Properties

Label 690.3.f.a.229.17
Level $690$
Weight $3$
Character 690.229
Analytic conductor $18.801$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 690.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.8011382409\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 229.17
Character \(\chi\) \(=\) 690.229
Dual form 690.3.f.a.229.19

$q$-expansion

\(f(q)\) \(=\) \(q-1.41421i q^{2} +1.73205i q^{3} -2.00000 q^{4} +(-1.15789 + 4.86408i) q^{5} +2.44949 q^{6} +1.79343 q^{7} +2.82843i q^{8} -3.00000 q^{9} +O(q^{10})\) \(q-1.41421i q^{2} +1.73205i q^{3} -2.00000 q^{4} +(-1.15789 + 4.86408i) q^{5} +2.44949 q^{6} +1.79343 q^{7} +2.82843i q^{8} -3.00000 q^{9} +(6.87885 + 1.63751i) q^{10} -0.382184i q^{11} -3.46410i q^{12} +24.0468i q^{13} -2.53629i q^{14} +(-8.42483 - 2.00553i) q^{15} +4.00000 q^{16} -22.1605 q^{17} +4.24264i q^{18} -17.6049i q^{19} +(2.31579 - 9.72816i) q^{20} +3.10631i q^{21} -0.540489 q^{22} +(1.50786 - 22.9505i) q^{23} -4.89898 q^{24} +(-22.3186 - 11.2642i) q^{25} +34.0074 q^{26} -5.19615i q^{27} -3.58685 q^{28} -1.79697 q^{29} +(-2.83625 + 11.9145i) q^{30} +40.3465 q^{31} -5.65685i q^{32} +0.661961 q^{33} +31.3397i q^{34} +(-2.07660 + 8.72337i) q^{35} +6.00000 q^{36} -42.7110 q^{37} -24.8971 q^{38} -41.6503 q^{39} +(-13.7577 - 3.27502i) q^{40} +1.26689 q^{41} +4.39298 q^{42} -16.5675 q^{43} +0.764367i q^{44} +(3.47368 - 14.5922i) q^{45} +(-32.4569 - 2.13244i) q^{46} +5.75045i q^{47} +6.92820i q^{48} -45.7836 q^{49} +(-15.9300 + 31.5632i) q^{50} -38.3831i q^{51} -48.0937i q^{52} -81.4797 q^{53} -7.34847 q^{54} +(1.85897 + 0.442528i) q^{55} +5.07258i q^{56} +30.4925 q^{57} +2.54131i q^{58} +18.0948 q^{59} +(16.8497 + 4.01106i) q^{60} -33.1411i q^{61} -57.0586i q^{62} -5.38028 q^{63} -8.00000 q^{64} +(-116.966 - 27.8437i) q^{65} -0.936155i q^{66} -116.835 q^{67} +44.3210 q^{68} +(39.7515 + 2.61169i) q^{69} +(12.3367 + 2.93676i) q^{70} +28.3516 q^{71} -8.48528i q^{72} +112.311i q^{73} +60.4025i q^{74} +(19.5101 - 38.6569i) q^{75} +35.2098i q^{76} -0.685419i q^{77} +58.9025i q^{78} +62.0766i q^{79} +(-4.63158 + 19.4563i) q^{80} +9.00000 q^{81} -1.79165i q^{82} -148.140 q^{83} -6.21261i q^{84} +(25.6595 - 107.790i) q^{85} +23.4300i q^{86} -3.11245i q^{87} +1.08098 q^{88} -102.736i q^{89} +(-20.6365 - 4.91253i) q^{90} +43.1262i q^{91} +(-3.01572 + 45.9010i) q^{92} +69.8822i q^{93} +8.13236 q^{94} +(85.6316 + 20.3846i) q^{95} +9.79796 q^{96} +150.611 q^{97} +64.7478i q^{98} +1.14655i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 96q^{4} - 144q^{9} + O(q^{10}) \) \( 48q - 96q^{4} - 144q^{9} + 192q^{16} + 96q^{25} + 64q^{26} - 152q^{29} - 8q^{31} + 56q^{35} + 288q^{36} - 48q^{39} + 40q^{41} - 160q^{46} + 424q^{49} + 96q^{50} + 32q^{55} + 360q^{59} - 384q^{64} + 192q^{69} - 496q^{70} - 152q^{71} + 144q^{75} + 432q^{81} - 136q^{85} + 256q^{94} + 496q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 1.73205i 0.577350i
\(4\) −2.00000 −0.500000
\(5\) −1.15789 + 4.86408i −0.231579 + 0.972816i
\(6\) 2.44949 0.408248
\(7\) 1.79343 0.256204 0.128102 0.991761i \(-0.459112\pi\)
0.128102 + 0.991761i \(0.459112\pi\)
\(8\) 2.82843i 0.353553i
\(9\) −3.00000 −0.333333
\(10\) 6.87885 + 1.63751i 0.687885 + 0.163751i
\(11\) 0.382184i 0.0347440i −0.999849 0.0173720i \(-0.994470\pi\)
0.999849 0.0173720i \(-0.00552995\pi\)
\(12\) 3.46410i 0.288675i
\(13\) 24.0468i 1.84976i 0.380264 + 0.924878i \(0.375833\pi\)
−0.380264 + 0.924878i \(0.624167\pi\)
\(14\) 2.53629i 0.181164i
\(15\) −8.42483 2.00553i −0.561656 0.133702i
\(16\) 4.00000 0.250000
\(17\) −22.1605 −1.30356 −0.651779 0.758409i \(-0.725977\pi\)
−0.651779 + 0.758409i \(0.725977\pi\)
\(18\) 4.24264i 0.235702i
\(19\) 17.6049i 0.926573i −0.886209 0.463286i \(-0.846670\pi\)
0.886209 0.463286i \(-0.153330\pi\)
\(20\) 2.31579 9.72816i 0.115789 0.486408i
\(21\) 3.10631i 0.147919i
\(22\) −0.540489 −0.0245677
\(23\) 1.50786 22.9505i 0.0655591 0.997849i
\(24\) −4.89898 −0.204124
\(25\) −22.3186 11.2642i −0.892742 0.450567i
\(26\) 34.0074 1.30798
\(27\) 5.19615i 0.192450i
\(28\) −3.58685 −0.128102
\(29\) −1.79697 −0.0619646 −0.0309823 0.999520i \(-0.509864\pi\)
−0.0309823 + 0.999520i \(0.509864\pi\)
\(30\) −2.83625 + 11.9145i −0.0945417 + 0.397151i
\(31\) 40.3465 1.30150 0.650750 0.759292i \(-0.274455\pi\)
0.650750 + 0.759292i \(0.274455\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0.661961 0.0200594
\(34\) 31.3397i 0.921755i
\(35\) −2.07660 + 8.72337i −0.0593314 + 0.249239i
\(36\) 6.00000 0.166667
\(37\) −42.7110 −1.15435 −0.577175 0.816620i \(-0.695845\pi\)
−0.577175 + 0.816620i \(0.695845\pi\)
\(38\) −24.8971 −0.655186
\(39\) −41.6503 −1.06796
\(40\) −13.7577 3.27502i −0.343942 0.0818755i
\(41\) 1.26689 0.0308998 0.0154499 0.999881i \(-0.495082\pi\)
