Properties

Label 6900.2.a.c.1.1
Level $6900$
Weight $2$
Character 6900.1
Self dual yes
Analytic conductor $55.097$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6900,2,Mod(1,6900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6900.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0967773947\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1380)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6900.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +3.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +3.00000 q^{7} +1.00000 q^{9} -2.00000 q^{11} +2.00000 q^{13} +7.00000 q^{17} -6.00000 q^{19} -3.00000 q^{21} -1.00000 q^{23} -1.00000 q^{27} -9.00000 q^{29} +9.00000 q^{31} +2.00000 q^{33} +7.00000 q^{37} -2.00000 q^{39} +5.00000 q^{41} -8.00000 q^{47} +2.00000 q^{49} -7.00000 q^{51} +11.0000 q^{53} +6.00000 q^{57} +9.00000 q^{59} +3.00000 q^{63} +3.00000 q^{67} +1.00000 q^{69} +3.00000 q^{71} +6.00000 q^{73} -6.00000 q^{77} -8.00000 q^{79} +1.00000 q^{81} -5.00000 q^{83} +9.00000 q^{87} +6.00000 q^{91} -9.00000 q^{93} +10.0000 q^{97} -2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.00000 1.69775 0.848875 0.528594i \(-0.177281\pi\)
0.848875 + 0.528594i \(0.177281\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) 9.00000 1.61645 0.808224 0.588875i \(-0.200429\pi\)
0.808224 + 0.588875i \(0.200429\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −7.00000 −0.980196
\(52\) 0 0
\(53\) 11.0000 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.00000 0.794719
\(58\) 0 0
\(59\) 9.00000 1.17170 0.585850 0.810419i \(-0.300761\pi\)
0.585850 + 0.810419i \(0.300761\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 3.00000 0.377964
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.00000 0.366508 0.183254 0.983066i \(-0.441337\pi\)
0.183254 + 0.983066i \(0.441337\pi\)
\(68\) 0 0
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −5.00000 −0.548821 −0.274411 0.961613i \(-0.588483\pi\)
−0.274411 + 0.961613i \(0.588483\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.00000 0.964901
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) −9.00000 −0.933257
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.00000 −0.483368 −0.241684 0.970355i \(-0.577700\pi\)
−0.241684 + 0.970355i \(0.577700\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) −7.00000 −0.664411
\(112\) 0 0
\(113\) −21.0000 −1.97551 −0.987757 0.156001i \(-0.950140\pi\)
−0.987757 + 0.156001i \(0.950140\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 21.0000 1.92507
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −5.00000 −0.450835
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −18.0000 −1.56080
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.00000 −0.164957
\(148\) 0 0
\(149\) −4.00000 −0.327693 −0.163846 0.986486i \(-0.552390\pi\)
−0.163846 + 0.986486i \(0.552390\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 7.00000 0.565916
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 0 0
\(159\) −11.0000 −0.872357
\(160\) 0 0
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) 14.0000 1.09656 0.548282 0.836293i \(-0.315282\pi\)
0.548282 + 0.836293i \(0.315282\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.00000 0.309529 0.154765 0.987951i \(-0.450538\pi\)
0.154765 + 0.987951i \(0.450538\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) −4.00000 −0.304114 −0.152057 0.988372i \(-0.548590\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −9.00000 −0.676481
\(178\) 0 0
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) 12.0000 0.891953 0.445976 0.895045i \(-0.352856\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −14.0000 −1.02378
\(188\) 0 0
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) 24.0000 1.72756 0.863779 0.503871i \(-0.168091\pi\)
0.863779 + 0.503871i \(0.168091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.0000 −0.997459 −0.498729 0.866758i \(-0.666200\pi\)
