Properties

Label 6900.2.f.b.6349.2
Level $6900$
Weight $2$
Character 6900.6349
Analytic conductor $55.097$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6900,2,Mod(6349,6900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6900.6349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6900.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.0967773947\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1380)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 6349.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 6900.6349
Dual form 6900.2.f.b.6349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +3.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} +3.00000i q^{7} -1.00000 q^{9} -2.00000 q^{11} -2.00000i q^{13} +7.00000i q^{17} +6.00000 q^{19} -3.00000 q^{21} +1.00000i q^{23} -1.00000i q^{27} +9.00000 q^{29} +9.00000 q^{31} -2.00000i q^{33} +7.00000i q^{37} +2.00000 q^{39} +5.00000 q^{41} -8.00000i q^{47} -2.00000 q^{49} -7.00000 q^{51} -11.0000i q^{53} +6.00000i q^{57} -9.00000 q^{59} -3.00000i q^{63} +3.00000i q^{67} -1.00000 q^{69} +3.00000 q^{71} -6.00000i q^{73} -6.00000i q^{77} +8.00000 q^{79} +1.00000 q^{81} +5.00000i q^{83} +9.00000i q^{87} +6.00000 q^{91} +9.00000i q^{93} +10.0000i q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{9} - 4 q^{11} + 12 q^{19} - 6 q^{21} + 18 q^{29} + 18 q^{31} + 4 q^{39} + 10 q^{41} - 4 q^{49} - 14 q^{51} - 18 q^{59} - 2 q^{69} + 6 q^{71} + 16 q^{79} + 2 q^{81} + 12 q^{91} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6900\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1201\) \(3451\) \(4601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.00000i 1.13389i 0.823754 + 0.566947i \(0.191875\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.00000i 1.69775i 0.528594 + 0.848875i \(0.322719\pi\)
−0.528594 + 0.848875i \(0.677281\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) 9.00000 1.61645 0.808224 0.588875i \(-0.200429\pi\)
0.808224 + 0.588875i \(0.200429\pi\)
\(32\) 0 0
\(33\) − 2.00000i − 0.348155i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.00000i 1.15079i 0.817875 + 0.575396i \(0.195152\pi\)
−0.817875 + 0.575396i \(0.804848\pi\)
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 8.00000i − 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) −7.00000 −0.980196
\(52\) 0 0
\(53\) − 11.0000i − 1.51097i −0.655168 0.755483i \(-0.727402\pi\)
0.655168 0.755483i \(-0.272598\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.00000i 0.794719i
\(58\) 0 0
\(59\) −9.00000 −1.17170 −0.585850 0.810419i \(-0.699239\pi\)
−0.585850 + 0.810419i \(0.699239\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) − 3.00000i − 0.377964i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.00000i 0.366508i 0.983066 + 0.183254i \(0.0586631\pi\)
−0.983066 + 0.183254i \(0.941337\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) − 6.00000i − 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 6.00000i − 0.683763i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.00000i 0.548821i 0.961613 + 0.274411i \(0.0884828\pi\)
−0.961613 + 0.274411i \(0.911517\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.00000i 0.964901i
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) 9.00000i 0.933257i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000i 1.01535i 0.861550 + 0.507673i \(0.169494\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 5.00000i − 0.483368i −0.970355 0.241684i \(-0.922300\pi\)
0.970355 0.241684i \(-0.0776998\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −7.00000 −0.664411
\(112\) 0 0
\(113\) 21.0000i 1.97551i 0.156001 + 0.987757i \(0.450140\pi\)
−0.156001 + 0.987757i \(0.549860\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) −21.0000 −1.92507
