Properties

Label 690.3.c
Level $690$
Weight $3$
Character orbit 690.c
Rep. character $\chi_{690}(91,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $1$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 690.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(690, [\chi])\).

Total New Old
Modular forms 296 32 264
Cusp forms 280 32 248
Eisenstein series 16 0 16

Trace form

\( 32q + 64q^{4} + 96q^{9} + O(q^{10}) \) \( 32q + 64q^{4} + 96q^{9} - 48q^{13} + 128q^{16} - 80q^{23} - 160q^{25} + 120q^{29} + 248q^{31} - 120q^{35} + 192q^{36} - 48q^{39} + 72q^{41} + 160q^{46} + 400q^{47} - 344q^{49} - 96q^{52} - 256q^{58} + 120q^{59} + 160q^{62} + 256q^{64} + 192q^{69} + 104q^{71} + 16q^{73} + 240q^{77} + 192q^{78} + 288q^{81} + 64q^{82} - 120q^{85} + 144q^{87} - 160q^{92} - 192q^{93} + 96q^{94} - 160q^{95} + 64q^{98} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(690, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
690.3.c.a \(32\) \(18.801\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{3}^{\mathrm{old}}(690, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(690, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(138, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 2}\)