Properties

Label 690.2.w.b.7.6
Level $690$
Weight $2$
Character 690.7
Analytic conductor $5.510$
Analytic rank $0$
Dimension $240$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.w (of order \(44\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(12\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 7.6
Character \(\chi\) \(=\) 690.7
Dual form 690.2.w.b.493.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.997452 + 0.0713392i) q^{2} +(-0.212565 + 0.977147i) q^{3} +(0.989821 - 0.142315i) q^{4} +(1.98312 + 1.03307i) q^{5} +(0.142315 - 0.989821i) q^{6} +(-0.653533 + 1.19686i) q^{7} +(-0.977147 + 0.212565i) q^{8} +(-0.909632 - 0.415415i) q^{9} +O(q^{10})\) \(q+(-0.997452 + 0.0713392i) q^{2} +(-0.212565 + 0.977147i) q^{3} +(0.989821 - 0.142315i) q^{4} +(1.98312 + 1.03307i) q^{5} +(0.142315 - 0.989821i) q^{6} +(-0.653533 + 1.19686i) q^{7} +(-0.977147 + 0.212565i) q^{8} +(-0.909632 - 0.415415i) q^{9} +(-2.05177 - 0.888964i) q^{10} +(-1.60153 + 1.38774i) q^{11} +(-0.0713392 + 0.997452i) q^{12} +(-4.94879 + 2.70224i) q^{13} +(0.566485 - 1.24043i) q^{14} +(-1.43100 + 1.71821i) q^{15} +(0.959493 - 0.281733i) q^{16} +(-1.26500 - 1.68984i) q^{17} +(0.936950 + 0.349464i) q^{18} +(0.299333 + 2.08191i) q^{19} +(2.10996 + 0.740327i) q^{20} +(-1.03059 - 0.893008i) q^{21} +(1.49845 - 1.49845i) q^{22} +(-4.28351 - 2.15673i) q^{23} -1.00000i q^{24} +(2.86553 + 4.09740i) q^{25} +(4.74340 - 3.04840i) q^{26} +(0.599278 - 0.800541i) q^{27} +(-0.476551 + 1.27768i) q^{28} +(5.11643 + 0.735631i) q^{29} +(1.30478 - 1.81591i) q^{30} +(-0.875710 - 0.562784i) q^{31} +(-0.936950 + 0.349464i) q^{32} +(-1.01559 - 1.85992i) q^{33} +(1.38233 + 1.59529i) q^{34} +(-2.53247 + 1.69837i) q^{35} +(-0.959493 - 0.281733i) q^{36} +(3.05803 + 8.19889i) q^{37} +(-0.447092 - 2.05525i) q^{38} +(-1.58855 - 5.41009i) q^{39} +(-2.15739 - 0.587919i) q^{40} +(-3.31299 - 7.25445i) q^{41} +(1.09167 + 0.817212i) q^{42} +(-6.00468 - 1.30624i) q^{43} +(-1.38774 + 1.60153i) q^{44} +(-1.37476 - 1.76353i) q^{45} +(4.42646 + 1.84566i) q^{46} +(-1.39772 - 1.39772i) q^{47} +(0.0713392 + 0.997452i) q^{48} +(2.77913 + 4.32440i) q^{49} +(-3.15054 - 3.88254i) q^{50} +(1.92012 - 0.876889i) q^{51} +(-4.51385 + 3.37902i) q^{52} +(-2.68667 - 1.46703i) q^{53} +(-0.540641 + 0.841254i) q^{54} +(-4.60966 + 1.09755i) q^{55} +(0.384188 - 1.30842i) q^{56} +(-2.09796 - 0.150049i) q^{57} +(-5.15587 - 0.368755i) q^{58} +(-0.317333 + 1.08074i) q^{59} +(-1.17191 + 1.90437i) q^{60} +(0.435960 - 0.678367i) q^{61} +(0.913627 + 0.498878i) q^{62} +(1.09167 - 0.817212i) q^{63} +(0.909632 - 0.415415i) q^{64} +(-12.6056 + 0.246428i) q^{65} +(1.14569 + 1.78273i) q^{66} +(1.14642 + 16.0291i) q^{67} +(-1.49261 - 1.49261i) q^{68} +(3.01797 - 3.72718i) q^{69} +(2.40486 - 1.87470i) q^{70} +(-7.09421 + 8.18716i) q^{71} +(0.977147 + 0.212565i) q^{72} +(0.494176 + 0.369936i) q^{73} +(-3.63514 - 7.95985i) q^{74} +(-4.61288 + 1.92908i) q^{75} +(0.592572 + 2.01812i) q^{76} +(-0.614267 - 2.82374i) q^{77} +(1.97045 + 5.28298i) q^{78} +(-13.0887 - 3.84319i) q^{79} +(2.19384 + 0.432514i) q^{80} +(0.654861 + 0.755750i) q^{81} +(3.82208 + 6.99962i) q^{82} +(-1.39625 + 0.520776i) q^{83} +(-1.14718 - 0.737251i) q^{84} +(-0.762922 - 4.65799i) q^{85} +(6.08257 + 0.874542i) q^{86} +(-1.80640 + 4.84313i) q^{87} +(1.26995 - 1.69645i) q^{88} +(14.7728 - 9.49392i) q^{89} +(1.49706 + 1.66096i) q^{90} -7.68899i q^{91} +(-4.54685 - 1.52517i) q^{92} +(0.736068 - 0.736068i) q^{93} +(1.49388 + 1.29445i) q^{94} +(-1.55714 + 4.43790i) q^{95} +(-0.142315 - 0.989821i) q^{96} +(10.5759 + 3.94462i) q^{97} +(-3.08054 - 4.11513i) q^{98} +(2.03329 - 0.597029i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q + 24q^{6} + O(q^{10}) \) \( 240q + 24q^{6} - 44q^{10} + 24q^{16} - 44q^{21} + 96q^{23} + 16q^{25} + 16q^{26} + 44q^{28} - 16q^{31} + 44q^{33} + 16q^{35} - 24q^{36} + 44q^{37} - 88q^{43} + 8q^{46} + 96q^{47} - 24q^{50} - 24q^{55} + 44q^{57} - 16q^{58} + 88q^{61} + 56q^{62} - 88q^{65} + 132q^{67} - 56q^{70} + 16q^{71} + 48q^{73} + 24q^{81} - 24q^{82} + 44q^{85} - 16q^{87} + 44q^{88} - 124q^{92} + 32q^{93} + 20q^{95} - 24q^{96} - 56q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{19}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.997452 + 0.0713392i −0.705305 + 0.0504444i
\(3\) −0.212565 + 0.977147i −0.122725 + 0.564156i
\(4\) 0.989821 0.142315i 0.494911 0.0711574i
\(5\) 1.98312 + 1.03307i 0.886878 + 0.462003i
\(6\) 0.142315 0.989821i 0.0580998 0.404093i
\(7\) −0.653533 + 1.19686i −0.247012 + 0.452369i −0.971540 0.236877i \(-0.923876\pi\)
0.724527 + 0.689246i \(0.242058\pi\)
\(8\) −0.977147 + 0.212565i −0.345474 + 0.0751532i
\(9\) −0.909632 0.415415i −0.303211 0.138472i
\(10\) −2.05177 0.888964i −0.648825 0.281115i
\(11\) −1.60153 + 1.38774i −0.482881 + 0.418418i −0.861984 0.506936i \(-0.830778\pi\)
0.379103 + 0.925354i \(0.376233\pi\)
\(12\) −0.0713392 + 0.997452i −0.0205938 + 0.287940i
\(13\) −4.94879 + 2.70224i −1.37255 + 0.749467i −0.985028 0.172395i \(-0.944849\pi\)
−0.387519 + 0.921862i \(0.626668\pi\)
\(14\) 0.566485 1.24043i 0.151400 0.331519i
\(15\) −1.43100 + 1.71821i −0.369484 + 0.443639i
\(16\) 0.959493 0.281733i 0.239873 0.0704331i
\(17\) −1.26500 1.68984i −0.306808 0.409847i 0.620465 0.784234i \(-0.286944\pi\)
−0.927272 + 0.374387i \(0.877853\pi\)
\(18\) 0.936950 + 0.349464i 0.220841 + 0.0823695i
\(19\) 0.299333 + 2.08191i 0.0686717 + 0.477622i 0.994917 + 0.100700i \(0.0321083\pi\)
−0.926245 + 0.376922i \(0.876983\pi\)
\(20\) 2.10996 + 0.740327i 0.471801 + 0.165542i
\(21\) −1.03059 0.893008i −0.224892 0.194870i
\(22\) 1.49845 1.49845i 0.319471 0.319471i
\(23\) −4.28351 2.15673i −0.893175 0.449710i
\(24\) 1.00000i 0.204124i
\(25\) 2.86553 + 4.09740i 0.573107 + 0.819481i
\(26\) 4.74340 3.04840i 0.930258 0.597840i
\(27\) 0.599278 0.800541i 0.115331 0.154064i
\(28\) −0.476551 + 1.27768i −0.0900596 + 0.241459i
\(29\) 5.11643 + 0.735631i 0.950097 + 0.136603i 0.599902 0.800073i \(-0.295206\pi\)
0.350195 + 0.936677i \(0.386115\pi\)
\(30\) 1.30478 1.81591i 0.238220 0.331539i
\(31\) −0.875710 0.562784i −0.157282 0.101079i 0.459632 0.888109i \(-0.347981\pi\)
−0.616914 + 0.787030i \(0.711618\pi\)
\(32\) −0.936950 + 0.349464i −0.165631 + 0.0617771i
\(33\) −1.01559 1.85992i −0.176792 0.323770i
\(34\) 1.38233 + 1.59529i 0.237067 + 0.273590i
\(35\) −2.53247 + 1.69837i −0.428066 + 0.287076i
\(36\) −0.959493 0.281733i −0.159915 0.0469554i
