Properties

Label 690.3.b
Level $690$
Weight $3$
Character orbit 690.b
Rep. character $\chi_{690}(599,\cdot)$
Character field $\Q$
Dimension $88$
Newform subspaces $1$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 690.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(690, [\chi])\).

Total New Old
Modular forms 296 88 208
Cusp forms 280 88 192
Eisenstein series 16 0 16

Trace form

\( 88q + 176q^{4} + 8q^{9} + O(q^{10}) \) \( 88q + 176q^{4} + 8q^{9} + 32q^{10} - 12q^{15} + 352q^{16} - 16q^{19} - 176q^{21} + 72q^{25} - 72q^{30} + 32q^{31} + 160q^{34} + 16q^{36} + 144q^{39} + 64q^{40} + 92q^{45} - 360q^{49} + 48q^{51} - 144q^{54} + 16q^{55} - 24q^{60} + 208q^{61} + 704q^{64} + 512q^{66} + 304q^{70} + 536q^{75} - 32q^{76} + 448q^{79} - 24q^{81} - 352q^{84} - 96q^{85} + 32q^{90} - 64q^{91} + 160q^{94} + 296q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(690, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
690.3.b.a \(88\) \(18.801\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{3}^{\mathrm{old}}(690, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(690, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(345, [\chi])\)\(^{\oplus 2}\)