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 5.00000i 0.450835i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 18.0000i 1.56080i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.0000i 1.19610i 0.801459 + 0.598050i \(0.204058\pi\)
−0.801459 + 0.598050i \(0.795942\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 2.00000i − 0.164957i
\(148\) 0 0
\(149\) 4.00000 0.327693 0.163846 0.986486i \(-0.447610\pi\)
0.163846 + 0.986486i \(0.447610\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) − 7.00000i − 0.565916i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.00000i 0.399043i 0.979893 + 0.199522i \(0.0639388\pi\)
−0.979893 + 0.199522i \(0.936061\pi\)
\(158\) 0 0
\(159\) 11.0000 0.872357
\(160\) 0 0
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) − 14.0000i − 1.09656i −0.836293 0.548282i \(-0.815282\pi\)
0.836293 0.548282i \(-0.184718\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.00000i 0.309529i 0.987951 + 0.154765i \(0.0494619\pi\)
−0.987951 + 0.154765i \(0.950538\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 4.00000i 0.304114i 0.988372 + 0.152057i \(0.0485898\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 9.00000i − 0.676481i
\(178\) 0 0
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) 0 0
\(181\) 12.0000 0.891953 0.445976 0.895045i \(-0.352856\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 14.0000i − 1.02378i
\(188\) 0 0
\(189\) 3.00000 0.218218
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) − 24.0000i − 1.72756i −0.503871 0.863779i \(-0.668091\pi\)
0.503871 0.863779i \(-0.331909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 14.0000i − 0.997459i −0.866758 0.498729i \(-0.833800\pi\)
0.866758 0.498729i \(-0.166200\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) −3.00000 −0.211604
\(202\) 0 0
\(203\) 27.0000i 1.89503i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1.00000i − 0.0695048i
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −23.0000 −1.58339 −0.791693 0.610920i \(-0.790800\pi\)
−0.791693 + 0.610920i \(0.790800\pi\)
\(212\) 0 0
\(213\) 3.00000i 0.205557i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 27.0000i 1.83288i
\(218\) 0 0
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) 14.0000 0.941742
\(222\) 0 0
\(223\) − 2.00000i − 0.133930i −0.997755 0.0669650i \(-0.978668\pi\)
0.997755 0.0669650i \(-0.0213316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) 16.0000 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(230\) 0 0
\(231\) 6.00000 0.394771
\(232\) 0 0
\(233\) 16.0000i 1.04819i 0.851658 + 0.524097i \(0.175597\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000i 0.519656i
\(238\) 0 0
\(239\) −21.0000 −1.35838 −0.679189 0.733964i \(-0.737668\pi\)
−0.679189 + 0.733964i \(0.737668\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 12.0000i − 0.763542i
\(248\) 0 0
\(249\) −5.00000 −0.316862
\(250\) 0 0
\(251\) −30.0000 −1.89358 −0.946792 0.321847i \(-0.895696\pi\)
−0.946792 + 0.321847i \(0.895696\pi\)
\(252\) 0 0
\(253\) − 2.00000i − 0.125739i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.00000i 0.499026i 0.968371 + 0.249513i \(0.0802706\pi\)
−0.968371 + 0.249513i \(0.919729\pi\)
\(258\) 0 0
\(259\) −21.0000 −1.30488
\(260\) 0 0
\(261\) −9.00000 −0.557086
\(262\) 0 0
\(263\) 11.0000i 0.678289i 0.940734 + 0.339145i \(0.110138\pi\)
−0.940734 + 0.339145i \(0.889862\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.00000 0.182913 0.0914566 0.995809i \(-0.470848\pi\)
0.0914566 + 0.995809i \(0.470848\pi\)
\(270\) 0 0
\(271\) 31.0000 1.88312 0.941558 0.336851i \(-0.109362\pi\)
0.941558 + 0.336851i \(0.109362\pi\)
\(272\) 0 0
\(273\) 6.00000i 0.363137i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 26.0000i − 1.56219i −0.624413 0.781094i \(-0.714662\pi\)
0.624413 0.781094i \(-0.285338\pi\)
\(278\) 0 0
\(279\) −9.00000 −0.538816
