\pi\) | ||||
0.821549 | − | 0.570137i | \(-0.193110\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 6.00000i | 0.283790i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −18.0000 | −0.849473 | −0.424736 | − | 0.905317i | \(-0.639633\pi\) | ||||
−0.424736 | + | 0.905317i | \(0.639633\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 8.00000i | 0.375873i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 32.0000i | − 1.49690i | −0.663193 | − | 0.748448i | \(-0.730799\pi\) | ||||
0.663193 | − | 0.748448i | \(-0.269201\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | −6.00000 | −0.280056 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −6.00000 | −0.279448 | −0.139724 | − | 0.990190i | \(-0.544622\pi\) | ||||
−0.139724 | + | 0.990190i | \(0.544622\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 40.0000i | − 1.85896i | −0.368875 | − | 0.929479i | \(-0.620257\pi\) | ||||
0.368875 | − | 0.929479i | \(-0.379743\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 12.0000i | 0.555294i | 0.960683 | + | 0.277647i | \(0.0895545\pi\) | ||||
−0.960683 | + | 0.277647i | \(0.910445\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 32.0000 | 1.47762 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −4.00000 | −0.184310 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 6.00000i | 0.274721i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −12.0000 | −0.548294 | −0.274147 | − | 0.961688i | \(-0.588395\pi\) | ||||
−0.274147 | + | 0.961688i | \(0.588395\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 16.0000 | 0.729537 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 4.00000i | 0.182006i | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 8.00000i | − 0.362515i | −0.983436 | − | 0.181257i | \(-0.941983\pi\) | ||||
0.983436 | − | 0.181257i | \(-0.0580167\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −20.0000 | −0.904431 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −30.0000 | −1.35388 | −0.676941 | − | 0.736038i | \(-0.736695\pi\) | ||||
−0.676941 | + | 0.736038i | \(0.736695\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 36.0000i | 1.62136i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 24.0000i | − 1.07655i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −20.0000 | −0.895323 | −0.447661 | − | 0.894203i | \(-0.647743\pi\) | ||||
−0.447661 | + | 0.894203i | \(0.647743\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 24.0000i | − 1.07011i | −0.844818 | − | 0.535054i | \(-0.820291\pi\) | ||||
0.844818 | − | 0.535054i | \(-0.179709\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 9.00000i | 0.399704i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −6.00000 | −0.265945 | −0.132973 | − | 0.991120i | \(-0.542452\pi\) | ||||
−0.132973 | + | 0.991120i | \(0.542452\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −8.00000 | −0.353899 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 2.00000i | 0.0883022i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 24.0000 | 1.05348 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −6.00000 | −0.262865 | −0.131432 | − | 0.991325i | \(-0.541958\pi\) | ||||
−0.131432 | + | 0.991325i | \(0.541958\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 20.0000i | 0.874539i | 0.899331 | + | 0.437269i | \(0.144054\pi\) | ||||
−0.899331 | + | 0.437269i | \(0.855946\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 24.0000i | 1.04546i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −1.00000 | −0.0434783 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | −6.00000 | −0.260378 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 12.0000i | 0.519778i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 6.00000i | 0.258919i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 2.00000 | 0.0859867 | 0.0429934 | − | 0.999075i | \(-0.486311\pi\) | ||||
0.0429934 | + | 0.999075i | \(0.486311\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 2.00000i | 0.0858282i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 44.0000i | − 1.88130i | −0.339372 | − | 0.940652i | \(-0.610215\pi\) | ||||
0.339372 | − | 0.940652i | \(-0.389785\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 10.0000 | 0.426790 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 12.0000 | 0.511217 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 40.0000i | 1.70097i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 30.0000i | 1.27114i | 0.772043 | + | 0.635570i | \(0.219235\pi\) | ||||
−0.772043 | + | 0.635570i | \(0.780765\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −16.0000 | −0.676728 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 36.0000i | − 1.51722i | −0.651546 | − | 0.758610i | \(-0.725879\pi\) | ||||
