Properties

Label 690.3.f
Level $690$
Weight $3$
Character orbit 690.f
Rep. character $\chi_{690}(229,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $1$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 690.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(690, [\chi])\).

Total New Old
Modular forms 296 48 248
Cusp forms 280 48 232
Eisenstein series 16 0 16

Trace form

\( 48q - 96q^{4} - 144q^{9} + O(q^{10}) \) \( 48q - 96q^{4} - 144q^{9} + 192q^{16} + 96q^{25} + 64q^{26} - 152q^{29} - 8q^{31} + 56q^{35} + 288q^{36} - 48q^{39} + 40q^{41} - 160q^{46} + 424q^{49} + 96q^{50} + 32q^{55} + 360q^{59} - 384q^{64} + 192q^{69} - 496q^{70} - 152q^{71} + 144q^{75} + 432q^{81} - 136q^{85} + 256q^{94} + 496q^{95} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(690, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
690.3.f.a \(48\) \(18.801\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{3}^{\mathrm{old}}(690, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(690, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 2}\)