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) − 5.00000i − 0.297219i −0.988896 0.148610i \(-0.952520\pi\)
0.988896 0.148610i \(-0.0474798\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.0000i 0.885422i
\(288\) 0 0
\(289\) −32.0000 −1.88235
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) − 9.00000i − 0.525786i −0.964825 0.262893i \(-0.915323\pi\)
0.964825 0.262893i \(-0.0846766\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.00000i 0.116052i
\(298\) 0 0
\(299\) 2.00000 0.115663
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 3.00000i 0.172345i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 30.0000i 1.71219i 0.516818 + 0.856095i \(0.327116\pi\)
−0.516818 + 0.856095i \(0.672884\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) − 29.0000i − 1.63918i −0.572953 0.819588i \(-0.694202\pi\)
0.572953 0.819588i \(-0.305798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) 5.00000 0.279073
\(322\) 0 0
\(323\) 42.0000i 2.33694i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 10.0000i − 0.553001i
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) 21.0000 1.15426 0.577132 0.816651i \(-0.304172\pi\)
0.577132 + 0.816651i \(0.304172\pi\)
\(332\) 0 0
\(333\) − 7.00000i − 0.383598i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.0000i 1.41631i 0.706057 + 0.708155i \(0.250472\pi\)
−0.706057 + 0.708155i \(0.749528\pi\)
\(338\) 0 0
\(339\) −21.0000 −1.14056
\(340\) 0 0
\(341\) −18.0000 −0.974755
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 12.0000i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −31.0000 −1.65939 −0.829696 0.558216i \(-0.811486\pi\)
−0.829696 + 0.558216i \(0.811486\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) − 28.0000i − 1.49029i −0.666903 0.745145i \(-0.732380\pi\)
0.666903 0.745145i \(-0.267620\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 21.0000i − 1.11144i
\(358\) 0 0
\(359\) −36.0000 −1.90001 −0.950004 0.312239i \(-0.898921\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) − 7.00000i − 0.367405i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 7.00000i − 0.365397i −0.983169 0.182699i \(-0.941517\pi\)
0.983169 0.182699i \(-0.0584832\pi\)
\(368\) 0 0
\(369\) −5.00000 −0.260290
\(370\) 0 0
\(371\) 33.0000 1.71327
\(372\) 0 0
\(373\) 34.0000i 1.76045i 0.474554 + 0.880227i \(0.342610\pi\)
−0.474554 + 0.880227i \(0.657390\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 18.0000i − 0.927047i
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) 27.0000i 1.37964i 0.723983 + 0.689818i \(0.242309\pi\)
−0.723983 + 0.689818i \(0.757691\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −7.00000 −0.354005
\(392\) 0 0
\(393\) − 12.0000i − 0.605320i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 28.0000i 1.40528i 0.711546 + 0.702640i \(0.247995\pi\)
−0.711546 + 0.702640i \(0.752005\pi\)
\(398\) 0 0
\(399\) −18.0000 −0.901127
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) − 18.0000i − 0.896644i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 14.0000i − 0.693954i
\(408\) 0 0
\(409\) 35.0000 1.73064 0.865319 0.501221i \(-0.167116\pi\)
0.865319 + 0.501221i \(0.167116\pi\)
\(410\) 0 0
\(411\) −14.0000 −0.690569
\(412\) 0 0
\(413\) − 27.0000i − 1.32858i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5.00000i 0.244851i
\(418\) 0 0
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 0 0
\(423\) 8.00000i 0.388973i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) −4.00000 −0.192673 −0.0963366 0.995349i \(-0.530713\pi\)
−0.0963366 + 0.995349i \(0.530713\pi\)
\(432\) 0 0
\(433\) 1.00000i 0.0480569i 0.999711 + 0.0240285i \(0.00764923\pi\)
−0.999711 + 0.0240285i \(0.992351\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.00000i 0.287019i