−0.498729 + 0.866758i \(0.666200\pi\)
\(198\) 0 0
\(199\) 14.0000 0.992434 0.496217 0.868199i \(-0.334722\pi\)
0.496217 + 0.868199i \(0.334722\pi\)
\(200\) 0 0
\(201\) −3.00000 −0.211604
\(202\) 0 0
\(203\) −27.0000 −1.89503
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −23.0000 −1.58339 −0.791693 0.610920i \(-0.790800\pi\)
−0.791693 + 0.610920i \(0.790800\pi\)
\(212\) 0 0
\(213\) −3.00000 −0.205557
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 27.0000 1.83288
\(218\) 0 0
\(219\) −6.00000 −0.405442
\(220\) 0 0
\(221\) 14.0000 0.941742
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −16.0000 −1.05731 −0.528655 0.848837i \(-0.677303\pi\)
−0.528655 + 0.848837i \(0.677303\pi\)
\(230\) 0 0
\(231\) 6.00000 0.394771
\(232\) 0 0
\(233\) −16.0000 −1.04819 −0.524097 0.851658i \(-0.675597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) 21.0000 1.35838 0.679189 0.733964i \(-0.262332\pi\)
0.679189 + 0.733964i \(0.262332\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −12.0000 −0.763542
\(248\) 0 0
\(249\) 5.00000 0.316862
\(250\) 0 0
\(251\) −30.0000 −1.89358 −0.946792 0.321847i \(-0.895696\pi\)
−0.946792 + 0.321847i \(0.895696\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.00000 0.499026 0.249513 0.968371i \(-0.419729\pi\)
0.249513 + 0.968371i \(0.419729\pi\)
\(258\) 0 0
\(259\) 21.0000 1.30488
\(260\) 0 0
\(261\) −9.00000 −0.557086
\(262\) 0 0
\(263\) −11.0000 −0.678289 −0.339145 0.940734i \(-0.610138\pi\)
−0.339145 + 0.940734i \(0.610138\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.00000 −0.182913 −0.0914566 0.995809i \(-0.529152\pi\)
−0.0914566 + 0.995809i \(0.529152\pi\)
\(270\) 0 0
\(271\) 31.0000 1.88312 0.941558 0.336851i \(-0.109362\pi\)
0.941558 + 0.336851i \(0.109362\pi\)
\(272\) 0 0
\(273\) −6.00000 −0.363137
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −26.0000 −1.56219 −0.781094 0.624413i \(-0.785338\pi\)
−0.781094 + 0.624413i \(0.785338\pi\)
\(278\) 0 0
\(279\) 9.00000 0.538816
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 5.00000 0.297219 0.148610 0.988896i \(-0.452520\pi\)
0.148610 + 0.988896i \(0.452520\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.0000 0.885422
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) 9.00000 0.525786 0.262893 0.964825i \(-0.415323\pi\)
0.262893 + 0.964825i \(0.415323\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.00000 0.116052
\(298\) 0 0
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −3.00000 −0.172345
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 30.0000 1.71219 0.856095 0.516818i \(-0.172884\pi\)
0.856095 + 0.516818i \(0.172884\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 29.0000 1.63918 0.819588 0.572953i \(-0.194202\pi\)
0.819588 + 0.572953i \(0.194202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 18.0000 1.00781
\(320\) 0 0
\(321\) 5.00000 0.279073
\(322\) 0 0
\(323\) −42.0000 −2.33694
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −10.0000 −0.553001
\(328\) 0 0
\(329\) −24.0000 −1.32316
\(330\) 0 0
\(331\) 21.0000 1.15426 0.577132 0.816651i \(-0.304172\pi\)
0.577132 + 0.816651i \(0.304172\pi\)
\(332\) 0 0
\(333\) 7.00000 0.383598
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.0000 1.41631 0.708155 0.706057i \(-0.249528\pi\)
0.708155 + 0.706057i \(0.249528\pi\)
\(338\) 0 0
\(339\) 21.0000 1.14056
\(340\) 0 0
\(341\) −18.0000 −0.974755
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) 31.0000 1.65939 0.829696 0.558216i \(-0.188514\pi\)
0.829696 + 0.558216i \(0.188514\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) 28.0000 1.49029 0.745145 0.666903i \(-0.232380\pi\)
0.745145 + 0.666903i \(0.232380\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −21.0000 −1.11144
\(358\) 0 0
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −7.00000 −0.365397 −0.182699 0.983169i \(-0.558483\pi\)