0.651546 | − | 0.758610i | \(-0.274121\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 4.00000i | 0.167984i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 42.0000 | 1.76073 | 0.880366 | − | 0.474295i | \(-0.157297\pi\) | ||||
0.880366 | + | 0.474295i | \(0.157297\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 26.0000 | 1.08807 | 0.544033 | − | 0.839064i | \(-0.316897\pi\) | ||||
0.544033 | + | 0.839064i | \(0.316897\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 34.0000i | 1.41544i | 0.706494 | + | 0.707719i | \(0.250276\pi\) | ||||
−0.706494 | + | 0.707719i | \(0.749724\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | −14.0000 | −0.581820 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 48.0000 | 1.99138 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 36.0000i | − 1.48588i | −0.669359 | − | 0.742940i | \(-0.733431\pi\) | ||||
0.669359 | − | 0.742940i | \(-0.266569\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 8.00000 | 0.329634 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 12.0000i | − 0.492781i | −0.969171 | − | 0.246390i | \(-0.920755\pi\) | ||||
0.969171 | − | 0.246390i | \(-0.0792446\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 10.0000i | 0.409273i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 30.0000 | 1.22577 | 0.612883 | − | 0.790173i | \(-0.290010\pi\) | ||||
0.612883 | + | 0.790173i | \(0.290010\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −10.0000 | −0.407909 | −0.203954 | − | 0.978980i | \(-0.565379\pi\) | ||||
−0.203954 | + | 0.978980i | \(0.565379\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 8.00000i | 0.325785i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 8.00000i | − 0.324710i | −0.986732 | − | 0.162355i | \(-0.948091\pi\) | ||||
0.986732 | − | 0.162355i | \(-0.0519090\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 24.0000 | 0.972529 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 24.0000 | 0.970936 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 4.00000i | − 0.161558i | −0.996732 | − | 0.0807792i | \(-0.974259\pi\) | ||||
0.996732 | − | 0.0807792i | \(-0.0257409\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 18.0000i | − 0.724653i | −0.932051 | − | 0.362326i | \(-0.881983\pi\) | ||||
0.932051 | − | 0.362326i | \(-0.118017\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −26.0000 | −1.04503 | −0.522514 | − | 0.852631i | \(-0.675006\pi\) | ||||
−0.522514 | + | 0.852631i | \(0.675006\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | −1.00000 | −0.0401286 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 24.0000i | − 0.961540i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −48.0000 | −1.91389 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −34.0000 | −1.35352 | −0.676759 | − | 0.736204i | \(-0.736616\pi\) | ||||
−0.676759 | + | 0.736204i | \(0.736616\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 8.00000i | 0.317971i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 18.0000i | − 0.713186i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 6.00000 | 0.237356 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −18.0000 | −0.710957 | −0.355479 | − | 0.934684i | \(-0.615682\pi\) | ||||
−0.355479 | + | 0.934684i | \(0.615682\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 32.0000i | 1.26196i | 0.775800 | + | 0.630978i | \(0.217346\pi\) | ||||
−0.775800 | + | 0.630978i | \(0.782654\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 12.0000i | − 0.471769i | −0.971781 | − | 0.235884i | \(-0.924201\pi\) | ||||
0.971781 | − | 0.235884i | \(-0.0757987\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 16.0000 | 0.627089 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 24.0000i | 0.939193i | 0.882881 | + | 0.469596i | \(0.155601\pi\) | ||||
−0.882881 | + | 0.469596i | \(0.844399\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | − 2.00000i | − 0.0780274i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −24.0000 | −0.934907 | −0.467454 | − | 0.884018i | \(-0.654829\pi\) | ||||
−0.467454 | + | 0.884018i | \(0.654829\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 14.0000 | 0.544537 | 0.272268 | − | 0.962221i | \(-0.412226\pi\) | ||||
0.272268 | + | 0.962221i | \(0.412226\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 12.0000i | 0.466041i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 6.00000i | 0.232321i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 16.0000 | 0.618596 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 46.0000i | − 1.77317i | −0.462566 | − | 0.886585i | \(-0.653071\pi\) | ||||