\(37\) 3.05803 + 8.19889i 0.502737 + 1.34789i 0.902270 + 0.431171i \(0.141899\pi\)
−0.399533 + 0.916719i \(0.630828\pi\)
\(38\) −0.447092 2.05525i −0.0725278 0.333405i
\(39\) −1.58855 5.41009i −0.254371 0.866308i
\(40\) −2.15739 0.587919i −0.341114 0.0929581i
\(41\) −3.31299 7.25445i −0.517403 1.13295i −0.970414 0.241449i \(-0.922377\pi\)
0.453011 0.891505i \(-0.350350\pi\)
\(42\) 1.09167 + 0.817212i 0.168448 + 0.126098i
\(43\) −6.00468 1.30624i −0.915706 0.199200i −0.270066 0.962842i \(-0.587046\pi\)
−0.645640 + 0.763642i \(0.723409\pi\)
\(44\) −1.38774 + 1.60153i −0.209209 + 0.241440i
\(45\) −1.37476 1.76353i −0.204937 0.262892i
\(46\) 4.42646 + 1.84566i 0.652646 + 0.272127i
\(47\) −1.39772 1.39772i −0.203879 0.203879i 0.597781 0.801660i \(-0.296049\pi\)
−0.801660 + 0.597781i \(0.796049\pi\)
\(48\) 0.0713392 + 0.997452i 0.0102969 + 0.143970i
\(49\) 2.77913 + 4.32440i 0.397018 + 0.617772i
\(50\) −3.15054 3.88254i −0.445553 0.549074i
\(51\) 1.92012 0.876889i 0.268870 0.122789i
\(52\) −4.51385 + 3.37902i −0.625958 + 0.468586i
\(53\) −2.68667 1.46703i −0.369042 0.201512i 0.284017 0.958819i \(-0.408333\pi\)
−0.653059 + 0.757307i \(0.726515\pi\)
\(54\) −0.540641 + 0.841254i −0.0735719 + 0.114480i
\(55\) −4.60966 + 1.09755i −0.621567 + 0.147994i
\(56\) 0.384188 1.30842i 0.0513392 0.174845i
\(57\) −2.09796 0.150049i −0.277881 0.0198744i
\(58\) −5.15587 0.368755i −0.676999 0.0484199i
\(59\) −0.317333 + 1.08074i −0.0413132 + 0.140700i −0.977567 0.210624i \(-0.932450\pi\)
0.936254 + 0.351324i \(0.114269\pi\)
\(60\) −1.17191 + 1.90437i −0.151293 + 0.245853i
\(61\) 0.435960 0.678367i 0.0558189 0.0868559i −0.812222 0.583348i \(-0.801742\pi\)
0.868041 + 0.496492i \(0.165379\pi\)
\(62\) 0.913627 + 0.498878i 0.116031 + 0.0633576i
\(63\) 1.09167 0.817212i 0.137537 0.102959i
\(64\) 0.909632 0.415415i 0.113704 0.0519269i
\(65\) −12.6056 + 0.246428i −1.56354 + 0.0305657i
\(66\) 1.14569 + 1.78273i 0.141025 + 0.219439i
\(67\) 1.14642 + 16.0291i 0.140058 + 1.95826i 0.260322 + 0.965522i \(0.416171\pi\)
−0.120265 + 0.992742i \(0.538374\pi\)
\(68\) −1.49261 1.49261i −0.181006 0.181006i
\(69\) 3.01797 3.72718i 0.363321 0.448699i
\(70\) 2.40486 1.87470i 0.287436 0.224070i
\(71\) −7.09421 + 8.18716i −0.841928 + 0.971637i −0.999875 0.0158106i \(-0.994967\pi\)
0.157947 + 0.987448i \(0.449513\pi\)
\(72\) 0.977147 + 0.212565i 0.115158 + 0.0250511i
\(73\) 0.494176 + 0.369936i 0.0578389 + 0.0432977i 0.627806 0.778370i \(-0.283953\pi\)
−0.569967 + 0.821668i \(0.693044\pi\)
\(74\) −3.63514 7.95985i −0.422576 0.925313i
\(75\) −4.61288 + 1.92908i −0.532649 + 0.222751i
\(76\) 0.592572 + 2.01812i 0.0679727 + 0.231494i
\(77\) −0.614267 2.82374i −0.0700022 0.321795i
\(78\) 1.97045 + 5.28298i 0.223110 + 0.598180i
\(79\) −13.0887 3.84319i −1.47259 0.432392i −0.555652 0.831415i \(-0.687531\pi\)
−0.916941 + 0.399023i \(0.869349\pi\)
\(80\) 2.19384 + 0.432514i 0.245279 + 0.0483565i
\(81\) 0.654861 + 0.755750i 0.0727623 + 0.0839722i
\(82\) 3.82208 + 6.99962i 0.422078 + 0.772978i
\(83\) −1.39625 + 0.520776i −0.153259 + 0.0571626i −0.424923 0.905230i \(-0.639699\pi\)
0.271664 + 0.962392i \(0.412426\pi\)
\(84\) −1.14718 0.737251i −0.125168 0.0804407i
\(85\) −0.762922 4.65799i −0.0827505 0.505230i
