Newspace parameters
Level: | \( N \) | \(=\) | \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 690.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(18.8011382409\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
277.1 | 1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | −4.85719 | − | 1.18646i | −2.44949 | 8.99906 | + | 8.99906i | −2.00000 | + | 2.00000i | − | 3.00000i | −3.67074 | − | 6.04365i | |||||
277.2 | 1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | 2.69807 | + | 4.20956i | −2.44949 | −5.61863 | − | 5.61863i | −2.00000 | + | 2.00000i | − | 3.00000i | −1.51149 | + | 6.90763i | |||||
277.3 | 1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | 3.78471 | − | 3.26741i | −2.44949 | 3.72268 | + | 3.72268i | −2.00000 | + | 2.00000i | − | 3.00000i | 7.05212 | + | 0.517301i | |||||
277.4 | 1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | −1.90173 | + | 4.62422i | −2.44949 | 2.37572 | + | 2.37572i | −2.00000 | + | 2.00000i | − | 3.00000i | −6.52595 | + | 2.72250i | |||||
277.5 | 1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | 0.0159424 | − | 4.99997i | −2.44949 | −0.165312 | − | 0.165312i | −2.00000 | + | 2.00000i | − | 3.00000i | 5.01592 | − | 4.98403i | |||||
277.6 | 1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | 2.62353 | + | 4.25642i | −2.44949 | 0.185981 | + | 0.185981i | −2.00000 | + | 2.00000i | − | 3.00000i | −1.63289 | + | 6.87995i | |||||
277.7 | 1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | −4.90121 | − | 0.988992i | −2.44949 | 2.14995 | + | 2.14995i | −2.00000 | + | 2.00000i | − | 3.00000i | −3.91222 | − | 5.89021i | |||||
277.8 | 1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | −1.94861 | − | 4.60466i | −2.44949 | −2.18869 | − | 2.18869i | −2.00000 | + | 2.00000i | − | 3.00000i | 2.65606 | − | 6.55327i | |||||
277.9 | 1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | 4.95981 | + | 0.632643i | −2.44949 | 3.11187 | + | 3.11187i | −2.00000 | + | 2.00000i | − | 3.00000i | 4.32717 | + | 5.59246i | |||||
277.10 | 1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | −4.92281 | + | 0.875159i | −2.44949 | −4.77467 | − | 4.77467i | −2.00000 | + | 2.00000i | − | 3.00000i | −5.79797 | − | 4.04766i | |||||
277.11 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | −0.335340 | + | 4.98874i | 2.44949 | −8.75117 | − | 8.75117i | −2.00000 | + | 2.00000i | − | 3.00000i | −5.32408 | + | 4.65340i | |||||
277.12 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | −4.34252 | − | 2.47842i | 2.44949 | −5.93628 | − | 5.93628i | −2.00000 | + | 2.00000i | − | 3.00000i | −1.86410 | − | 6.82093i | |||||
277.13 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | 3.72431 | − | 3.33609i | 2.44949 | 6.04624 | + | 6.04624i | −2.00000 | + | 2.00000i | − | 3.00000i | 7.06040 | + | 0.388220i | |||||
277.14 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | 4.99686 | − | 0.177266i | 2.44949 | −4.63984 | − | 4.63984i | −2.00000 | + | 2.00000i | − | 3.00000i | 5.17412 | + | 4.81959i | |||||
277.15 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | 2.64969 | − | 4.24018i | 2.44949 | −5.13413 | − | 5.13413i | −2.00000 | + | 2.00000i | − | 3.00000i | 6.88987 | − | 1.59048i | |||||
277.16 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | −3.81857 | + | 3.22778i | 2.44949 | 3.99090 | + | 3.99090i | −2.00000 | + | 2.00000i | − | 3.00000i | −7.04634 | − | 0.590789i | |||||
277.17 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | 3.38409 | + | 3.68075i | 2.44949 | −0.957772 | − | 0.957772i | −2.00000 | + | 2.00000i | − | 3.00000i | −0.296667 | + | 7.06484i | |||||
277.18 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | −2.41665 | − | 4.37719i | 2.44949 | 0.381912 | + | 0.381912i | −2.00000 | + | 2.00000i | − | 3.00000i | 1.96054 | − | 6.79384i | |||||
277.19 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | −4.45244 | + | 2.27502i | 2.44949 | −3.57605 | − | 3.57605i | −2.00000 | + | 2.00000i | − | 3.00000i | −6.72747 | − | 2.17742i | |||||
277.20 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | 1.06006 | + | 4.88634i | 2.44949 | 6.77823 | + | 6.77823i | −2.00000 | + | 2.00000i | − | 3.00000i | −3.82628 | + | 5.94639i | |||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 690.3.k.a | ✓ | 40 |
5.c | odd | 4 | 1 | inner | 690.3.k.a | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
690.3.k.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
690.3.k.a | ✓ | 40 | 5.c | odd | 4 | 1 | inner |