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) − 12.0000i − 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.00000i 0.189194i
\(448\) 0 0
\(449\) 17.0000 0.802280 0.401140 0.916017i \(-0.368614\pi\)
0.401140 + 0.916017i \(0.368614\pi\)
\(450\) 0 0
\(451\) −10.0000 −0.470882
\(452\) 0 0
\(453\) − 4.00000i − 0.187936i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 7.00000i − 0.327446i −0.986506 0.163723i \(-0.947650\pi\)
0.986506 0.163723i \(-0.0523504\pi\)
\(458\) 0 0
\(459\) 7.00000 0.326732
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) − 10.0000i − 0.464739i −0.972628 0.232370i \(-0.925352\pi\)
0.972628 0.232370i \(-0.0746479\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 21.0000i − 0.971764i −0.874024 0.485882i \(-0.838498\pi\)
0.874024 0.485882i \(-0.161502\pi\)
\(468\) 0 0
\(469\) −9.00000 −0.415581
\(470\) 0 0
\(471\) −5.00000 −0.230388
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 11.0000i 0.503655i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 14.0000 0.638345
\(482\) 0 0
\(483\) − 3.00000i − 0.136505i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.00000i 0.362515i 0.983436 + 0.181257i \(0.0580167\pi\)
−0.983436 + 0.181257i \(0.941983\pi\)
\(488\) 0 0
\(489\) 14.0000 0.633102
\(490\) 0 0
\(491\) −5.00000 −0.225647 −0.112823 0.993615i \(-0.535989\pi\)
−0.112823 + 0.993615i \(0.535989\pi\)
\(492\) 0 0
\(493\) 63.0000i 2.83738i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.00000i 0.403705i
\(498\) 0 0
\(499\) −15.0000 −0.671492 −0.335746 0.941953i \(-0.608988\pi\)
−0.335746 + 0.941953i \(0.608988\pi\)
\(500\) 0 0
\(501\) −4.00000 −0.178707
\(502\) 0 0
\(503\) − 33.0000i − 1.47140i −0.677309 0.735699i \(-0.736854\pi\)
0.677309 0.735699i \(-0.263146\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000i 0.399704i
\(508\) 0 0
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) 18.0000 0.796273
\(512\) 0 0
\(513\) − 6.00000i − 0.264906i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) 0 0
\(519\) −4.00000 −0.175581
\(520\) 0 0
\(521\) 38.0000 1.66481 0.832405 0.554168i \(-0.186963\pi\)
0.832405 + 0.554168i \(0.186963\pi\)
\(522\) 0 0
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 63.0000i 2.74432i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 9.00000 0.390567
\(532\) 0 0
\(533\) − 10.0000i − 0.433148i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 16.0000i − 0.690451i
\(538\) 0 0
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) 12.0000i 0.514969i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 24.0000i 1.02617i 0.858339 + 0.513083i \(0.171497\pi\)
−0.858339 + 0.513083i \(0.828503\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 54.0000 2.30048
\(552\) 0 0
\(553\) 24.0000i 1.02058i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.0000i 0.466085i 0.972467 + 0.233042i \(0.0748681\pi\)
−0.972467 + 0.233042i \(0.925132\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 14.0000 0.591080
\(562\) 0 0
\(563\) − 5.00000i − 0.210725i −0.994434 0.105362i \(-0.966400\pi\)
0.994434 0.105362i \(-0.0336003\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.00000i 0.125988i
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) 4.00000i 0.167102i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) 0 0
\(579\) 24.0000 0.997406
\(580\) 0 0
\(581\) −15.0000 −0.622305
\(582\) 0 0
\(583\) 22.0000i 0.911147i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.00000i 0.0825488i 0.999148 + 0.0412744i \(0.0131418\pi\)
−0.999148 + 0.0412744i \(0.986858\pi\)
\(588\) 0 0
\(589\) 54.0000 2.22503
\(590\) 0 0
\(591\) 14.0000 0.575883
\(592\) 0 0
\(593\) − 36.0000i − 1.47834i −0.673517 0.739171i \(-0.735217\pi\)
0.673517 0.739171i \(-0.264783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 14.0000i − 0.572982i
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) 35.0000 1.42768 0.713840 0.700309i \(-0.246954\pi\)