\(86\) 6.08257 + 0.874542i 0.655900 + 0.0943042i
\(87\) −1.80640 + 4.84313i −0.193666 + 0.519238i
\(88\) 1.26995 1.69645i 0.135377 0.180843i
\(89\) 14.7728 9.49392i 1.56592 1.00635i 0.585207 0.810884i \(-0.301013\pi\)
0.980710 0.195470i \(-0.0626233\pi\)
\(90\) 1.49706 + 1.66096i 0.157804 + 0.175081i
\(91\) 7.68899i 0.806025i
\(92\) −4.54685 1.52517i −0.474042 0.159010i
\(93\) 0.736068 0.736068i 0.0763267 0.0763267i
\(94\) 1.49388 + 1.29445i 0.154082 + 0.133512i
\(95\) −1.55714 + 4.43790i −0.159759 + 0.455319i
\(96\) −0.142315 0.989821i −0.0145249 0.101023i
\(97\) 10.5759 + 3.94462i 1.07382 + 0.400516i 0.823307 0.567597i \(-0.192127\pi\)
0.250517 + 0.968112i \(0.419399\pi\)
\(98\) −3.08054 4.11513i −0.311182 0.415690i
\(99\) 2.03329 0.597029i 0.204354 0.0600037i
\(100\) 3.41949 + 3.64789i 0.341949 + 0.364789i
\(101\) −2.33578 + 5.11464i −0.232418 + 0.508925i −0.989524 0.144367i \(-0.953885\pi\)
0.757106 + 0.653292i \(0.226613\pi\)
\(102\) −1.85267 + 1.01163i −0.183442 + 0.100167i
\(103\) −1.15802 + 16.1912i −0.114103 + 1.59537i 0.541788 + 0.840515i \(0.317748\pi\)
−0.655891 + 0.754855i \(0.727707\pi\)
\(104\) 4.26129 3.69243i 0.417854 0.362072i
\(105\) −1.12124 2.83561i −0.109422 0.276727i
\(106\) 2.78448 + 1.27163i 0.270453 + 0.123512i
\(107\) −0.888161 + 0.193208i −0.0858617 + 0.0186781i −0.255291 0.966864i \(-0.582171\pi\)
0.169429 + 0.985542i \(0.445808\pi\)
\(108\) 0.479249 0.877679i 0.0461158 0.0844547i
\(109\) 2.27156 15.7991i 0.217576 1.51328i −0.529369 0.848392i \(-0.677571\pi\)
0.746945 0.664886i \(-0.231520\pi\)
\(110\) 4.51962 1.42361i 0.430929 0.135736i
\(111\) −8.66155 + 1.24534i −0.822118 + 0.118203i
\(112\) −0.289867 + 1.33250i −0.0273899 + 0.125909i
\(113\) −0.974393 + 0.0696900i −0.0916632 + 0.00655588i −0.117095 0.993121i \(-0.537358\pi\)
0.0254322 + 0.999677i \(0.491904\pi\)
\(114\) 2.10331 0.196993
\(115\) −6.26667 8.70223i −0.584370 0.811487i
\(116\) 5.16904 0.479934
\(117\) 5.62413 0.402245i 0.519951 0.0371876i
\(118\) 0.239425 1.10062i 0.0220409 0.101320i
\(119\) 2.84922 0.409656i 0.261187 0.0375531i
\(120\) 1.03307 1.98312i 0.0943060 0.181033i
\(121\) −0.926366 + 6.44302i −0.0842151 + 0.585729i
\(122\) −0.386455 + 0.707739i −0.0349880 + 0.0640757i
\(123\) 7.79289 1.69524i 0.702661 0.152855i
\(124\) −0.946889 0.432430i −0.0850331 0.0388333i
\(125\) 1.44979 + 11.0859i 0.129673 + 0.991557i
\(126\) −1.03059 + 0.893008i −0.0918119 + 0.0795555i
\(127\) 0.944260 13.2025i 0.0837895 1.17153i −0.765440 0.643507i \(-0.777479\pi\)
0.849230 0.528023i \(-0.177067\pi\)
\(128\) −0.877679 + 0.479249i −0.0775766 + 0.0423600i
\(129\) 2.55277 5.58980i 0.224759 0.492154i
\(130\) 12.5559 1.14508i 1.10123 0.100430i
\(131\) 11.4494 3.36186i 1.00034 0.293727i 0.259745 0.965677i \(-0.416361\pi\)
0.740596 + 0.671950i \(0.234543\pi\)
\(132\) −1.26995 1.69645i −0.110535 0.147657i
\(133\) −2.68737 1.00234i −0.233024 0.0869136i
\(134\) −2.28700 15.9065i −0.197567 1.37411i
\(135\) 2.01545 0.968474i 0.173463 0.0833530i
\(136\) 1.59529 + 1.38233i 0.136795 + 0.118534i
\(137\) 3.33262 3.33262i 0.284725 0.284725i −0.550265 0.834990i \(-0.685473\pi\)
0.834990 + 0.550265i \(0.185473\pi\)
\(138\) −2.74439 + 3.93298i −0.233618 + 0.334797i