0.0154499 + 0.999881i \(0.495082\pi\)
\(42\) 4.39298 0.104595
\(43\) −16.5675 −0.385291 −0.192646 0.981268i \(-0.561707\pi\)
−0.192646 + 0.981268i \(0.561707\pi\)
\(44\) 0.764367i 0.0173720i
\(45\) 3.47368 14.5922i 0.0771930 0.324272i
\(46\) −32.4569 2.13244i −0.705586 0.0463573i
\(47\) 5.75045i 0.122350i 0.998127 + 0.0611750i \(0.0194848\pi\)
−0.998127 + 0.0611750i \(0.980515\pi\)
\(48\) 6.92820i 0.144338i
\(49\) −45.7836 −0.934360
\(50\) −15.9300 + 31.5632i −0.318599 + 0.631264i
\(51\) 38.3831i 0.752610i
\(52\) 48.0937i 0.924878i
\(53\) −81.4797 −1.53735 −0.768677 0.639637i \(-0.779085\pi\)
−0.768677 + 0.639637i \(0.779085\pi\)
\(54\) −7.34847 −0.136083
\(55\) 1.85897 + 0.442528i 0.0337995 + 0.00804597i
\(56\) 5.07258i 0.0905818i
\(57\) 30.4925 0.534957
\(58\) 2.54131i 0.0438156i
\(59\) 18.0948 0.306691 0.153346 0.988173i \(-0.450995\pi\)
0.153346 + 0.988173i \(0.450995\pi\)
\(60\) 16.8497 + 4.01106i 0.280828 + 0.0668511i
\(61\) 33.1411i 0.543296i −0.962397 0.271648i \(-0.912431\pi\)
0.962397 0.271648i \(-0.0875687\pi\)
\(62\) 57.0586i 0.920300i
\(63\) −5.38028 −0.0854013
\(64\) −8.00000 −0.125000
\(65\) −116.966 27.8437i −1.79947 0.428365i
\(66\) 0.936155i 0.0141842i
\(67\) −116.835 −1.74381 −0.871904 0.489677i \(-0.837115\pi\)
−0.871904 + 0.489677i \(0.837115\pi\)
\(68\) 44.3210 0.651779
\(69\) 39.7515 + 2.61169i 0.576108 + 0.0378506i
\(70\) 12.3367 + 2.93676i 0.176239 + 0.0419537i
\(71\) 28.3516 0.399318 0.199659 0.979865i \(-0.436017\pi\)
0.199659 + 0.979865i \(0.436017\pi\)
\(72\) 8.48528i 0.117851i
\(73\) 112.311i 1.53850i 0.638948 + 0.769250i \(0.279370\pi\)
−0.638948 + 0.769250i \(0.720630\pi\)
\(74\) 60.4025i 0.816249i
\(75\) 19.5101 38.6569i 0.260135 0.515425i
\(76\) 35.2098i 0.463286i
\(77\) 0.685419i 0.00890154i
\(78\) 58.9025i 0.755160i
\(79\) 62.0766i 0.785780i 0.919585 + 0.392890i \(0.128525\pi\)
−0.919585 + 0.392890i \(0.871475\pi\)
\(80\) −4.63158 + 19.4563i −0.0578947 + 0.243204i
\(81\) 9.00000 0.111111
\(82\) 1.79165i 0.0218494i
\(83\) −148.140 −1.78481 −0.892407 0.451231i \(-0.850985\pi\)
−0.892407 + 0.451231i \(0.850985\pi\)
\(84\) 6.21261i 0.0739597i
\(85\) 25.6595 107.790i 0.301877 1.26812i
\(86\) 23.4300i 0.272442i
\(87\) 3.11245i 0.0357753i
\(88\) 1.08098 0.0122838
\(89\) 102.736i 1.15434i −0.816623 0.577171i \(-0.804157\pi\)
0.816623 0.577171i \(-0.195843\pi\)
\(90\) −20.6365 4.91253i −0.229295 0.0545837i
\(91\) 43.1262i 0.473915i
\(92\) −3.01572 + 45.9010i −0.0327796 + 0.498924i
\(93\) 69.8822i 0.751422i
\(94\) 8.13236 0.0865145
\(95\) 85.6316 + 20.3846i 0.901385 + 0.214575i
\(96\) 9.79796 0.102062
\(97\) 150.611 1.55269 0.776343 0.630310i \(-0.217072\pi\)
0.776343 + 0.630310i \(0.217072\pi\)
\(98\) 64.7478i 0.660692i
\(99\) 1.14655i 0.0115813i
\(100\) 44.6371 + 22.5284i 0.446371 + 0.225284i
\(101\) −105.835 −1.04787 −0.523937 0.851757i \(-0.675537\pi\)
−0.523937 + 0.851757i \(0.675537\pi\)
\(102\) −54.2819 −0.532175
\(103\) 110.093 1.06886 0.534432 0.845211i \(-0.320526\pi\)
0.534432 + 0.845211i \(0.320526\pi\)
\(104\) −68.0147 −0.653988
\(105\) −15.1093 3.59678i −0.143898 0.0342550i
\(106\) 115.230i 1.08707i
\(107\) −145.434 −1.35920 −0.679599 0.733584i \(-0.737846\pi\)
−0.679599 + 0.733584i \(0.737846\pi\)
\(108\) 10.3923i 0.0962250i
\(109\) 108.845i 0.998578i 0.866435 + 0.499289i \(0.166405\pi\)
−0.866435 + 0.499289i \(0.833595\pi\)
\(110\) 0.625830 2.62898i 0.00568936 0.0238998i
\(111\) 73.9776i 0.666465i
\(112\) 7.17371 0.0640510
\(113\) 56.0495 0.496013 0.248007 0.968758i \(-0.420225\pi\)
0.248007 + 0.968758i \(0.420225\pi\)
\(114\) 43.1230i 0.378272i
\(115\) 109.887 + 33.9086i 0.955541 + 0.294858i
\(116\) 3.59395 0.0309823
\(117\) 72.1405i 0.616585i
\(118\) 25.5899i 0.216863i
\(119\) −39.7432 −0.333977
\(120\) 5.67250 23.8290i 0.0472709 0.198575i
\(121\) 120.854 0.998793
\(122\) −46.8686 −0.384169
\(123\) 2.19432i 0.0178400i
\(124\) −80.6930 −0.650750
\(125\) 80.6325 95.5165i 0.645060 0.764132i
\(126\) 7.60887i 0.0603878i
\(127\) 67.2083i 0.529199i 0.964358 + 0.264599i \(0.0852397\pi\)
−0.964358 + 0.264599i \(0.914760\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 28.6958i 0.222448i
\(130\) −39.3769 + 165.415i −0.302899 + 1.27242i
\(131\) −144.689 −1.10450 −0.552249 0.833679i \(-0.686230\pi\)
−0.552249 + 0.833679i \(0.686230\pi\)
\(132\) −1.32392 −0.0100297
\(133\) 31.5731i 0.237392i
\(134\) 165.230i 1.23306i
\(135\) 25.2745 + 6.01660i 0.187219 + 0.0445674i
\(136\) 62.6793i 0.460877i
\(137\) 66.2233 0.483381 0.241691 0.970353i \(-0.422298\pi\)
0.241691 + 0.970353i \(0.422298\pi\)
\(138\) 3.69349 56.2171i 0.0267644 0.407370i
\(139\) 58.2706 0.419213 0.209606 0.977786i \(-0.432782\pi\)
0.209606 + 0.977786i \(0.432782\pi\)
\(140\) 4.15320 17.4467i 0.0296657 0.124620i
