Properties

Label 690.4.a
Level $690$
Weight $4$
Character orbit 690.a
Rep. character $\chi_{690}(1,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $20$
Sturm bound $576$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 690.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(576\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(690))\).

Total New Old
Modular forms 440 44 396
Cusp forms 424 44 380
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(31\)\(3\)\(28\)\(30\)\(3\)\(27\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(26\)\(3\)\(23\)\(25\)\(3\)\(22\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(25\)\(2\)\(23\)\(24\)\(2\)\(22\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(28\)\(4\)\(24\)\(27\)\(4\)\(23\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(27\)\(3\)\(24\)\(26\)\(3\)\(23\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(27\)\(2\)\(25\)\(26\)\(2\)\(24\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(27\)\(3\)\(24\)\(26\)\(3\)\(23\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(29\)\(2\)\(27\)\(28\)\(2\)\(26\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(27\)\(3\)\(24\)\(26\)\(3\)\(23\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(29\)\(3\)\(26\)\(28\)\(3\)\(25\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(29\)\(4\)\(25\)\(28\)\(4\)\(24\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(25\)\(2\)\(23\)\(24\)\(2\)\(22\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(26\)\(3\)\(23\)\(25\)\(3\)\(22\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(29\)\(2\)\(27\)\(28\)\(2\)\(26\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(28\)\(1\)\(27\)\(27\)\(1\)\(26\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(27\)\(4\)\(23\)\(26\)\(4\)\(22\)\(1\)\(0\)\(1\)
Plus space\(+\)\(224\)\(26\)\(198\)\(216\)\(26\)\(190\)\(8\)\(0\)\(8\)
Minus space\(-\)\(216\)\(18\)\(198\)\(208\)\(18\)\(190\)\(8\)\(0\)\(8\)

Trace form

\( 44 q - 12 q^{3} + 176 q^{4} - 56 q^{7} + 396 q^{9} - 48 q^{12} + 160 q^{14} + 704 q^{16} + 16 q^{17} - 152 q^{19} - 168 q^{21} - 224 q^{22} + 1100 q^{25} - 108 q^{27} - 224 q^{28} - 336 q^{29} + 408 q^{31}+ \cdots + 1024 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(690))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 23
690.4.a.a 690.a 1.a $1$ $40.711$ \(\Q\) None 690.4.a.a \(-2\) \(-3\) \(5\) \(-19\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\)
690.4.a.b 690.a 1.a $1$ $40.711$ \(\Q\) None 690.4.a.b \(-2\) \(-3\) \(5\) \(-18\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\)
690.4.a.c 690.a 1.a $1$ $40.711$ \(\Q\) None 690.4.a.c \(-2\) \(-3\) \(5\) \(16\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\)
690.4.a.d 690.a 1.a $1$ $40.711$ \(\Q\) None 690.4.a.d \(-2\) \(3\) \(-5\) \(-16\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\)
690.4.a.e 690.a 1.a $1$ $40.711$ \(\Q\) None 690.4.a.e \(-2\) \(3\) \(-5\) \(-5\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\)
690.4.a.f 690.a 1.a $1$ $40.711$ \(\Q\) None 690.4.a.f \(2\) \(3\) \(-5\) \(-20\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\)
690.4.a.g 690.a 1.a $1$ $40.711$ \(\Q\) None 690.4.a.g \(2\) \(3\) \(-5\) \(-5\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\)
690.4.a.h 690.a 1.a $1$ $40.711$ \(\Q\) None 690.4.a.h \(2\) \(3\) \(5\) \(-7\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\)
690.4.a.i 690.a 1.a $2$ $40.711$ \(\Q(\sqrt{6}) \) None 690.4.a.i \(-4\) \(6\) \(10\) \(-26\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}+5q^{5}-6q^{6}+\cdots\)
690.4.a.j 690.a 1.a $2$ $40.711$ \(\Q(\sqrt{14}) \) None 690.4.a.j \(4\) \(-6\) \(10\) \(-2\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-3q^{3}+4q^{4}+5q^{5}-6q^{6}+\cdots\)
690.4.a.k 690.a 1.a $3$ $40.711$ 3.3.471057.3 None 690.4.a.k \(-6\) \(-9\) \(-15\) \(-35\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\)
690.4.a.l 690.a 1.a $3$ $40.711$ 3.3.617756.1 None 690.4.a.l \(-6\) \(-9\) \(-15\) \(30\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\)
690.4.a.m 690.a 1.a $3$ $40.711$ 3.3.931848.1 None 690.4.a.m \(-6\) \(-9\) \(15\) \(6\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\)
690.4.a.n 690.a 1.a $3$ $40.711$ 3.3.207308.1 None 690.4.a.n \(-6\) \(9\) \(-15\) \(2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\)
690.4.a.o 690.a 1.a $3$ $40.711$ 3.3.460593.1 None 690.4.a.o \(-6\) \(9\) \(15\) \(-3\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}+5q^{5}-6q^{6}+\cdots\)
690.4.a.p 690.a 1.a $3$ $40.711$ 3.3.162793.1 None 690.4.a.p \(6\) \(-9\) \(-15\) \(3\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\)
690.4.a.q 690.a 1.a $3$ $40.711$ 3.3.396732.1 None 690.4.a.q \(6\) \(-9\) \(-15\) \(12\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\)
690.4.a.r 690.a 1.a $3$ $40.711$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 690.4.a.r \(6\) \(9\) \(-15\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\)
690.4.a.s 690.a 1.a $4$ $40.711$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 690.4.a.s \(8\) \(-12\) \(20\) \(7\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-3q^{3}+4q^{4}+5q^{5}-6q^{6}+\cdots\)
690.4.a.t 690.a 1.a $4$ $40.711$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 690.4.a.t \(8\) \(12\) \(20\) \(26\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(690))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(690)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(345))\)\(^{\oplus 2}\)