0.462566 | − | 0.886585i | \(-0.346929\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 6.00000i | − 0.230599i | −0.993331 | − | 0.115299i | \(-0.963217\pi\) | ||||
0.993331 | − | 0.115299i | \(-0.0367827\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 32.0000 | 1.22805 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −12.0000 | −0.459841 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 36.0000i | 1.37750i | 0.724998 | + | 0.688751i | \(0.241841\pi\) | ||||
−0.724998 | + | 0.688751i | \(0.758159\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 10.0000i | 0.381524i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 12.0000 | 0.457164 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −16.0000 | −0.608669 | −0.304334 | − | 0.952565i | \(-0.598434\pi\) | ||||
−0.304334 | + | 0.952565i | \(0.598434\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 36.0000i | − 1.36360i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | −24.0000 | −0.907763 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 42.0000 | 1.58632 | 0.793159 | − | 0.609015i | \(-0.208435\pi\) | ||||
0.793159 | + | 0.609015i | \(0.208435\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 16.0000i | 0.603451i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 24.0000i | − 0.902613i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 34.0000 | 1.27690 | 0.638448 | − | 0.769665i | \(-0.279577\pi\) | ||||
0.638448 | + | 0.769665i | \(0.279577\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −10.0000 | −0.375029 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 4.00000i | 0.149801i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 6.00000i | 0.224074i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −6.00000 | −0.223762 | −0.111881 | − | 0.993722i | \(-0.535688\pi\) | ||||
−0.111881 | + | 0.993722i | \(0.535688\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −32.0000 | −1.19174 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | − 10.0000i | − 0.371904i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 28.0000i | 1.03846i | 0.854634 | + | 0.519231i | \(0.173782\pi\) | ||||
−0.854634 | + | 0.519231i | \(0.826218\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −1.00000 | −0.0370370 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 48.0000 | 1.77534 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 20.0000i | 0.738717i | 0.929287 | + | 0.369358i | \(0.120423\pi\) | ||||
−0.929287 | + | 0.369358i | \(0.879577\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −44.0000 | −1.61857 | −0.809283 | − | 0.587419i | \(-0.800144\pi\) | ||||
−0.809283 | + | 0.587419i | \(0.800144\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 4.00000 | 0.146944 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 48.0000i | 1.76095i | 0.474093 | + | 0.880475i | \(0.342776\pi\) | ||||
−0.474093 | + | 0.880475i | \(0.657224\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 12.0000i | 0.439057i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −48.0000 | −1.75388 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 14.0000 | 0.510867 | 0.255434 | − | 0.966827i | \(-0.417782\pi\) | ||||
0.255434 | + | 0.966827i | \(0.417782\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | − 12.0000i | − 0.437304i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 16.0000i | 0.581530i | 0.956795 | + | 0.290765i | \(0.0939098\pi\) | ||||
−0.956795 | + | 0.290765i | \(0.906090\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −6.00000 | −0.217500 | −0.108750 | − | 0.994069i | \(-0.534685\pi\) | ||||
−0.108750 | + | 0.994069i | \(0.534685\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 8.00000i | − 0.289619i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 12.0000i | 0.433295i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −38.0000 | −1.37032 | −0.685158 | − | 0.728395i | \(-0.740267\pi\) | ||||
−0.685158 | + | 0.728395i | \(0.740267\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 12.0000 | 0.432169 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 42.0000i | − 1.51064i | −0.655359 | − | 0.755318i | \(-0.727483\pi\) | ||||
0.655359 | − | 0.755318i | \(-0.272517\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 32.0000i | 1.14799i | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −12.0000 | −0.429945 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 6.00000i | 0.214423i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 32.0000i | − 1.14068i | −0.821410 | − | 0.570338i | \(-0.806812\pi\) | ||||