\(139\) 18.7352i 1.58910i 0.607202 + 0.794548i \(0.292292\pi\)
−0.607202 + 0.794548i \(0.707708\pi\)
\(140\) −2.26499 + 2.04149i −0.191427 + 0.172537i
\(141\) 1.66289 1.06867i 0.140041 0.0899986i
\(142\) 6.49207 8.67239i 0.544803 0.727771i
\(143\) 4.17565 11.1953i 0.349185 0.936202i
\(144\) −0.989821 0.142315i −0.0824851 0.0118596i
\(145\) 9.38654 + 6.74447i 0.779509 + 0.560098i
\(146\) −0.519308 0.333739i −0.0429782 0.0276204i
\(147\) −4.81632 + 1.79640i −0.397244 + 0.148164i
\(148\) 4.19373 + 7.68024i 0.344722 + 0.631312i
\(149\) 2.61159 + 3.01394i 0.213950 + 0.246912i 0.852573 0.522608i \(-0.175041\pi\)
−0.638623 + 0.769520i \(0.720496\pi\)
\(150\) 4.46351 2.25324i 0.364444 0.183977i
\(151\) 23.1009 + 6.78303i 1.87992 + 0.551995i 0.996517 + 0.0833858i \(0.0265734\pi\)
0.883405 + 0.468609i \(0.155245\pi\)
\(152\) −0.735033 1.97070i −0.0596191 0.159845i
\(153\) 0.448699 + 2.06263i 0.0362751 + 0.166754i
\(154\) 0.814145 + 2.77272i 0.0656057 + 0.223432i
\(155\) −1.15524 2.02074i −0.0927913 0.162310i
\(156\) −2.34231 5.12895i −0.187535 0.410645i
\(157\) 4.62531 + 3.46246i 0.369140 + 0.276334i 0.767702 0.640807i \(-0.221400\pi\)
−0.398563 + 0.917141i \(0.630491\pi\)
\(158\) 13.3295 + 2.89966i 1.06044 + 0.230684i
\(159\) 2.00460 2.31343i 0.158975 0.183467i
\(160\) −2.21911 0.274905i −0.175436 0.0217332i
\(161\) 5.38072 3.71726i 0.424060 0.292961i
\(162\) −0.707107 0.707107i −0.0555556 0.0555556i
\(163\) −0.731963 10.2342i −0.0573317 0.801602i −0.942049 0.335475i \(-0.891103\pi\)
0.884717 0.466128i \(-0.154351\pi\)
\(164\) −4.31169 6.70912i −0.336686 0.523894i
\(165\) −0.0926160 4.73762i −0.00721014 0.368823i
\(166\) 1.35554 0.619057i 0.105211 0.0480481i
\(167\) 0.805932 0.603313i 0.0623649 0.0466858i −0.567640 0.823277i \(-0.692144\pi\)
0.630005 + 0.776591i \(0.283053\pi\)
\(168\) 1.19686 + 0.653533i 0.0923395 + 0.0504212i
\(169\) 10.1600 15.8093i 0.781542 1.21610i
\(170\) 1.09328 + 4.59170i 0.0838504 + 0.352167i
\(171\) 0.592572 2.01812i 0.0453151 0.154329i
\(172\) −6.12946 0.438388i −0.467367 0.0334268i
\(173\) 12.8275 + 0.917444i 0.975260 + 0.0697519i 0.549863 0.835255i \(-0.314680\pi\)
0.425397 + 0.905007i \(0.360135\pi\)
\(174\) 1.45629 4.95966i 0.110401 0.375991i
\(175\) −6.77673 + 0.751843i −0.512272 + 0.0568340i
\(176\) −1.14569 + 1.78273i −0.0863596 + 0.134378i
\(177\) −0.988584 0.539808i −0.0743065 0.0405744i
\(178\) −14.0579 + 10.5236i −1.05368 + 0.788778i
\(179\) 6.56520 2.99823i 0.490706 0.224098i −0.154665 0.987967i \(-0.549430\pi\)
0.645372 + 0.763869i \(0.276703\pi\)
\(180\) −1.61174 1.54993i −0.120132 0.115525i
\(181\) −5.43211 8.45252i −0.403765 0.628271i 0.578519 0.815669i \(-0.303631\pi\)
−0.982284 + 0.187398i \(0.939995\pi\)
\(182\) 0.548526 + 7.66940i 0.0406595 + 0.568494i
\(183\) 0.570194 + 0.570194i 0.0421499 + 0.0421499i
\(184\) 4.64407 + 1.19692i 0.342365 + 0.0882380i
\(185\) −2.40559 + 19.4185i −0.176863 + 1.42768i
\(186\) −0.681683 + 0.786704i −0.0499834 + 0.0576839i
\(187\) 4.37100 + 0.950852i 0.319639 + 0.0695332i
\(188\) −1.58241 1.18458i −0.115409 0.0863944i
\(189\) 0.566485 + 1.24043i 0.0412057 + 0.0902280i
\(190\) 1.23658 4.53768i 0.0897108 0.329198i
\(191\) 3.02438 + 10.3001i 0.218837 + 0.745290i 0.993592 + 0.113028i \(0.0360550\pi\)