0.713840 + 0.700309i \(0.246954\pi\)
\(602\) 0 0
\(603\) − 3.00000i − 0.122169i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 32.0000i 1.29884i 0.760430 + 0.649420i \(0.224988\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(608\) 0 0
\(609\) −27.0000 −1.09410
\(610\) 0 0
\(611\) −16.0000 −0.647291
\(612\) 0 0
\(613\) − 14.0000i − 0.565455i −0.959200 0.282727i \(-0.908761\pi\)
0.959200 0.282727i \(-0.0912392\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000i 0.362326i 0.983453 + 0.181163i \(0.0579862\pi\)
−0.983453 + 0.181163i \(0.942014\pi\)
\(618\) 0 0
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 12.0000i − 0.479234i
\(628\) 0 0
\(629\) −49.0000 −1.95376
\(630\) 0 0
\(631\) −44.0000 −1.75161 −0.875806 0.482663i \(-0.839670\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) − 23.0000i − 0.914168i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.00000i 0.158486i
\(638\) 0 0
\(639\) −3.00000 −0.118678
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) − 23.0000i − 0.907031i −0.891248 0.453516i \(-0.850170\pi\)
0.891248 0.453516i \(-0.149830\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 10.0000i − 0.393141i −0.980490 0.196570i \(-0.937020\pi\)
0.980490 0.196570i \(-0.0629804\pi\)
\(648\) 0 0
\(649\) 18.0000 0.706562
\(650\) 0 0
\(651\) −27.0000 −1.05821
\(652\) 0 0
\(653\) − 6.00000i − 0.234798i −0.993085 0.117399i \(-0.962544\pi\)
0.993085 0.117399i \(-0.0374557\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.00000i 0.234082i
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 6.00000 0.233373 0.116686 0.993169i \(-0.462773\pi\)
0.116686 + 0.993169i \(0.462773\pi\)
\(662\) 0 0
\(663\) 14.0000i 0.543715i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.00000i 0.348481i
\(668\) 0 0
\(669\) 2.00000 0.0773245
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 16.0000i 0.616755i 0.951264 + 0.308377i \(0.0997859\pi\)
−0.951264 + 0.308377i \(0.900214\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.0000i 0.807096i 0.914959 + 0.403548i \(0.132223\pi\)
−0.914959 + 0.403548i \(0.867777\pi\)
\(678\) 0 0
\(679\) −30.0000 −1.15129
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) − 4.00000i − 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 16.0000i 0.610438i
\(688\) 0 0
\(689\) −22.0000 −0.838133
\(690\) 0 0
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) 0 0
\(693\) 6.00000i 0.227921i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 35.0000i 1.32572i
\(698\) 0 0
\(699\) −16.0000 −0.605176
\(700\) 0 0
\(701\) −20.0000 −0.755390 −0.377695 0.925930i \(-0.623283\pi\)
−0.377695 + 0.925930i \(0.623283\pi\)
\(702\) 0 0
\(703\) 42.0000i 1.58406i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.00000i 0.338480i
\(708\) 0 0
\(709\) 32.0000 1.20179 0.600893 0.799330i \(-0.294812\pi\)
0.600893 + 0.799330i \(0.294812\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 9.00000i 0.337053i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 21.0000i − 0.784259i
\(718\) 0 0
\(719\) 43.0000 1.60363 0.801815 0.597573i \(-0.203868\pi\)
0.801815 + 0.597573i \(0.203868\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 0 0
\(723\) 26.0000i 0.966950i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 23.0000i − 0.853023i −0.904482 0.426511i \(-0.859742\pi\)
0.904482 0.426511i \(-0.140258\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 47.0000i − 1.73598i −0.496578 0.867992i \(-0.665410\pi\)
0.496578 0.867992i \(-0.334590\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 6.00000i − 0.221013i
\(738\) 0 0
\(739\) 23.0000 0.846069 0.423034 0.906114i \(-0.360965\pi\)
0.423034 + 0.906114i \(0.360965\pi\)
\(740\) 0 0
\(741\) 12.0000 0.440831
\(742\) 0 0
\(743\) − 32.0000i − 1.17397i −0.809599 0.586983i \(-0.800316\pi\)