0.821410 | − | 0.570338i | \(-0.193188\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 24.0000 | 0.854423 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 24.0000 | 0.853342 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 20.0000i | − 0.710221i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 42.0000i | − 1.48772i | −0.668338 | − | 0.743858i | \(-0.732994\pi\) | ||||
0.668338 | − | 0.743858i | \(-0.267006\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −72.0000 | −2.54718 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 6.00000 | 0.212000 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 6.00000i | 0.211210i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −30.0000 | −1.05474 | −0.527372 | − | 0.849635i | \(-0.676823\pi\) | ||||
−0.527372 | + | 0.849635i | \(0.676823\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 44.0000 | 1.54505 | 0.772524 | − | 0.634985i | \(-0.218994\pi\) | ||||
0.772524 | + | 0.634985i | \(0.218994\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 32.0000i | 1.12229i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 16.0000i | − 0.559769i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 8.00000 | 0.279543 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 30.0000 | 1.04701 | 0.523504 | − | 0.852023i | \(-0.324625\pi\) | ||||
0.523504 | + | 0.852023i | \(0.324625\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 40.0000i | − 1.39431i | −0.716919 | − | 0.697156i | \(-0.754448\pi\) | ||||
0.716919 | − | 0.697156i | \(-0.245552\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 12.0000i | − 0.417281i | −0.977992 | − | 0.208640i | \(-0.933096\pi\) | ||||
0.977992 | − | 0.208640i | \(-0.0669038\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −2.00000 | −0.0694629 | −0.0347314 | − | 0.999397i | \(-0.511058\pi\) | ||||
−0.0347314 | + | 0.999397i | \(0.511058\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 14.0000 | 0.485655 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 54.0000i | 1.87099i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 4.00000i | 0.138260i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 24.0000 | 0.828572 | 0.414286 | − | 0.910147i | \(-0.364031\pi\) | ||||
0.414286 | + | 0.910147i | \(0.364031\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | − 6.00000i | − 0.206651i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 44.0000i | − 1.51186i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 28.0000 | 0.960958 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −8.00000 | −0.274236 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 34.0000i | − 1.16414i | −0.813139 | − | 0.582069i | \(-0.802243\pi\) | ||||
0.813139 | − | 0.582069i | \(-0.197757\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 48.0000i | 1.63965i | 0.572615 | + | 0.819824i | \(0.305929\pi\) | ||||
−0.572615 | + | 0.819824i | \(0.694071\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −8.00000 | −0.272956 | −0.136478 | − | 0.990643i | \(-0.543578\pi\) | ||||
−0.136478 | + | 0.990643i | \(0.543578\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | −24.0000 | −0.817918 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 24.0000i | − 0.816970i | −0.912765 | − | 0.408485i | \(-0.866057\pi\) | ||||
0.912765 | − | 0.408485i | \(-0.133943\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | − 19.0000i | − 0.645274i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 16.0000 | 0.542139 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 8.00000i | 0.270759i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 22.0000i | 0.742887i | 0.928456 | + | 0.371444i | \(0.121137\pi\) | ||||
−0.928456 | + | 0.371444i | \(0.878863\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 6.00000 | 0.202375 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −30.0000 | −1.01073 | −0.505363 | − | 0.862907i | \(-0.668641\pi\) | ||||
−0.505363 | + | 0.862907i | \(0.668641\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 20.0000i | 0.673054i | 0.941674 | + | 0.336527i | \(0.109252\pi\) | ||||
−0.941674 | + | 0.336527i | \(0.890748\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 24.0000i | − 0.805841i | −0.915235 | − | 0.402921i | \(-0.867995\pi\) | ||||
0.915235 | − | 0.402921i | \(-0.132005\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 32.0000 | 1.07325 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 24.0000i | 0.803129i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 2.00000i | 0.0667781i | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 24.0000 | 0.800445 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −36.0000 | −1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | − 32.0000i | − 1.06489i | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 28.0000i | 0.929725i | 0.885383 | + | 0.464862i | \(0.153896\pi\) | ||||