\(141\) −9.96007 −0.0706388
\(142\) 40.0952i 0.282360i
\(143\) 9.19030 0.0642679
\(144\) −12.0000 −0.0833333
\(145\) 2.08071 8.74063i 0.0143497 0.0602802i
\(146\) 158.831 1.08788
\(147\) 79.2996i 0.539453i
\(148\) 85.4220 0.577175
\(149\) 178.281i 1.19652i −0.801303 0.598259i \(-0.795860\pi\)
0.801303 0.598259i \(-0.204140\pi\)
\(150\) −54.6691 27.5915i −0.364461 0.183943i
\(151\) 216.913 1.43651 0.718257 0.695778i \(-0.244940\pi\)
0.718257 + 0.695778i \(0.244940\pi\)
\(152\) 49.7941 0.327593
\(153\) 66.4815 0.434519
\(154\) −0.969328 −0.00629434
\(155\) −46.7170 + 196.249i −0.301400 + 1.26612i
\(156\) 83.3007 0.533979
\(157\) 132.164 0.841810 0.420905 0.907105i \(-0.361713\pi\)
0.420905 + 0.907105i \(0.361713\pi\)
\(158\) 87.7896 0.555631
\(159\) 141.127i 0.887592i
\(160\) 27.5154 + 6.55004i 0.171971 + 0.0409378i
\(161\) 2.70424 41.1601i 0.0167965 0.255653i
\(162\) 12.7279i 0.0785674i
\(163\) 98.3005i 0.603070i −0.953455 0.301535i \(-0.902501\pi\)
0.953455 0.301535i \(-0.0974991\pi\)
\(164\) −2.53378 −0.0154499
\(165\) −0.766482 + 3.21983i −0.00464534 + 0.0195141i
\(166\) 209.501i 1.26205i
\(167\) 69.3323i 0.415164i −0.978218 0.207582i \(-0.933441\pi\)
0.978218 0.207582i \(-0.0665593\pi\)
\(168\) −8.78596 −0.0522974
\(169\) −409.250 −2.42160
\(170\) −152.439 36.2880i −0.896698 0.213459i
\(171\) 52.8146i 0.308858i
\(172\) 33.1350 0.192646
\(173\) 337.945i 1.95344i 0.214522 + 0.976719i \(0.431181\pi\)
−0.214522 + 0.976719i \(0.568819\pi\)
\(174\) −4.40167 −0.0252970
\(175\) −40.0267 20.2015i −0.228724 0.115437i
\(176\) 1.52873i 0.00868599i
\(177\) 31.3411i 0.177068i
\(178\) −145.291 −0.816243
\(179\) −135.350 −0.756146 −0.378073 0.925776i \(-0.623413\pi\)
−0.378073 + 0.925776i \(0.623413\pi\)
\(180\) −6.94737 + 29.1845i −0.0385965 + 0.162136i
\(181\) 275.222i 1.52057i 0.649592 + 0.760283i \(0.274940\pi\)
−0.649592 + 0.760283i \(0.725060\pi\)
\(182\) 60.9897 0.335108
\(183\) 57.4020 0.313672
\(184\) 64.9139 + 4.26487i 0.352793 + 0.0231787i
\(185\) 49.4548 207.750i 0.267323 1.12297i
\(186\) 98.8284 0.531335
\(187\) 8.46938i 0.0452908i
\(188\) 11.5009i 0.0611750i
\(189\) 9.31892i 0.0493065i
\(190\) 28.8282 121.101i 0.151727 0.637375i
\(191\) 43.3590i 0.227010i −0.993537 0.113505i \(-0.963792\pi\)
0.993537 0.113505i \(-0.0362079\pi\)
\(192\) 13.8564i 0.0721688i
\(193\) 41.4539i 0.214787i −0.994217 0.107394i \(-0.965749\pi\)
0.994217 0.107394i \(-0.0342505\pi\)
\(194\) 212.996i 1.09792i
\(195\) 48.2267 202.591i 0.247316 1.03893i
\(196\) 91.5672 0.467180
\(197\) 208.208i 1.05689i −0.848966 0.528447i \(-0.822774\pi\)
0.848966 0.528447i \(-0.177226\pi\)
\(198\) 1.62147 0.00818923
\(199\) 270.493i 1.35926i 0.733554 + 0.679631i \(0.237860\pi\)
−0.733554 + 0.679631i \(0.762140\pi\)
\(200\) 31.8599 63.1264i 0.159300 0.315632i
\(201\) 202.364i 1.00679i
\(202\) 149.674i 0.740959i
\(203\) −3.22274 −0.0158756
\(204\) 76.7662i 0.376305i
\(205\) −1.46693 + 6.16226i −0.00715574 + 0.0300598i
\(206\) 155.695i 0.755801i
\(207\) −4.52358 + 68.8516i −0.0218530 + 0.332616i
\(208\) 96.1873i 0.462439i
\(209\) −6.72830 −0.0321928
\(210\) −5.08661 + 21.3678i −0.0242220 + 0.101752i
\(211\) 20.2818 0.0961222 0.0480611 0.998844i \(-0.484696\pi\)
0.0480611 + 0.998844i \(0.484696\pi\)
\(212\) 162.959 0.768677
\(213\) 49.1063i 0.230546i
\(214\) 205.675i 0.961098i
\(215\) 19.1834 80.5857i 0.0892253 0.374817i
\(216\) 14.6969 0.0680414
\(217\) 72.3585 0.333449
\(218\) 153.930 0.706102
\(219\) −194.528 −0.888254
\(220\) −3.71794 0.885057i −0.0168997 0.00402299i
\(221\) 532.890i 2.41126i
\(222\) −104.620 −0.471262
\(223\) 195.211i 0.875386i 0.899124 + 0.437693i \(0.144204\pi\)
−0.899124 + 0.437693i \(0.855796\pi\)
\(224\) 10.1452i 0.0452909i
\(225\) 66.9557 + 33.7926i 0.297581 + 0.150189i
\(226\) 79.2660i 0.350734i
\(227\) −89.0856 −0.392448 −0.196224 0.980559i \(-0.562868\pi\)
−0.196224 + 0.980559i \(0.562868\pi\)
\(228\) −60.9851 −0.267479
\(229\) 240.109i 1.04851i −0.851561 0.524255i \(-0.824344\pi\)
0.851561 0.524255i \(-0.175656\pi\)
\(230\) 47.9541 155.404i 0.208496 0.675670i
\(231\) 1.18718 0.00513931
\(232\) 5.08261i 0.0219078i
\(233\) 366.956i 1.57492i 0.616367 + 0.787459i \(0.288604\pi\)
−0.616367 + 0.787459i \(0.711396\pi\)
\(234\) −102.022 −0.435992
\(235\) −27.9706 6.65841i −0.119024 0.0283337i
\(236\) −36.1895 −0.153346
\(237\) −107.520 −0.453670
\(238\) 56.2054i 0.236157i
\(239\) 312.460 1.30737 0.653683 0.756769i \(-0.273223\pi\)
0.653683 + 0.756769i \(0.273223\pi\)
\(240\) −33.6993 8.02213i −0.140414 0.0334255i
\(241\) 187.089i 0.776302i −0.921596 0.388151i \(-0.873114\pi\)
0.921596 0.388151i \(-0.126886\pi\)
\(242\) 170.913i 0.706253i
\(243\) 15.5885i 0.0641500i
\(244\) 66.2822i 0.271648i
\(245\) 53.0126 222.695i 0.216378 0.908960i