−0.182699 + 0.983169i \(0.558483\pi\)
\(368\) 0 0
\(369\) 5.00000 0.260290
\(370\) 0 0
\(371\) 33.0000 1.71327
\(372\) 0 0
\(373\) −34.0000 −1.76045 −0.880227 0.474554i \(-0.842610\pi\)
−0.880227 + 0.474554i \(0.842610\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.0000 −0.927047
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) −27.0000 −1.37964 −0.689818 0.723983i \(-0.742309\pi\)
−0.689818 + 0.723983i \(0.742309\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −7.00000 −0.354005
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 28.0000 1.40528 0.702640 0.711546i \(-0.252005\pi\)
0.702640 + 0.711546i \(0.252005\pi\)
\(398\) 0 0
\(399\) 18.0000 0.901127
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 18.0000 0.896644
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −14.0000 −0.693954
\(408\) 0 0
\(409\) −35.0000 −1.73064 −0.865319 0.501221i \(-0.832884\pi\)
−0.865319 + 0.501221i \(0.832884\pi\)
\(410\) 0 0
\(411\) −14.0000 −0.690569
\(412\) 0 0
\(413\) 27.0000 1.32858
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5.00000 0.244851
\(418\) 0 0
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 0 0
\(423\) −8.00000 −0.388973
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) −4.00000 −0.192673 −0.0963366 0.995349i \(-0.530713\pi\)
−0.0963366 + 0.995349i \(0.530713\pi\)
\(432\) 0 0
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.00000 0.287019
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.00000 0.189194
\(448\) 0 0
\(449\) −17.0000 −0.802280 −0.401140 0.916017i \(-0.631386\pi\)
−0.401140 + 0.916017i \(0.631386\pi\)
\(450\) 0 0
\(451\) −10.0000 −0.470882
\(452\) 0 0
\(453\) 4.00000 0.187936
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.00000 −0.327446 −0.163723 0.986506i \(-0.552350\pi\)
−0.163723 + 0.986506i \(0.552350\pi\)
\(458\) 0 0
\(459\) −7.00000 −0.326732
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 10.0000 0.464739 0.232370 0.972628i \(-0.425352\pi\)
0.232370 + 0.972628i \(0.425352\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −21.0000 −0.971764 −0.485882 0.874024i \(-0.661502\pi\)
−0.485882 + 0.874024i \(0.661502\pi\)
\(468\) 0 0
\(469\) 9.00000 0.415581
\(470\) 0 0
\(471\) −5.00000 −0.230388
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 11.0000 0.503655
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 14.0000 0.638345
\(482\) 0 0
\(483\) 3.00000 0.136505
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0 0
\(489\) −14.0000 −0.633102
\(490\) 0 0
\(491\) −5.00000 −0.225647 −0.112823 0.993615i \(-0.535989\pi\)
−0.112823 + 0.993615i \(0.535989\pi\)
\(492\) 0 0
\(493\) −63.0000 −2.83738
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.00000 0.403705
\(498\) 0 0
\(499\) 15.0000 0.671492 0.335746 0.941953i \(-0.391012\pi\)
0.335746 + 0.941953i \(0.391012\pi\)
\(500\) 0 0
\(501\) −4.00000 −0.178707
\(502\) 0 0
\(503\) 33.0000 1.47140 0.735699 0.677309i \(-0.236854\pi\)
0.735699 + 0.677309i \(0.236854\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) 18.0000 0.796273
\(512\) 0 0
\(513\) 6.00000 0.264906
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) 0 0
\(521\) 38.0000 1.66481 0.832405 0.554168i \(-0.186963\pi\)
0.832405 + 0.554168i \(0.186963\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 63.0000 2.74432
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 9.00000 0.390567
\(532\) 0 0
\(533\) 10.0000 0.433148
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −16.0000 −0.690451
\(538\) 0 0
\(539\) −4.00000 −0.172292
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) −12.0000 −0.514969
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 24.0000 1.02617 0.513083 0.858339i \(-0.328503\pi\)
0.513083 + 0.858339i \(0.328503\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 54.0000 2.30048
\(552\) 0 0
\(553\) −24.0000 −1.02058