−0.774755 + 0.632262i \(0.782127\pi\)
\(192\) 0.212565 + 0.977147i 0.0153406 + 0.0705195i
\(193\) −0.622100 1.66791i −0.0447797 0.120059i 0.912635 0.408776i \(-0.134044\pi\)
−0.957415 + 0.288717i \(0.906771\pi\)
\(194\) −10.8304 3.18009i −0.777577 0.228317i
\(195\) 2.43873 12.3699i 0.174641 0.885830i
\(196\) 3.36626 + 3.88488i 0.240447 + 0.277491i
\(197\) 9.93209 + 18.1893i 0.707632 + 1.29593i 0.945813 + 0.324711i \(0.105267\pi\)
−0.238181 + 0.971221i \(0.576551\pi\)
\(198\) −1.98552 + 0.740561i −0.141105 + 0.0526294i
\(199\) −5.08030 3.26491i −0.360133 0.231443i 0.348044 0.937478i \(-0.386846\pi\)
−0.708177 + 0.706035i \(0.750482\pi\)
\(200\) −3.67101 3.39465i −0.259580 0.240038i
\(201\) −15.9065 2.28700i −1.12195 0.161313i
\(202\) 1.96495 5.26824i 0.138253 0.370672i
\(203\) −4.22420 + 5.64287i −0.296481 + 0.396052i
\(204\) 1.77578 1.14122i 0.124329 0.0799017i
\(205\) 0.924283 17.8090i 0.0645547 1.24383i
\(206\) 16.2326i 1.13098i
\(207\) 3.00048 + 3.74127i 0.208548 + 0.260036i
\(208\) −3.98702 + 3.98702i −0.276450 + 0.276450i
\(209\) −3.36853 2.91885i −0.233006 0.201901i
\(210\) 1.32067 + 2.74840i 0.0911349 + 0.189657i
\(211\) 1.36152 + 9.46958i 0.0937309 + 0.651913i 0.981477 + 0.191580i \(0.0613610\pi\)
−0.887746 + 0.460333i \(0.847730\pi\)
\(212\) −2.86810 1.06975i −0.196982 0.0734705i
\(213\) −6.49207 8.67239i −0.444830 0.594223i
\(214\) 0.872114 0.256076i 0.0596165 0.0175050i
\(215\) −10.5586 8.79369i −0.720089 0.599725i
\(216\) −0.415415 + 0.909632i −0.0282654 + 0.0618926i
\(217\) 1.24588 0.680301i 0.0845757 0.0461818i
\(218\) −1.13868 + 15.9209i −0.0771214 + 1.07830i
\(219\) −0.466526 + 0.404247i −0.0315249 + 0.0273165i
\(220\) −4.40655 + 1.74241i −0.297089 + 0.117473i
\(221\) 10.8266 + 4.94433i 0.728274 + 0.332592i
\(222\) 8.55064 1.86008i 0.573882 0.124840i
\(223\) 12.6411 23.1505i 0.846512 1.55027i 0.0115693 0.999933i \(-0.496317\pi\)
0.834942 0.550337i \(-0.185501\pi\)
\(224\) 0.194069 1.34978i 0.0129668 0.0901860i
\(225\) −0.904457 4.91752i −0.0602972 0.327834i
\(226\) 0.966939 0.139025i 0.0643198 0.00924779i
\(227\) −0.369312 + 1.69770i −0.0245121 + 0.112680i −0.987777 0.155871i \(-0.950181\pi\)
0.963265 + 0.268552i \(0.0865451\pi\)
\(228\) −2.09796 + 0.150049i −0.138940 + 0.00993722i
\(229\) −0.510875 −0.0337596 −0.0168798 0.999858i \(-0.505373\pi\)
−0.0168798 + 0.999858i \(0.505373\pi\)
\(230\) 6.87151 + 8.23300i 0.453094 + 0.542868i
\(231\) 2.88978 0.190134
\(232\) −5.15587 + 0.368755i −0.338500 + 0.0242100i
\(233\) 3.42515 15.7452i 0.224389 1.03150i −0.717756 0.696294i \(-0.754831\pi\)
0.942145 0.335205i \(-0.108806\pi\)
\(234\) −5.58110 + 0.802441i −0.364848 + 0.0524572i
\(235\) −1.32791 4.21580i −0.0866232 0.275009i
\(236\) −0.160298 + 1.11490i −0.0104345 + 0.0725736i
\(237\) 6.53756 11.9726i 0.424660 0.777707i
\(238\) −2.81273 + 0.611873i −0.182322 + 0.0396618i
\(239\) −9.76023 4.45735i −0.631336 0.288322i 0.0739306 0.997263i \(-0.476446\pi\)
−0.705267 + 0.708942i \(0.749173\pi\)
\(240\) −0.888964 + 2.05177i −0.0573824 + 0.132441i
\(241\) −13.9160 + 12.0583i −0.896407 + 0.776741i −0.975471 0.220128i \(-0.929352\pi\)
0.0790638 + 0.996870i \(0.474807\pi\)