\(246\) 3.10324 0.0126148
\(247\) 423.342 1.71393
\(248\) 114.117i 0.460150i
\(249\) 256.585i 1.03046i
\(250\) −135.081 114.032i −0.540323 0.456126i
\(251\) 100.664i 0.401051i 0.979688 + 0.200525i \(0.0642649\pi\)
−0.979688 + 0.200525i \(0.935735\pi\)
\(252\) 10.7606 0.0427006
\(253\) −8.77131 0.576279i −0.0346692 0.00227778i
\(254\) 95.0468 0.374200
\(255\) 186.698 + 44.4436i 0.732151 + 0.174289i
\(256\) 16.0000 0.0625000
\(257\) 43.1857i 0.168038i 0.996464 + 0.0840188i \(0.0267756\pi\)
−0.996464 + 0.0840188i \(0.973224\pi\)
\(258\) −40.5820 −0.157294
\(259\) −76.5990 −0.295749
\(260\) 233.931 + 55.6874i 0.899736 + 0.214182i
\(261\) 5.39092 0.0206549
\(262\) 204.621i 0.780998i
\(263\) 149.557 0.568657 0.284329 0.958727i \(-0.408229\pi\)
0.284329 + 0.958727i \(0.408229\pi\)
\(264\) 1.87231i 0.00709208i
\(265\) 94.3450 396.324i 0.356019 1.49556i
\(266\) −44.6511 −0.167861
\(267\) 177.945 0.666459
\(268\) 233.670 0.871904
\(269\) 7.50830 0.0279119 0.0139560 0.999903i \(-0.495558\pi\)
0.0139560 + 0.999903i \(0.495558\pi\)
\(270\) 8.50875 35.7435i 0.0315139 0.132384i
\(271\) −333.946 −1.23227 −0.616136 0.787640i \(-0.711303\pi\)
−0.616136 + 0.787640i \(0.711303\pi\)
\(272\) −88.6420 −0.325890
\(273\) −74.6968 −0.273615
\(274\) 93.6538i 0.341802i
\(275\) −4.30499 + 8.52979i −0.0156545 + 0.0310174i
\(276\) −79.5029 5.22338i −0.288054 0.0189253i
\(277\) 17.8761i 0.0645347i 0.999479 + 0.0322674i \(0.0102728\pi\)
−0.999479 + 0.0322674i \(0.989727\pi\)
\(278\) 82.4070i 0.296428i
\(279\) −121.040 −0.433833
\(280\) −24.6734 5.87351i −0.0881194 0.0209768i
\(281\) 375.566i 1.33654i 0.743921 + 0.668268i \(0.232964\pi\)
−0.743921 + 0.668268i \(0.767036\pi\)
\(282\) 14.0857i 0.0499492i
\(283\) 401.091 1.41728 0.708642 0.705568i \(-0.249308\pi\)
0.708642 + 0.705568i \(0.249308\pi\)
\(284\) −56.7031 −0.199659
\(285\) −35.3072 + 148.318i −0.123885 + 0.520415i
\(286\) 12.9971i 0.0454442i
\(287\) 2.27208 0.00791664
\(288\) 16.9706i 0.0589256i
\(289\) 202.087 0.699264
\(290\) −12.3611 2.94256i −0.0426245 0.0101468i
\(291\) 260.865i 0.896444i
\(292\) 224.621i 0.769250i
\(293\) 79.9606 0.272903 0.136452 0.990647i \(-0.456430\pi\)
0.136452 + 0.990647i \(0.456430\pi\)
\(294\) −112.147 −0.381451
\(295\) −20.9518 + 88.0144i −0.0710232 + 0.298354i
\(296\) 120.805i 0.408125i
\(297\) −1.98588 −0.00668648
\(298\) −252.127 −0.846065
\(299\) 551.887 + 36.2593i 1.84578 + 0.121268i
\(300\) −39.0203 + 77.3138i −0.130068 + 0.257713i
\(301\) −29.7126 −0.0987131
\(302\) 306.762i 1.01577i
\(303\) 183.312i 0.604991i
\(304\) 70.4195i 0.231643i
\(305\) 161.201 + 38.3739i 0.528527 + 0.125816i
\(306\) 94.0190i 0.307252i
\(307\) 245.949i 0.801137i 0.916267 + 0.400568i \(0.131187\pi\)
−0.916267 + 0.400568i \(0.868813\pi\)
\(308\) 1.37084i 0.00445077i
\(309\) 190.687i 0.617109i
\(310\) 277.538 + 66.0678i 0.895282 + 0.213122i
\(311\) −426.643 −1.37184 −0.685921 0.727676i \(-0.740601\pi\)
−0.685921 + 0.727676i \(0.740601\pi\)
\(312\) 117.805i 0.377580i
\(313\) 330.486 1.05587 0.527933 0.849286i \(-0.322967\pi\)
0.527933 + 0.849286i \(0.322967\pi\)
\(314\) 186.908i 0.595250i
\(315\) 6.22980 26.1701i 0.0197771 0.0830798i
\(316\) 124.153i 0.392890i
\(317\) 45.8757i 0.144718i 0.997379 + 0.0723591i \(0.0230528\pi\)
−0.997379 + 0.0723591i \(0.976947\pi\)
\(318\) −199.584 −0.627622
\(319\) 0.686774i 0.00215290i
\(320\) 9.26316 38.9126i 0.0289474 0.121602i
\(321\) 251.899i 0.784733i
\(322\) −58.2092 3.82437i −0.180774 0.0118769i
\(323\) 390.133i 1.20784i
\(324\) −18.0000 −0.0555556
\(325\) 270.868 536.691i 0.833440 1.65136i
\(326\) −139.018 −0.426435
\(327\) −188.525 −0.576530
\(328\) 3.58331i 0.0109247i
\(329\) 10.3130i 0.0313465i
\(330\) 4.55353 + 1.08397i 0.0137986 + 0.00328475i
\(331\) −528.078 −1.59540 −0.797701 0.603053i \(-0.793951\pi\)
−0.797701 + 0.603053i \(0.793951\pi\)
\(332\) 296.279 0.892407
\(333\) 128.133 0.384784
\(334\) −98.0507 −0.293565
\(335\) 135.283 568.295i 0.403829 1.69640i
\(336\) 12.4252i 0.0369798i
\(337\) −478.649 −1.42032 −0.710162 0.704039i \(-0.751378\pi\)
−0.710162 + 0.704039i \(0.751378\pi\)
\(338\) 578.767i 1.71233i
\(339\) 97.0806i 0.286373i
\(340\) −51.3190 + 215.581i −0.150938 + 0.634061i
\(341\) 15.4198i 0.0452193i
\(342\) 74.6912 0.218395
\(343\) −169.988 −0.495590
\(344\) 46.8600i 0.136221i
\(345\) −58.7315 + 190.330i −0.170236 + 0.551682i
\(346\) 477.926 1.38129
\(347\) 45.8278i 0.132069i −0.997817 0.0660344i \(-0.978965\pi\)
0.997817 0.0660344i \(-0.0210347\pi\)
\(348\) 6.22490i 0.0178877i
\(349\) 38.0051 0.108897 0.0544486 0.998517i \(-0.482660\pi\)
0.0544486 + 0.998517i \(0.482660\pi\)
\(350\) −28.5692 + 56.6063i −0.0816264 + 0.161732i
\(351\) 124.951 0.355986
\(352\) −2.16196 −0.00614192
\(353\) 332.010i 0.940540i −0.882523 0.470270i \(-0.844157\pi\)