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.0000 0.466085 0.233042 0.972467i \(-0.425132\pi\)
0.233042 + 0.972467i \(0.425132\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 14.0000 0.591080
\(562\) 0 0
\(563\) 5.00000 0.210725 0.105362 0.994434i \(-0.466400\pi\)
0.105362 + 0.994434i \(0.466400\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.00000 0.125988
\(568\) 0 0
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) −4.00000 −0.167102
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) 0 0
\(579\) −24.0000 −0.997406
\(580\) 0 0
\(581\) −15.0000 −0.622305
\(582\) 0 0
\(583\) −22.0000 −0.911147
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.00000 0.0825488 0.0412744 0.999148i \(-0.486858\pi\)
0.0412744 + 0.999148i \(0.486858\pi\)
\(588\) 0 0
\(589\) −54.0000 −2.22503
\(590\) 0 0
\(591\) 14.0000 0.575883
\(592\) 0 0
\(593\) 36.0000 1.47834 0.739171 0.673517i \(-0.235217\pi\)
0.739171 + 0.673517i \(0.235217\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −14.0000 −0.572982
\(598\) 0 0
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 0 0
\(601\) 35.0000 1.42768 0.713840 0.700309i \(-0.246954\pi\)
0.713840 + 0.700309i \(0.246954\pi\)
\(602\) 0 0
\(603\) 3.00000 0.122169
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 32.0000 1.29884 0.649420 0.760430i \(-0.275012\pi\)
0.649420 + 0.760430i \(0.275012\pi\)
\(608\) 0 0
\(609\) 27.0000 1.09410
\(610\) 0 0
\(611\) −16.0000 −0.647291
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 0.362326 0.181163 0.983453i \(-0.442014\pi\)
0.181163 + 0.983453i \(0.442014\pi\)
\(618\) 0 0
\(619\) 16.0000 0.643094 0.321547 0.946894i \(-0.395797\pi\)
0.321547 + 0.946894i \(0.395797\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −12.0000 −0.479234
\(628\) 0 0
\(629\) 49.0000 1.95376
\(630\) 0 0
\(631\) −44.0000 −1.75161 −0.875806 0.482663i \(-0.839670\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) 23.0000 0.914168
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.00000 0.158486
\(638\) 0 0
\(639\) 3.00000 0.118678
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 23.0000 0.907031 0.453516 0.891248i \(-0.350170\pi\)
0.453516 + 0.891248i \(0.350170\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.0000 −0.393141 −0.196570 0.980490i \(-0.562980\pi\)
−0.196570 + 0.980490i \(0.562980\pi\)
\(648\) 0 0
\(649\) −18.0000 −0.706562
\(650\) 0 0
\(651\) −27.0000 −1.05821
\(652\) 0 0
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 6.00000 0.233373 0.116686 0.993169i \(-0.462773\pi\)
0.116686 + 0.993169i \(0.462773\pi\)
\(662\) 0 0
\(663\) −14.0000 −0.543715
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.00000 0.348481
\(668\) 0 0
\(669\) −2.00000 −0.0773245
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −16.0000 −0.616755 −0.308377 0.951264i \(-0.599786\pi\)
−0.308377 + 0.951264i \(0.599786\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.0000 0.807096 0.403548 0.914959i \(-0.367777\pi\)
0.403548 + 0.914959i \(0.367777\pi\)
\(678\) 0 0
\(679\) 30.0000 1.15129
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 16.0000 0.610438
\(688\) 0 0
\(689\) 22.0000 0.838133
\(690\) 0 0
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) 0 0
\(693\) −6.00000 −0.227921
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 35.0000 1.32572
\(698\) 0 0
\(699\) 16.0000 0.605176
\(700\) 0 0
\(701\) −20.0000 −0.755390 −0.377695 0.925930i \(-0.623283\pi\)
−0.377695 + 0.925930i \(0.623283\pi\)
\(702\) 0 0
\(703\) −42.0000 −1.58406
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.00000 0.338480
\(708\) 0 0
\(709\) −32.0000 −1.20179 −0.600893 0.799330i \(-0.705188\pi\)
−0.600893 + 0.799330i \(0.705188\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) −9.00000 −0.337053
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −21.0000 −0.784259
\(718\) 0 0
\(719\) −43.0000 −1.60363 −0.801815 0.597573i \(-0.796132\pi\)