\(242\) 0.464366 6.49269i 0.0298506 0.417366i
\(243\) −0.877679 + 0.479249i −0.0563031 + 0.0307438i
\(244\) 0.334981 0.733505i 0.0214449 0.0469579i
\(245\) 1.04393 + 11.4468i 0.0666942 + 0.731312i
\(246\) −7.65209 + 2.24686i −0.487880 + 0.143254i
\(247\) −7.10715 9.49404i −0.452217 0.604091i
\(248\) 0.975325 + 0.363778i 0.0619332 + 0.0230999i
\(249\) −0.212079 1.47504i −0.0134400 0.0934771i
\(250\) −2.23696 10.9543i −0.141478 0.692809i
\(251\) 7.38404 + 6.39831i 0.466076 + 0.403858i 0.855989 0.516994i \(-0.172949\pi\)
−0.389912 + 0.920852i \(0.627495\pi\)
\(252\) 0.964254 0.964254i 0.0607423 0.0607423i
\(253\) 9.85317 2.49031i 0.619464 0.156564i
\(254\) 13.2362i 0.830513i
\(255\) 4.71371 + 0.244641i 0.295184 + 0.0153200i
\(256\) 0.841254 0.540641i 0.0525783 0.0337901i
\(257\) −14.3339 + 19.1479i −0.894126 + 1.19441i 0.0860518 + 0.996291i \(0.472575\pi\)
−0.980177 + 0.198121i \(0.936516\pi\)
\(258\) −2.14750 + 5.75767i −0.133697 + 0.358457i
\(259\) −11.8114 1.69823i −0.733926 0.105523i
\(260\) −12.4423 + 2.03789i −0.771637 + 0.126385i
\(261\) −4.34848 2.79460i −0.269164 0.172981i
\(262\) −11.1804 + 4.17008i −0.690729 + 0.257629i
\(263\) 4.09008 + 7.49042i 0.252205 + 0.461879i 0.972854 0.231422i \(-0.0743376\pi\)
−0.720649 + 0.693301i \(0.756156\pi\)
\(264\) 1.38774 + 1.60153i 0.0854093 + 0.0985676i
\(265\) −3.81244 5.68482i −0.234196 0.349216i
\(266\) 2.75203 + 0.808068i 0.168738 + 0.0495458i
\(267\) 6.13677 + 16.4533i 0.375564 + 1.00693i
\(268\) 3.41593 + 15.7028i 0.208661 + 0.959200i
\(269\) 7.59924 + 25.8806i 0.463334 + 1.57797i 0.777679 + 0.628662i \(0.216397\pi\)
−0.314345 + 0.949309i \(0.601785\pi\)
\(270\) −1.94123 + 1.10979i −0.118139 + 0.0675395i
\(271\) 2.14310 + 4.69272i 0.130184 + 0.285063i 0.963488 0.267752i \(-0.0862809\pi\)
−0.833304 + 0.552815i \(0.813554\pi\)
\(272\) −1.68984 1.26500i −0.102462 0.0767019i
\(273\) 7.51328 + 1.63441i 0.454724 + 0.0989192i
\(274\) −3.08638 + 3.56187i −0.186455 + 0.215180i
\(275\) −10.2754 2.58553i −0.619628 0.155913i
\(276\) 2.45682 4.11874i 0.147883 0.247919i
\(277\) 4.40279 + 4.40279i 0.264538 + 0.264538i 0.826895 0.562357i \(-0.190105\pi\)
−0.562357 + 0.826895i \(0.690105\pi\)
\(278\) −1.33655 18.6874i −0.0801610 1.12080i
\(279\) 0.562784 + 0.875710i 0.0336930 + 0.0524274i
\(280\) 2.11358 2.19787i 0.126311 0.131348i
\(281\) 7.19335 3.28509i 0.429120 0.195972i −0.189134 0.981951i \(-0.560568\pi\)
0.618253 + 0.785979i \(0.287841\pi\)
\(282\) −1.58241 + 1.18458i −0.0942314 + 0.0705408i
\(283\) −2.36015 1.28874i −0.140296 0.0766077i 0.407568 0.913175i \(-0.366377\pi\)
−0.547864 + 0.836567i \(0.684559\pi\)
\(284\) −5.85685 + 9.11344i −0.347540 + 0.540783i
\(285\) −4.00549 2.46490i −0.237265 0.146008i
\(286\) −3.36634 + 11.4647i −0.199056 + 0.677923i
\(287\) 10.8477 + 0.775842i 0.640318 + 0.0457965i
\(288\) 0.997452 + 0.0713392i 0.0587754 + 0.00420370i
\(289\) 3.53411 12.0361i 0.207889 0.708005i
\(290\) −9.84377 6.05766i −0.578046 0.355718i
\(291\) −6.10255 + 9.49576i −0.357738 + 0.556651i
\(292\) 0.541794 + 0.295842i 0.0317061 + 0.0173128i
\(293\) 11.7197 8.77329i 0.684675 0.512541i −0.199381 0.979922i \(-0.563893\pi\)
0.884056 + 0.467381i \(0.154802\pi\)
\(294\) 4.67590 2.13541i 0.272704 0.124540i