0.882523 0.470270i \(-0.155843\pi\)
\(354\) 44.3230 0.125206
\(355\) −32.8281 + 137.904i −0.0924736 + 0.388463i
\(356\) 205.473i 0.577171i
\(357\) 68.8373i 0.192822i
\(358\) 191.414i 0.534676i
\(359\) 384.549i 1.07117i −0.844482 0.535584i \(-0.820091\pi\)
0.844482 0.535584i \(-0.179909\pi\)
\(360\) 41.2731 + 9.82506i 0.114647 + 0.0272918i
\(361\) 51.0681 0.141463
\(362\) 389.223 1.07520
\(363\) 209.325i 0.576653i
\(364\) 86.2525i 0.236957i
\(365\) −546.287 130.044i −1.49668 0.356284i
\(366\) 81.1787i 0.221800i
\(367\) −158.946 −0.433096 −0.216548 0.976272i \(-0.569480\pi\)
−0.216548 + 0.976272i \(0.569480\pi\)
\(368\) 6.03144 91.8021i 0.0163898 0.249462i
\(369\) −3.80067 −0.0102999
\(370\) −293.802 69.9397i −0.794061 0.189026i
\(371\) −146.128 −0.393876
\(372\) 139.764i 0.375711i
\(373\) −353.352 −0.947324 −0.473662 0.880707i \(-0.657068\pi\)
−0.473662 + 0.880707i \(0.657068\pi\)
\(374\) 11.9775 0.0320254
\(375\) 165.439 + 139.660i 0.441172 + 0.372425i
\(376\) −16.2647 −0.0432573
\(377\) 43.2115i 0.114619i
\(378\) −13.1789 −0.0348649
\(379\) 494.663i 1.30518i 0.757712 + 0.652589i \(0.226317\pi\)
−0.757712 + 0.652589i \(0.773683\pi\)
\(380\) −171.263 40.7692i −0.450692 0.107287i
\(381\) −116.408 −0.305533
\(382\) −61.3189 −0.160521
\(383\) −329.711 −0.860864 −0.430432 0.902623i \(-0.641639\pi\)
−0.430432 + 0.902623i \(0.641639\pi\)
\(384\) −19.5959 −0.0510310
\(385\) 3.33393 + 0.793642i 0.00865956 + 0.00206141i
\(386\) −58.6247 −0.151878
\(387\) 49.7025 0.128430
\(388\) −301.221 −0.776343
\(389\) 318.459i 0.818660i 0.912386 + 0.409330i \(0.134238\pi\)
−0.912386 + 0.409330i \(0.865762\pi\)
\(390\) −286.506 68.2028i −0.734632 0.174879i
\(391\) −33.4149 + 508.595i −0.0854601 + 1.30075i
\(392\) 129.496i 0.330346i
\(393\) 250.609i 0.637682i
\(394\) −294.451 −0.747337
\(395\) −301.946 71.8782i −0.764420 0.181970i
\(396\) 2.29310i 0.00579066i
\(397\) 68.2935i 0.172024i 0.996294 + 0.0860119i \(0.0274123\pi\)
−0.996294 + 0.0860119i \(0.972588\pi\)
\(398\) 382.535 0.961143
\(399\) 54.6862 0.137058
\(400\) −89.2742 45.0567i −0.223186 0.112642i
\(401\) 486.040i 1.21207i 0.795438 + 0.606035i \(0.207241\pi\)
−0.795438 + 0.606035i \(0.792759\pi\)
\(402\) −286.186 −0.711906
\(403\) 970.206i 2.40746i
\(404\) 211.671 0.523937
\(405\) −10.4211 + 43.7767i −0.0257310 + 0.108091i
\(406\) 4.55765i 0.0112257i
\(407\) 16.3234i 0.0401067i
\(408\) 108.564 0.266088
\(409\) −124.021 −0.303230 −0.151615 0.988440i \(-0.548447\pi\)
−0.151615 + 0.988440i \(0.548447\pi\)
\(410\) 8.71475 + 2.07455i 0.0212555 + 0.00505987i
\(411\) 114.702i 0.279080i
\(412\) −220.186 −0.534432
\(413\) 32.4517 0.0785754
\(414\) 97.3708 + 6.39731i 0.235195 + 0.0154524i
\(415\) 171.530 720.563i 0.413325 1.73630i
\(416\) 136.029 0.326994
\(417\) 100.928i 0.242033i
\(418\) 9.51525i 0.0227638i
\(419\) 628.400i 1.49976i 0.661573 + 0.749881i \(0.269889\pi\)
−0.661573 + 0.749881i \(0.730111\pi\)
\(420\) 30.2187 + 7.19355i 0.0719492 + 0.0171275i
\(421\) 258.480i 0.613966i 0.951715 + 0.306983i \(0.0993195\pi\)
−0.951715 + 0.306983i \(0.900681\pi\)
\(422\) 28.6828i 0.0679687i
\(423\) 17.2513i 0.0407833i
\(424\) 230.460i 0.543537i
\(425\) 494.590 + 249.620i 1.16374 + 0.587341i
\(426\) 69.4468 0.163021
\(427\) 59.4361i 0.139195i
\(428\) 290.868 0.679599
\(429\) 15.9181i 0.0371051i
\(430\) −113.965 27.1295i −0.265036 0.0630918i
\(431\) 360.875i 0.837298i 0.908148 + 0.418649i \(0.137496\pi\)
−0.908148 + 0.418649i \(0.862504\pi\)
\(432\) 20.7846i 0.0481125i
\(433\) −527.704 −1.21872 −0.609358 0.792896i \(-0.708573\pi\)
−0.609358 + 0.792896i \(0.708573\pi\)
\(434\) 102.330i 0.235784i
\(435\) 15.1392 + 3.60389i 0.0348028 + 0.00828481i
\(436\) 217.690i 0.499289i
\(437\) −404.041 26.5457i −0.924579 0.0607453i
\(438\) 275.103i 0.628090i
\(439\) 678.504 1.54557 0.772784 0.634669i \(-0.218864\pi\)
0.772784 + 0.634669i \(0.218864\pi\)
\(440\) −1.25166 + 5.25797i −0.00284468 + 0.0119499i
\(441\) 137.351 0.311453
\(442\) −753.620 −1.70502
\(443\) 296.200i 0.668624i 0.942462 + 0.334312i \(0.108504\pi\)
−0.942462 + 0.334312i \(0.891496\pi\)
\(444\) 147.955i 0.333232i
\(445\) 499.718 + 118.958i 1.12296 + 0.267321i
\(446\) 276.070 0.618991
\(447\) 308.792 0.690810
\(448\) −14.3474 −0.0320255
\(449\) 535.630 1.19294 0.596470 0.802635i \(-0.296569\pi\)
0.596470 + 0.802635i \(0.296569\pi\)
\(450\) 47.7899 94.6896i 0.106200 0.210421i
\(451\) 0.484185i 0.00107358i
\(452\) −112.099 −0.248007
\(453\) 375.705i 0.829371i
\(454\) 125.986i 0.277502i
\(455\) −209.770 49.9356i −0.461032 0.109749i
\(456\) 86.2460i 0.189136i
\(457\) 198.709 0.434813 0.217406 0.976081i \(-0.430240\pi\)
0.217406 + 0.976081i \(0.430240\pi\)
\(458\) −339.565 −0.741409
\(459\) 115.149i 0.250870i
\(460\) −219.774 67.8173i −0.477771 0.147429i