−0.885383 | + | 0.464862i | \(0.846104\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 6.00000 | 0.199007 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 12.0000 | 0.397578 | 0.198789 | − | 0.980042i | \(-0.436299\pi\) | ||||
0.198789 | + | 0.980042i | \(0.436299\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 24.0000i | 0.792550i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −26.0000 | −0.857661 | −0.428830 | − | 0.903385i | \(-0.641074\pi\) | ||||
−0.428830 | + | 0.903385i | \(0.641074\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | −28.0000 | −0.922631 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 12.0000i | − 0.394985i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | − 8.00000i | − 0.262754i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −42.0000 | −1.37798 | −0.688988 | − | 0.724773i | \(-0.741945\pi\) | ||||
−0.688988 | + | 0.724773i | \(0.741945\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 18.0000 | 0.589926 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | − 18.0000i | − 0.589294i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 4.00000i | 0.130674i | 0.997863 | + | 0.0653372i | \(0.0208123\pi\) | ||||
−0.997863 | + | 0.0653372i | \(0.979188\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 28.0000 | 0.913745 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 18.0000 | 0.586783 | 0.293392 | − | 0.955992i | \(-0.405216\pi\) | ||||
0.293392 | + | 0.955992i | \(0.405216\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 6.00000i | − 0.195387i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 24.0000i | 0.779895i | 0.920837 | + | 0.389948i | \(0.127507\pi\) | ||||
−0.920837 | + | 0.389948i | \(0.872493\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −4.00000 | −0.129845 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 12.0000 | 0.389127 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 54.0000i | 1.74923i | 0.484817 | + | 0.874616i | \(0.338886\pi\) | ||||
−0.484817 | + | 0.874616i | \(0.661114\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −24.0000 | −0.775000 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 12.0000i | − 0.386695i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 8.00000i | − 0.257263i | −0.991692 | − | 0.128631i | \(-0.958942\pi\) | ||||
0.991692 | − | 0.128631i | \(-0.0410584\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | −12.0000 | −0.385496 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −12.0000 | −0.385098 | −0.192549 | − | 0.981287i | \(-0.561675\pi\) | ||||
−0.192549 | + | 0.981287i | \(0.561675\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 80.0000i | − 2.56468i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 54.0000i | 1.72761i | 0.503824 | + | 0.863807i | \(0.331926\pi\) | ||||
−0.503824 | + | 0.863807i | \(0.668074\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 2.00000 | 0.0638551 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 24.0000i | − 0.765481i | −0.923856 | − | 0.382741i | \(-0.874980\pi\) | ||||
0.923856 | − | 0.382741i | \(-0.125020\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 48.0000i | 1.52786i | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 8.00000 | 0.254385 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −52.0000 | −1.65183 | −0.825917 | − | 0.563791i | \(-0.809342\pi\) | ||||
−0.825917 | + | 0.563791i | \(0.809342\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | − 28.0000i | − 0.888553i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 46.0000i | 1.45683i | 0.685134 | + | 0.728417i | \(0.259744\pi\) | ||||
−0.685134 | + | 0.728417i | \(0.740256\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −8.00000 | −0.253109 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 6900.2.f.d.6349.2 | 2 | ||
5.2 | odd | 4 | 1380.2.a.d.1.1 | ✓ | 1 | ||
5.3 | odd | 4 | 6900.2.a.e.1.1 | 1 | |||
5.4 | even | 2 | inner | 6900.2.f.d.6349.1 | 2 | ||
15.2 | even | 4 | 4140.2.a.a.1.1 | 1 | |||
20.7 | even | 4 | 5520.2.a.o.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1380.2.a.d.1.1 | ✓ | 1 | 5.2 | odd | 4 | ||
4140.2.a.a.1.1 | 1 | 15.2 | even | 4 | |||
5520.2.a.o.1.1 | 1 | 20.7 | even | 4 | |||
6900.2.a.e.1.1 | 1 | 5.3 | odd | 4 | |||
6900.2.f.d.6349.1 | 2 | 5.4 | even | 2 | inner | ||
6900.2.f.d.6349.2 | 2 | 1.1 | even | 1 | trivial |