0.809599 0.586983i \(-0.199684\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 5.00000i − 0.182940i
\(748\) 0 0
\(749\) 15.0000 0.548088
\(750\) 0 0
\(751\) 10.0000 0.364905 0.182453 0.983215i \(-0.441596\pi\)
0.182453 + 0.983215i \(0.441596\pi\)
\(752\) 0 0
\(753\) − 30.0000i − 1.09326i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.00000i 0.0363456i 0.999835 + 0.0181728i \(0.00578490\pi\)
−0.999835 + 0.0181728i \(0.994215\pi\)
\(758\) 0 0
\(759\) 2.00000 0.0725954
\(760\) 0 0
\(761\) −39.0000 −1.41375 −0.706874 0.707339i \(-0.749895\pi\)
−0.706874 + 0.707339i \(0.749895\pi\)
\(762\) 0 0
\(763\) − 30.0000i − 1.08607i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.0000i 0.649942i
\(768\) 0 0
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) 0 0
\(771\) −8.00000 −0.288113
\(772\) 0 0
\(773\) − 54.0000i − 1.94225i −0.238581 0.971123i \(-0.576682\pi\)
0.238581 0.971123i \(-0.423318\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 21.0000i − 0.753371i
\(778\) 0 0
\(779\) 30.0000 1.07486
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 0 0
\(783\) − 9.00000i − 0.321634i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 31.0000i 1.10503i 0.833503 + 0.552515i \(0.186332\pi\)
−0.833503 + 0.552515i \(0.813668\pi\)
\(788\) 0 0
\(789\) −11.0000 −0.391610
\(790\) 0 0
\(791\) −63.0000 −2.24002
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 11.0000i − 0.389640i −0.980839 0.194820i \(-0.937588\pi\)
0.980839 0.194820i \(-0.0624123\pi\)
\(798\) 0 0
\(799\) 56.0000 1.98114
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.0000i 0.423471i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.00000i 0.105605i
\(808\) 0 0
\(809\) −3.00000 −0.105474 −0.0527372 0.998608i \(-0.516795\pi\)
−0.0527372 + 0.998608i \(0.516795\pi\)
\(810\) 0 0
\(811\) −7.00000 −0.245803 −0.122902 0.992419i \(-0.539220\pi\)
−0.122902 + 0.992419i \(0.539220\pi\)
\(812\) 0 0
\(813\) 31.0000i 1.08722i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −6.00000 −0.209657
\(820\) 0 0
\(821\) 10.0000 0.349002 0.174501 0.984657i \(-0.444169\pi\)
0.174501 + 0.984657i \(0.444169\pi\)
\(822\) 0 0
\(823\) 52.0000i 1.81261i 0.422628 + 0.906303i \(0.361108\pi\)
−0.422628 + 0.906303i \(0.638892\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 31.0000i − 1.07798i −0.842314 0.538988i \(-0.818807\pi\)
0.842314 0.538988i \(-0.181193\pi\)
\(828\) 0 0
\(829\) −49.0000 −1.70184 −0.850920 0.525295i \(-0.823955\pi\)
−0.850920 + 0.525295i \(0.823955\pi\)
\(830\) 0 0
\(831\) 26.0000 0.901930
\(832\) 0 0
\(833\) − 14.0000i − 0.485071i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 9.00000i − 0.311086i
\(838\) 0 0
\(839\) −2.00000 −0.0690477 −0.0345238 0.999404i \(-0.510991\pi\)
−0.0345238 + 0.999404i \(0.510991\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 10.0000i 0.344418i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 21.0000i − 0.721569i
\(848\) 0 0
\(849\) 5.00000 0.171600
\(850\) 0 0
\(851\) −7.00000 −0.239957
\(852\) 0 0
\(853\) − 30.0000i − 1.02718i −0.858036 0.513590i \(-0.828315\pi\)
0.858036 0.513590i \(-0.171685\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 54.0000i − 1.84460i −0.386469 0.922302i \(-0.626305\pi\)
0.386469 0.922302i \(-0.373695\pi\)
\(858\) 0 0
\(859\) 43.0000 1.46714 0.733571 0.679613i \(-0.237852\pi\)
0.733571 + 0.679613i \(0.237852\pi\)
\(860\) 0 0
\(861\) −15.0000 −0.511199
\(862\) 0 0
\(863\) 6.00000i 0.204242i 0.994772 + 0.102121i \(0.0325630\pi\)
−0.994772 + 0.102121i \(0.967437\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 32.0000i − 1.08678i
\(868\) 0 0
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) 6.00000 0.203302
\(872\) 0 0
\(873\) − 10.0000i − 0.338449i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 34.0000i 1.14810i 0.818821 + 0.574049i \(0.194628\pi\)