\(461\) −677.481 −1.46959 −0.734795 0.678290i \(-0.762722\pi\)
−0.734795 + 0.678290i \(0.762722\pi\)
\(462\) 1.67893i 0.00363404i
\(463\) 317.422i 0.685576i 0.939413 + 0.342788i \(0.111371\pi\)
−0.939413 + 0.342788i \(0.888629\pi\)
\(464\) −7.18790 −0.0154912
\(465\) −339.913 80.9162i −0.730995 0.174013i
\(466\) 518.954 1.11364
\(467\) 231.177 0.495025 0.247512 0.968885i \(-0.420387\pi\)
0.247512 + 0.968885i \(0.420387\pi\)
\(468\) 144.281i 0.308293i
\(469\) −209.535 −0.446770
\(470\) −9.41642 + 39.5565i −0.0200349 + 0.0841627i
\(471\) 228.915i 0.486019i
\(472\) 51.1797i 0.108432i
\(473\) 6.33183i 0.0133865i
\(474\) 152.056i 0.320793i
\(475\) −198.305 + 392.916i −0.417484 + 0.827191i
\(476\) 79.4865 0.166988
\(477\) 244.439 0.512451
\(478\) 441.886i 0.924447i
\(479\) 603.191i 1.25927i 0.776891 + 0.629636i \(0.216796\pi\)
−0.776891 + 0.629636i \(0.783204\pi\)
\(480\) −11.3450 + 47.6581i −0.0236354 + 0.0992876i
\(481\) 1027.06i 2.13527i
\(482\) −264.583 −0.548928
\(483\) 71.2914 + 4.68388i 0.147601 + 0.00969747i
\(484\) −241.708 −0.499396
\(485\) −174.391 + 732.582i −0.359570 + 1.51048i
\(486\) 22.0454 0.0453609
\(487\) 432.259i 0.887596i 0.896127 + 0.443798i \(0.146369\pi\)
−0.896127 + 0.443798i \(0.853631\pi\)
\(488\) 93.7371 0.192084
\(489\) 170.261 0.348183
\(490\) −314.939 74.9712i −0.642732 0.153002i
\(491\) −457.843 −0.932471 −0.466235 0.884661i \(-0.654390\pi\)
−0.466235 + 0.884661i \(0.654390\pi\)
\(492\) 4.38864i 0.00892000i
\(493\) 39.8218 0.0807745
\(494\) 598.695i 1.21193i
\(495\) −5.57692 1.32759i −0.0112665 0.00268199i
\(496\) 161.386 0.325375
\(497\) 50.8465 0.102307
\(498\) −362.866 −0.728647
\(499\) 232.828 0.466589 0.233294 0.972406i \(-0.425049\pi\)
0.233294 + 0.972406i \(0.425049\pi\)
\(500\) −161.265 + 191.033i −0.322530 + 0.382066i
\(501\) 120.087 0.239695
\(502\) 142.360 0.283586
\(503\) −874.235 −1.73804 −0.869021 0.494775i \(-0.835250\pi\)
−0.869021 + 0.494775i \(0.835250\pi\)
\(504\) 15.2177i 0.0301939i
\(505\) 122.546 514.792i 0.242666 1.01939i
\(506\) −0.814982 + 12.4045i −0.00161064 + 0.0245148i
\(507\) 708.842i 1.39811i
\(508\) 134.417i 0.264599i
\(509\) 670.805 1.31789 0.658944 0.752192i \(-0.271003\pi\)
0.658944 + 0.752192i \(0.271003\pi\)
\(510\) 62.8527 264.032i 0.123241 0.517709i
\(511\) 201.421i 0.394170i
\(512\) 22.6274i 0.0441942i
\(513\) −91.4776 −0.178319
\(514\) 61.0738 0.118821
\(515\) −127.476 + 535.501i −0.247526 + 1.03981i
\(516\) 57.3916i 0.111224i
\(517\) 2.19773 0.00425092
\(518\) 108.327i 0.209126i
\(519\) −585.338 −1.12782
\(520\) 78.7539 330.829i 0.151450 0.636210i
\(521\) 251.816i 0.483332i −0.970359 0.241666i \(-0.922306\pi\)
0.970359 0.241666i \(-0.0776939\pi\)
\(522\) 7.62392i 0.0146052i
\(523\) 755.642 1.44482 0.722411 0.691464i \(-0.243034\pi\)
0.722411 + 0.691464i \(0.243034\pi\)
\(524\) 289.378 0.552249
\(525\) 34.9900 69.3283i 0.0666477 0.132054i
\(526\) 211.505i 0.402102i
\(527\) −894.098 −1.69658
\(528\) 2.64785 0.00501486
\(529\) −524.453 69.2123i −0.991404 0.130836i
\(530\) −560.487 133.424i −1.05752 0.251743i
\(531\) −54.2843 −0.102230
\(532\) 63.1461i 0.118696i
\(533\) 30.4647i 0.0571571i
\(534\) 251.652i 0.471258i
\(535\) 168.398 707.404i 0.314762 1.32225i
\(536\) 330.460i 0.616529i
\(537\) 234.433i 0.436561i
\(538\) 10.6183i 0.0197367i
\(539\) 17.4977i 0.0324634i
\(540\) −50.5490 12.0332i −0.0936093 0.0222837i
\(541\) −422.567 −0.781085 −0.390543 0.920585i \(-0.627713\pi\)
−0.390543 + 0.920585i \(0.627713\pi\)
\(542\) 472.270i 0.871348i
\(543\) −476.699 −0.877899
\(544\) 125.359i 0.230439i
\(545\) −529.431 126.031i −0.971433 0.231250i
\(546\) 105.637i 0.193475i
\(547\) 962.341i 1.75931i −0.475615 0.879653i \(-0.657774\pi\)
0.475615 0.879653i \(-0.342226\pi\)
\(548\) −132.447 −0.241691
\(549\) 99.4232i 0.181099i
\(550\) 12.0629 + 6.08817i 0.0219326 + 0.0110694i
\(551\) 31.6355i 0.0574147i
\(552\) −7.38697 + 112.434i −0.0133822 + 0.203685i
\(553\) 111.330i 0.201320i
\(554\) 25.2807 0.0456329
\(555\) 359.833 + 85.6583i 0.648348 + 0.154339i
\(556\) −116.541 −0.209606
\(557\) −157.867 −0.283424 −0.141712 0.989908i \(-0.545261\pi\)
−0.141712 + 0.989908i \(0.545261\pi\)
\(558\) 171.176i 0.306767i
\(559\) 398.396i 0.712695i
\(560\) −8.30640 + 34.8935i −0.0148329 + 0.0623098i
\(561\) −14.6694 −0.0261486
\(562\) 531.131 0.945073
\(563\) 417.217 0.741060 0.370530 0.928820i \(-0.379176\pi\)
0.370530 + 0.928820i \(0.379176\pi\)
\(564\) 19.9201 0.0353194
\(565\) −64.8994 + 272.629i −0.114866 + 0.482530i
\(566\) 567.229i 1.00217i
\(567\) 16.1408 0.0284671
\(568\) 80.1903i 0.141180i
\(569\) 93.8235i 0.164892i −0.996596 0.0824460i \(-0.973727\pi\)
0.996596 0.0824460i \(-0.0262732\pi\)
\(570\) 209.754 + 49.9319i 0.367989 + 0.0875998i