−0.801815 + 0.597573i \(0.796132\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 0 0
\(723\) −26.0000 −0.966950
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −23.0000 −0.853023 −0.426511 0.904482i \(-0.640258\pi\)
−0.426511 + 0.904482i \(0.640258\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 47.0000 1.73598 0.867992 0.496578i \(-0.165410\pi\)
0.867992 + 0.496578i \(0.165410\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.00000 −0.221013
\(738\) 0 0
\(739\) −23.0000 −0.846069 −0.423034 0.906114i \(-0.639035\pi\)
−0.423034 + 0.906114i \(0.639035\pi\)
\(740\) 0 0
\(741\) 12.0000 0.440831
\(742\) 0 0
\(743\) 32.0000 1.17397 0.586983 0.809599i \(-0.300316\pi\)
0.586983 + 0.809599i \(0.300316\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.00000 −0.182940
\(748\) 0 0
\(749\) −15.0000 −0.548088
\(750\) 0 0
\(751\) 10.0000 0.364905 0.182453 0.983215i \(-0.441596\pi\)
0.182453 + 0.983215i \(0.441596\pi\)
\(752\) 0 0
\(753\) 30.0000 1.09326
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.00000 0.0363456 0.0181728 0.999835i \(-0.494215\pi\)
0.0181728 + 0.999835i \(0.494215\pi\)
\(758\) 0 0
\(759\) −2.00000 −0.0725954
\(760\) 0 0
\(761\) −39.0000 −1.41375 −0.706874 0.707339i \(-0.749895\pi\)
−0.706874 + 0.707339i \(0.749895\pi\)
\(762\) 0 0
\(763\) 30.0000 1.08607
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.0000 0.649942
\(768\) 0 0
\(769\) 40.0000 1.44244 0.721218 0.692708i \(-0.243582\pi\)
0.721218 + 0.692708i \(0.243582\pi\)
\(770\) 0 0
\(771\) −8.00000 −0.288113
\(772\) 0 0
\(773\) 54.0000 1.94225 0.971123 0.238581i \(-0.0766824\pi\)
0.971123 + 0.238581i \(0.0766824\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −21.0000 −0.753371
\(778\) 0 0
\(779\) −30.0000 −1.07486
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 0 0
\(783\) 9.00000 0.321634
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 31.0000 1.10503 0.552515 0.833503i \(-0.313668\pi\)
0.552515 + 0.833503i \(0.313668\pi\)
\(788\) 0 0
\(789\) 11.0000 0.391610
\(790\) 0 0
\(791\) −63.0000 −2.24002
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.0000 −0.389640 −0.194820 0.980839i \(-0.562412\pi\)
−0.194820 + 0.980839i \(0.562412\pi\)
\(798\) 0 0
\(799\) −56.0000 −1.98114
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −12.0000 −0.423471
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.00000 0.105605
\(808\) 0 0
\(809\) 3.00000 0.105474 0.0527372 0.998608i \(-0.483205\pi\)
0.0527372 + 0.998608i \(0.483205\pi\)
\(810\) 0 0
\(811\) −7.00000 −0.245803 −0.122902 0.992419i \(-0.539220\pi\)
−0.122902 + 0.992419i \(0.539220\pi\)
\(812\) 0 0
\(813\) −31.0000 −1.08722
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 6.00000 0.209657
\(820\) 0 0
\(821\) 10.0000 0.349002 0.174501 0.984657i \(-0.444169\pi\)
0.174501 + 0.984657i \(0.444169\pi\)
\(822\) 0 0
\(823\) −52.0000 −1.81261 −0.906303 0.422628i \(-0.861108\pi\)
−0.906303 + 0.422628i \(0.861108\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −31.0000 −1.07798 −0.538988 0.842314i \(-0.681193\pi\)
−0.538988 + 0.842314i \(0.681193\pi\)
\(828\) 0 0
\(829\) 49.0000 1.70184 0.850920 0.525295i \(-0.176045\pi\)
0.850920 + 0.525295i \(0.176045\pi\)
\(830\) 0 0
\(831\) 26.0000 0.901930
\(832\) 0 0
\(833\) 14.0000 0.485071
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −9.00000 −0.311086
\(838\) 0 0
\(839\) 2.00000 0.0690477 0.0345238 0.999404i \(-0.489009\pi\)
0.0345238 + 0.999404i \(0.489009\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) −10.0000 −0.344418
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −21.0000 −0.721569
\(848\) 0 0
\(849\) −5.00000 −0.171600
\(850\) 0 0
\(851\) −7.00000 −0.239957
\(852\) 0 0
\(853\) 30.0000 1.02718 0.513590 0.858036i \(-0.328315\pi\)
0.513590 + 0.858036i \(0.328315\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −54.0000 −1.84460 −0.922302 0.386469i \(-0.873695\pi\)