−0.818821 + 0.574049i \(0.805372\pi\)
\(878\) 0 0
\(879\) 9.00000 0.303562
\(880\) 0 0
\(881\) −16.0000 −0.539054 −0.269527 0.962993i \(-0.586867\pi\)
−0.269527 + 0.962993i \(0.586867\pi\)
\(882\) 0 0
\(883\) 12.0000i 0.403832i 0.979403 + 0.201916i \(0.0647168\pi\)
−0.979403 + 0.201916i \(0.935283\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 38.0000i − 1.27592i −0.770072 0.637958i \(-0.779780\pi\)
0.770072 0.637958i \(-0.220220\pi\)
\(888\) 0 0
\(889\) −48.0000 −1.60987
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) − 48.0000i − 1.60626i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.00000i 0.0667781i
\(898\) 0 0
\(899\) 81.0000 2.70150
\(900\) 0 0
\(901\) 77.0000 2.56524
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 37.0000i − 1.22856i −0.789086 0.614282i \(-0.789446\pi\)
0.789086 0.614282i \(-0.210554\pi\)
\(908\) 0 0
\(909\) −3.00000 −0.0995037
\(910\) 0 0
\(911\) −56.0000 −1.85536 −0.927681 0.373373i \(-0.878201\pi\)
−0.927681 + 0.373373i \(0.878201\pi\)
\(912\) 0 0
\(913\) − 10.0000i − 0.330952i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 36.0000i − 1.18882i
\(918\) 0 0
\(919\) 12.0000 0.395843 0.197922 0.980218i \(-0.436581\pi\)
0.197922 + 0.980218i \(0.436581\pi\)
\(920\) 0 0
\(921\) −30.0000 −0.988534
\(922\) 0 0
\(923\) − 6.00000i − 0.197492i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 8.00000i − 0.262754i
\(928\) 0 0
\(929\) 57.0000 1.87011 0.935055 0.354504i \(-0.115350\pi\)
0.935055 + 0.354504i \(0.115350\pi\)
\(930\) 0 0
\(931\) −12.0000 −0.393284
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 46.0000i − 1.50275i −0.659873 0.751377i \(-0.729390\pi\)
0.659873 0.751377i \(-0.270610\pi\)
\(938\) 0 0
\(939\) 29.0000 0.946379
\(940\) 0 0
\(941\) −8.00000 −0.260793 −0.130396 0.991462i \(-0.541625\pi\)
−0.130396 + 0.991462i \(0.541625\pi\)
\(942\) 0 0
\(943\) 5.00000i 0.162822i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.0000i 0.779895i 0.920837 + 0.389948i \(0.127507\pi\)
−0.920837 + 0.389948i \(0.872493\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000i 0.194359i 0.995267 + 0.0971795i \(0.0309821\pi\)
−0.995267 + 0.0971795i \(0.969018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 18.0000i − 0.581857i
\(958\) 0 0
\(959\) −42.0000 −1.35625
\(960\) 0 0
\(961\) 50.0000 1.61290
\(962\) 0 0
\(963\) 5.00000i 0.161123i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 4.00000i − 0.128631i −0.997930 0.0643157i \(-0.979514\pi\)
0.997930 0.0643157i \(-0.0204865\pi\)
\(968\) 0 0
\(969\) −42.0000 −1.34923
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) 15.0000i 0.480878i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.0000i 1.18373i 0.806035 + 0.591867i \(0.201609\pi\)
−0.806035 + 0.591867i \(0.798391\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) 41.0000i 1.30770i 0.756626 + 0.653848i \(0.226847\pi\)
−0.756626 + 0.653848i \(0.773153\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 24.0000i 0.763928i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −59.0000 −1.87420 −0.937098 0.349065i \(-0.886499\pi\)
−0.937098 + 0.349065i \(0.886499\pi\)
\(992\) 0 0
\(993\) 21.0000i 0.666415i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 16.0000i − 0.506725i −0.967371 0.253363i \(-0.918463\pi\)
0.967371 0.253363i \(-0.0815366\pi\)
\(998\) 0 0
\(999\) 7.00000 0.221470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6900.2.f.b.6349.2 2
5.2 odd 4 1380.2.a.e.1.1 1
5.3 odd 4 6900.2.a.c.1.1 1
5.4 even 2 inner 6900.2.f.b.6349.1 2
15.2 even 4 4140.2.a.b.1.1 1
20.7 even 4 5520.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1380.2.a.e.1.1 1 5.2 odd 4
4140.2.a.b.1.1 1 15.2 even 4
5520.2.a.m.1.1 1 20.7 even 4
6900.2.a.c.1.1 1 5.3 odd 4
6900.2.f.b.6349.1 2 5.4 even 2 inner
6900.2.f.b.6349.2 2 1.1 even 1 trivial