\(571\) 781.206i 1.36814i 0.729418 + 0.684068i \(0.239791\pi\)
−0.729418 + 0.684068i \(0.760209\pi\)
\(572\) −18.3806 −0.0321339
\(573\) 75.1000 0.131065
\(574\) 3.21320i 0.00559791i
\(575\) −292.172 + 495.238i −0.508126 + 0.861283i
\(576\) 24.0000 0.0416667
\(577\) 877.034i 1.51999i 0.649929 + 0.759995i \(0.274799\pi\)
−0.649929 + 0.759995i \(0.725201\pi\)
\(578\) 285.795i 0.494454i
\(579\) 71.8003 0.124007
\(580\) −4.16141 + 17.4813i −0.00717485 + 0.0301401i
\(581\) −265.678 −0.457276
\(582\) 368.919 0.633882
\(583\) 31.1402i 0.0534138i
\(584\) −317.662 −0.543942
\(585\) 350.897 + 83.5311i 0.599824 + 0.142788i
\(586\) 113.081i 0.192972i
\(587\) 820.156i 1.39720i −0.715513 0.698600i \(-0.753807\pi\)
0.715513 0.698600i \(-0.246193\pi\)
\(588\) 158.599i 0.269726i
\(589\) 710.296i 1.20593i
\(590\) 124.471 + 29.6304i 0.210968 + 0.0502210i
\(591\) 360.627 0.610198
\(592\) −170.844 −0.288588
\(593\) 423.705i 0.714510i −0.934007 0.357255i \(-0.883713\pi\)
0.934007 0.357255i \(-0.116287\pi\)
\(594\) 2.80846i 0.00472805i
\(595\) 46.0185 193.314i 0.0773420 0.324898i
\(596\) 356.562i 0.598259i
\(597\) −468.508 −0.784770
\(598\) 51.2783 780.486i 0.0857497 1.30516i
\(599\) 874.974 1.46073 0.730363 0.683060i \(-0.239351\pi\)
0.730363 + 0.683060i \(0.239351\pi\)
\(600\) 109.338 + 55.1830i 0.182230 + 0.0919717i
\(601\) −644.991 −1.07320 −0.536598 0.843838i \(-0.680291\pi\)
−0.536598 + 0.843838i \(0.680291\pi\)
\(602\) 42.0200i 0.0698007i
\(603\) 350.505 0.581269
\(604\) −433.827 −0.718257
\(605\) −139.936 + 587.843i −0.231299 + 0.971642i
\(606\) −259.243 −0.427793
\(607\) 251.491i 0.414318i 0.978307 + 0.207159i \(0.0664217\pi\)
−0.978307 + 0.207159i \(0.933578\pi\)
\(608\) −99.5883 −0.163796
\(609\) 5.58195i 0.00916577i
\(610\) 54.2689 227.972i 0.0889653 0.373725i
\(611\) −138.280 −0.226318
\(612\) −132.963 −0.217260
\(613\) −986.481 −1.60927 −0.804634 0.593771i \(-0.797639\pi\)
−0.804634 + 0.593771i \(0.797639\pi\)
\(614\) 347.824 0.566489
\(615\) −10.6733 2.54079i −0.0173550 0.00413137i
\(616\) 1.93866 0.00314717
\(617\) 192.369 0.311782 0.155891 0.987774i \(-0.450175\pi\)
0.155891 + 0.987774i \(0.450175\pi\)
\(618\) 269.672 0.436362
\(619\) 864.558i 1.39670i −0.715756 0.698351i \(-0.753918\pi\)
0.715756 0.698351i \(-0.246082\pi\)
\(620\) 93.4340 392.497i 0.150700 0.633060i
\(621\) −119.254 7.83507i −0.192036 0.0126169i
\(622\) 603.364i 0.970039i
\(623\) 184.250i 0.295747i
\(624\) −166.601 −0.266989
\(625\) 371.236 + 502.801i 0.593978 + 0.804481i
\(626\) 467.377i 0.746609i
\(627\) 11.6538i 0.0185865i
\(628\) −264.328 −0.420905
\(629\) 946.496 1.50476
\(630\) −37.0101 8.81027i −0.0587463 0.0139846i
\(631\) 643.458i 1.01974i −0.860251 0.509871i \(-0.829693\pi\)
0.860251 0.509871i \(-0.170307\pi\)
\(632\) −175.579 −0.277815
\(633\) 35.1291i 0.0554962i
\(634\) 64.8780 0.102331
\(635\) −326.906 77.8201i −0.514813 0.122551i
\(636\) 282.254i 0.443796i
\(637\) 1100.95i 1.72834i
\(638\) 0.971245 0.00152233
\(639\) −85.0547 −0.133106
\(640\) −55.0308 13.1001i −0.0859856 0.0204689i
\(641\) 716.907i 1.11842i 0.829026 + 0.559210i \(0.188895\pi\)
−0.829026 + 0.559210i \(0.811105\pi\)
\(642\) −356.240 −0.554890
\(643\) 275.422 0.428339 0.214170 0.976796i \(-0.431295\pi\)
0.214170 + 0.976796i \(0.431295\pi\)
\(644\) −5.40847 + 82.3202i −0.00839825 + 0.127826i
\(645\) 139.579 + 33.2267i 0.216401 + 0.0515142i
\(646\) 551.731 0.854073
\(647\) 593.326i 0.917041i −0.888684 0.458521i \(-0.848380\pi\)
0.888684 0.458521i \(-0.151620\pi\)
\(648\) 25.4558i 0.0392837i
\(649\) 6.91553i 0.0106557i
\(650\) −758.995 383.065i −1.16768 0.589331i
\(651\) 125.329i 0.192517i
\(652\) 196.601i 0.301535i
\(653\) 376.904i 0.577188i −0.957452 0.288594i \(-0.906812\pi\)
0.957452 0.288594i \(-0.0931877\pi\)
\(654\) 266.615i 0.407668i
\(655\) 167.535 703.780i 0.255778 1.07447i
\(656\) 5.06756 0.00772494
\(657\) 336.932i 0.512833i
\(658\) 14.5848 0.0221654
\(659\) 821.196i 1.24612i 0.782172 + 0.623062i \(0.214112\pi\)
−0.782172 + 0.623062i \(0.785888\pi\)
\(660\) 1.53296 6.43967i 0.00232267 0.00975707i
\(661\) 1108.77i 1.67741i −0.544587 0.838705i \(-0.683313\pi\)
0.544587 0.838705i \(-0.316687\pi\)
\(662\) 746.816i 1.12812i
\(663\) 922.992 1.39214
\(664\) 419.002i 0.631027i
\(665\) 153.574 + 36.5583i 0.230938 + 0.0549749i
\(666\) 181.207i 0.272083i
\(667\) −2.70959 + 41.2415i −0.00406235 + 0.0618313i
\(668\) 138.665i 0.207582i
\(669\) −338.115 −0.505404
\(670\) −803.691 191.319i −1.19954 0.285550i
\(671\) −12.6660 −0.0188763
\(672\) 17.5719 0.0261487
\(673\) 45.4888i 0.0675911i 0.999429 + 0.0337955i \(0.0107595\pi\)
−0.999429 + 0.0337955i \(0.989240\pi\)
\(674\) 676.912i 1.00432i
\(675\) −58.5304 + 115.971i −0.0867117 + 0.171808i
\(676\) 818.500 1.21080
