Defining parameters
| Level: | \( N \) | \(=\) | \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 690.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 20 \) | ||
| Sturm bound: | \(576\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(690))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 440 | 44 | 396 |
| Cusp forms | 424 | 44 | 380 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(31\) | \(3\) | \(28\) | \(30\) | \(3\) | \(27\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(26\) | \(3\) | \(23\) | \(25\) | \(3\) | \(22\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(25\) | \(2\) | \(23\) | \(24\) | \(2\) | \(22\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(28\) | \(4\) | \(24\) | \(27\) | \(4\) | \(23\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(27\) | \(3\) | \(24\) | \(26\) | \(3\) | \(23\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(27\) | \(2\) | \(25\) | \(26\) | \(2\) | \(24\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(27\) | \(3\) | \(24\) | \(26\) | \(3\) | \(23\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(29\) | \(2\) | \(27\) | \(28\) | \(2\) | \(26\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(27\) | \(3\) | \(24\) | \(26\) | \(3\) | \(23\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(29\) | \(3\) | \(26\) | \(28\) | \(3\) | \(25\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(29\) | \(4\) | \(25\) | \(28\) | \(4\) | \(24\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(25\) | \(2\) | \(23\) | \(24\) | \(2\) | \(22\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(26\) | \(3\) | \(23\) | \(25\) | \(3\) | \(22\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(29\) | \(2\) | \(27\) | \(28\) | \(2\) | \(26\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(28\) | \(1\) | \(27\) | \(27\) | \(1\) | \(26\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(27\) | \(4\) | \(23\) | \(26\) | \(4\) | \(22\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(224\) | \(26\) | \(198\) | \(216\) | \(26\) | \(190\) | \(8\) | \(0\) | \(8\) | ||||||
| Minus space | \(-\) | \(216\) | \(18\) | \(198\) | \(208\) | \(18\) | \(190\) | \(8\) | \(0\) | \(8\) | ||||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(690))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(690))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(690)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(345))\)\(^{\oplus 2}\)