−0.922302 + 0.386469i \(0.873695\pi\)
\(858\) 0 0
\(859\) −43.0000 −1.46714 −0.733571 0.679613i \(-0.762148\pi\)
−0.733571 + 0.679613i \(0.762148\pi\)
\(860\) 0 0
\(861\) −15.0000 −0.511199
\(862\) 0 0
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −32.0000 −1.08678
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 6.00000 0.203302
\(872\) 0 0
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) 0 0
\(879\) −9.00000 −0.303562
\(880\) 0 0
\(881\) −16.0000 −0.539054 −0.269527 0.962993i \(-0.586867\pi\)
−0.269527 + 0.962993i \(0.586867\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −38.0000 −1.27592 −0.637958 0.770072i \(-0.720220\pi\)
−0.637958 + 0.770072i \(0.720220\pi\)
\(888\) 0 0
\(889\) 48.0000 1.60987
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 48.0000 1.60626
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.00000 0.0667781
\(898\) 0 0
\(899\) −81.0000 −2.70150
\(900\) 0 0
\(901\) 77.0000 2.56524
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −37.0000 −1.22856 −0.614282 0.789086i \(-0.710554\pi\)
−0.614282 + 0.789086i \(0.710554\pi\)
\(908\) 0 0
\(909\) 3.00000 0.0995037
\(910\) 0 0
\(911\) −56.0000 −1.85536 −0.927681 0.373373i \(-0.878201\pi\)
−0.927681 + 0.373373i \(0.878201\pi\)
\(912\) 0 0
\(913\) 10.0000 0.330952
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −36.0000 −1.18882
\(918\) 0 0
\(919\) −12.0000 −0.395843 −0.197922 0.980218i \(-0.563419\pi\)
−0.197922 + 0.980218i \(0.563419\pi\)
\(920\) 0 0
\(921\) −30.0000 −0.988534
\(922\) 0 0
\(923\) 6.00000 0.197492
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) −57.0000 −1.87011 −0.935055 0.354504i \(-0.884650\pi\)
−0.935055 + 0.354504i \(0.884650\pi\)
\(930\) 0 0
\(931\) −12.0000 −0.393284
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −46.0000 −1.50275 −0.751377 0.659873i \(-0.770610\pi\)
−0.751377 + 0.659873i \(0.770610\pi\)
\(938\) 0 0
\(939\) −29.0000 −0.946379
\(940\) 0 0
\(941\) −8.00000 −0.260793 −0.130396 0.991462i \(-0.541625\pi\)
−0.130396 + 0.991462i \(0.541625\pi\)
\(942\) 0 0
\(943\) −5.00000 −0.162822
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.0000 0.779895 0.389948 0.920837i \(-0.372493\pi\)
0.389948 + 0.920837i \(0.372493\pi\)
\(948\) 0 0
\(949\) 12.0000 0.389536
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −18.0000 −0.581857
\(958\) 0 0
\(959\) 42.0000 1.35625
\(960\) 0 0
\(961\) 50.0000 1.61290
\(962\) 0 0
\(963\) −5.00000 −0.161123
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −4.00000 −0.128631 −0.0643157 0.997930i \(-0.520486\pi\)
−0.0643157 + 0.997930i \(0.520486\pi\)
\(968\) 0 0
\(969\) 42.0000 1.34923
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) −15.0000 −0.480878
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.0000 1.18373 0.591867 0.806035i \(-0.298391\pi\)
0.591867 + 0.806035i \(0.298391\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −41.0000 −1.30770 −0.653848 0.756626i \(-0.726847\pi\)
−0.653848 + 0.756626i \(0.726847\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 24.0000 0.763928
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −59.0000 −1.87420 −0.937098 0.349065i \(-0.886499\pi\)
−0.937098 + 0.349065i \(0.886499\pi\)
\(992\) 0 0
\(993\) −21.0000 −0.666415
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −16.0000 −0.506725 −0.253363 0.967371i \(-0.581537\pi\)
−0.253363 + 0.967371i \(0.581537\pi\)
\(998\) 0 0
\(999\) −7.00000 −0.221470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6900.2.a.c.1.1 1
5.2 odd 4 6900.2.f.b.6349.2 2
5.3 odd 4 6900.2.f.b.6349.1 2
5.4 even 2 1380.2.a.e.1.1 1
15.14 odd 2 4140.2.a.b.1.1 1
20.19 odd 2 5520.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1380.2.a.e.1.1 1 5.4 even 2
4140.2.a.b.1.1 1 15.14 odd 2
5520.2.a.m.1.1 1 20.19 odd 2
6900.2.a.c.1.1 1 1.1 even 1 trivial
6900.2.f.b.6349.1 2 5.3 odd 4
6900.2.f.b.6349.2 2 5.2 odd 4