\(677\) 206.922 0.305645 0.152822 0.988254i \(-0.451164\pi\)
0.152822 + 0.988254i \(0.451164\pi\)
\(678\) 137.293 0.202497
\(679\) 270.109 0.397804
\(680\) 304.877 + 72.5761i 0.448349 + 0.106730i
\(681\) 154.301i 0.226580i
\(682\) −21.8069 −0.0319749
\(683\) 437.345i 0.640330i 0.947362 + 0.320165i \(0.103738\pi\)
−0.947362 + 0.320165i \(0.896262\pi\)
\(684\) 105.629i 0.154429i
\(685\) −76.6796 + 322.115i −0.111941 + 0.470241i
\(686\) 240.399i 0.350435i
\(687\) 415.881 0.605358
\(688\) −66.2701 −0.0963228
\(689\) 1959.33i 2.84373i
\(690\) 269.168 + 83.0589i 0.390098 + 0.120375i
\(691\) −552.016 −0.798866 −0.399433 0.916762i \(-0.630793\pi\)
−0.399433 + 0.916762i \(0.630793\pi\)
\(692\) 675.890i 0.976719i
\(693\) 2.05626i 0.00296718i
\(694\) −64.8104 −0.0933867
\(695\) −67.4712 + 283.433i −0.0970809 + 0.407817i
\(696\) 8.80334 0.0126485
\(697\) −28.0749 −0.0402797
\(698\) 53.7474i 0.0770020i
\(699\) −635.587 −0.909280
\(700\) 80.0534 + 40.4030i 0.114362 + 0.0577186i
\(701\) 645.651i 0.921042i −0.887649 0.460521i \(-0.847663\pi\)
0.887649 0.460521i \(-0.152337\pi\)
\(702\) 176.707i 0.251720i
\(703\) 751.922i 1.06959i
\(704\) 3.05747i 0.00434300i
\(705\) 11.5327 48.4466i 0.0163585 0.0687186i
\(706\) −469.534 −0.665062
\(707\) −189.808 −0.268470
\(708\) 62.6821i 0.0885341i
\(709\) 552.330i 0.779027i 0.921021 + 0.389513i \(0.127357\pi\)
−0.921021 + 0.389513i \(0.872643\pi\)
\(710\) 195.026 + 46.4260i 0.274685 + 0.0653887i
\(711\) 186.230i 0.261927i
\(712\) 290.582 0.408121
\(713\) 60.8369 925.973i 0.0853252 1.29870i
\(714\) −97.3506 −0.136345
\(715\) −10.6414 + 44.7024i −0.0148831 + 0.0625208i
\(716\) 270.700 0.378073
\(717\) 541.197i 0.754808i
\(718\) −543.835 −0.757430
\(719\) 882.221 1.22701 0.613505 0.789691i \(-0.289759\pi\)
0.613505 + 0.789691i \(0.289759\pi\)
\(720\) 13.8947 58.3690i 0.0192982 0.0810680i
\(721\) 197.444 0.273847
\(722\) 72.2213i 0.100029i
\(723\) 324.047 0.448198
\(724\) 550.445i 0.760283i
\(725\) 40.1059 + 20.2415i 0.0553185 + 0.0279192i
\(726\) 296.030 0.407755
\(727\) 574.892 0.790773 0.395387 0.918515i \(-0.370611\pi\)
0.395387 + 0.918515i \(0.370611\pi\)
\(728\) −121.979 −0.167554
\(729\) −27.0000 −0.0370370
\(730\) −183.910 + 772.567i −0.251931 + 1.05831i
\(731\) 367.144 0.502249
\(732\) −114.804 −0.156836
\(733\) 563.848 0.769233 0.384617 0.923076i \(-0.374334\pi\)
0.384617 + 0.923076i \(0.374334\pi\)
\(734\) 224.784i 0.306245i
\(735\) 385.719 + 91.8205i 0.524788 + 0.124926i
\(736\) −129.828 8.52974i −0.176396 0.0115893i
\(737\) 44.6525i 0.0605868i
\(738\) 5.37496i 0.00728315i
\(739\) 1029.01 1.39244 0.696218 0.717831i \(-0.254865\pi\)
0.696218 + 0.717831i \(0.254865\pi\)
\(740\) −98.9096 + 415.499i −0.133662 + 0.561486i
\(741\) 733.249i 0.989540i
\(742\) 206.656i 0.278512i
\(743\) −71.4526 −0.0961678 −0.0480839 0.998843i \(-0.515311\pi\)
−0.0480839 + 0.998843i \(0.515311\pi\)
\(744\) −197.657 −0.265668
\(745\) 867.173 + 206.431i 1.16399 + 0.277088i
\(746\) 499.715i 0.669860i
\(747\) 444.419 0.594938
\(748\) 16.9388i 0.0226454i
\(749\) −260.826 −0.348232
\(750\) 197.508 233.967i 0.263344 0.311956i
\(751\) 579.354i 0.771444i 0.922615 + 0.385722i \(0.126048\pi\)
−0.922615 + 0.385722i \(0.873952\pi\)
\(752\) 23.0018i 0.0305875i
\(753\) −174.355 −0.231547
\(754\) −61.1103 −0.0810482
\(755\) −251.163 + 1055.08i −0.332666 + 1.39746i
\(756\) 18.6378i 0.0246532i
\(757\) −1033.03 −1.36464 −0.682321 0.731052i \(-0.739030\pi\)
−0.682321 + 0.731052i \(0.739030\pi\)
\(758\) 699.559 0.922900
\(759\) 0.998145 15.1924i 0.00131508 0.0200163i
\(760\) −57.6564 + 242.203i −0.0758636 + 0.318688i
\(761\) −714.171 −0.938463 −0.469232 0.883075i \(-0.655469\pi\)
−0.469232 + 0.883075i \(0.655469\pi\)
\(762\) 164.626i 0.216045i
\(763\) 195.206i 0.255840i
\(764\) 86.7180i 0.113505i
\(765\) −76.9785 + 323.371i −0.100626 + 0.422708i
\(766\) 466.282i 0.608723i
\(767\) 435.122i 0.567304i
\(768\) 27.7128i 0.0360844i
\(769\) 129.899i 0.168919i 0.996427 + 0.0844595i \(0.0269164\pi\)
−0.996427 + 0.0844595i \(0.973084\pi\)
\(770\) 1.12238 4.71489i 0.00145764 0.00612323i
\(771\) −74.7998 −0.0970166
\(772\) 82.9079i 0.107394i
\(773\) −946.778 −1.22481 −0.612405 0.790544i \(-0.709798\pi\)
−0.612405 + 0.790544i \(0.709798\pi\)
\(774\) 70.2900i 0.0908140i
\(775\) −900.476 454.471i −1.16190 0.586414i
\(776\) 425.991i 0.548958i
\(777\) 132.673i 0.170751i
\(778\) 450.369 0.578880
\(779\) 22.3035i 0.0286309i
\(780\) −96.4534 + 405.181i −0.123658 + 0.519463i
\(781\) 10.8355i 0.0138739i
\(782\) 719.262 + 47.2558i 0.919772 + 0.0604294i
\(783\) 9.33735i 0.0119251i
\(784\) −183.134 −0.233590
\(785\) −153.032 + 642.857i −0.194945 + 0.818926i
\(786\) −354.415 −0.450909
\(787\) 1533.79 1.94890 0.974450 0.224603i \(-0.0721084\pi\)
0.974450 + 0.224603i \(0.0721084\pi\)