\(295\) −1.74579 + 1.81540i −0.101644 + 0.105697i
\(296\) −4.73094 7.36149i −0.274981 0.427878i
\(297\) 0.151177 + 2.11373i 0.00877219 + 0.122651i
\(298\) −2.81995 2.81995i −0.163355 0.163355i
\(299\) 27.0262 0.901879i 1.56297 0.0521570i
\(300\) −4.29139 + 2.56593i −0.247763 + 0.148144i
\(301\) 5.48764 6.33308i 0.316302 0.365032i
\(302\) −23.5259 5.11775i −1.35376 0.294493i
\(303\) −4.50125 3.36959i −0.258590 0.193578i
\(304\) 0.873748 + 1.91324i 0.0501129 + 0.109732i
\(305\) 1.56536 0.894906i 0.0896323 0.0512422i
\(306\) −0.594702 2.02537i −0.0339968 0.115783i
\(307\) 2.72208 + 12.5132i 0.155358 + 0.714167i 0.987243 + 0.159220i \(0.0508979\pi\)
−0.831886 + 0.554947i \(0.812738\pi\)
\(308\) −1.00987 2.70758i −0.0575429 0.154279i
\(309\) −15.5751 4.57325i −0.886035 0.260163i
\(310\) 1.29646 + 1.93318i 0.0736338 + 0.109797i
\(311\) −8.61434 9.94148i −0.488474 0.563729i 0.456983 0.889475i \(-0.348930\pi\)
−0.945457 + 0.325746i \(0.894385\pi\)
\(312\) 2.70224 + 4.94879i 0.152984 + 0.280170i
\(313\) −18.8901 + 7.04565i −1.06773 + 0.398244i −0.821052 0.570853i \(-0.806612\pi\)
−0.246680 + 0.969097i \(0.579340\pi\)
\(314\) −4.86053 3.12367i −0.274296 0.176279i
\(315\) 3.00914 0.492861i 0.169546 0.0277696i
\(316\) −13.5024 1.94135i −0.759570 0.109210i
\(317\) 6.32400 16.9553i 0.355191 0.952304i −0.629346 0.777125i \(-0.716677\pi\)
0.984537 0.175178i \(-0.0560502\pi\)
\(318\) −1.83445 + 2.45054i −0.102871 + 0.137420i
\(319\) −9.21500 + 5.92212i −0.515941 + 0.331575i
\(320\) 2.23306 + 0.115895i 0.124832 + 0.00647876i
\(321\) 0.908933i 0.0507317i
\(322\) −5.10182 + 4.09164i −0.284314 + 0.228018i
\(323\) 3.13944 3.13944i 0.174683 0.174683i
\(324\) 0.755750 + 0.654861i 0.0419861 + 0.0363812i
\(325\) −25.2531 12.5338i −1.40079 0.695251i
\(326\) 1.46020 + 10.1559i 0.0808727 + 0.562482i
\(327\) 14.9552 + 5.57799i 0.827023 + 0.308463i
\(328\) 4.77933 + 6.38443i 0.263894 + 0.352521i
\(329\) 2.58634 0.759417i 0.142589 0.0418680i
\(330\) 0.430358 + 4.71894i 0.0236904 + 0.259769i
\(331\) 2.31398 5.06691i 0.127188 0.278502i −0.835316 0.549770i \(-0.814715\pi\)
0.962504 + 0.271267i \(0.0874427\pi\)
\(332\) −1.30793 + 0.714183i −0.0717819 + 0.0391959i
\(333\) 0.624262 8.72833i 0.0342094 0.478309i
\(334\) −0.760838 + 0.659270i −0.0416312 + 0.0360737i
\(335\) −14.2857 + 32.9719i −0.780509 + 1.80145i
\(336\) −1.24043 0.566485i −0.0676710 0.0309043i
\(337\) 33.3144 7.24711i 1.81475 0.394775i 0.828496 0.559995i \(-0.189197\pi\)
0.986257 + 0.165220i \(0.0528333\pi\)
\(338\) −9.00633 + 16.4939i −0.489880 + 0.897148i
\(339\) 0.139025 0.966939i 0.00755079 0.0525169i
\(340\) −1.41806 4.50201i −0.0769050 0.244156i
\(341\) 2.18348 0.313936i 0.118242 0.0170006i
\(342\) −0.447092 + 2.05525i −0.0241759 + 0.111135i
\(343\) −16.5132 + 1.18105i −0.891632 + 0.0637707i
\(344\) 6.14512 0.331323
\(345\) 9.83544 4.27366i 0.529522 0.230086i
\(346\) −12.8603 −0.691374
\(347\) −25.2518 + 1.80605i −1.35559 + 0.0969537i −0.730133 0.683305i \(-0.760542\pi\)
−0.625457 + 0.780259i \(0.715087\pi\)
\(348\) −1.09876 + 5.05091i −0.0588997 + 0.270757i
\(349\) −14.6196 + 2.10198i −0.782567 + 0.112516i −0.522007 0.852941i \(-0.674816\pi\)
−0.260561 + 0.965458i \(0.583907\pi\)
\(350\) 6.70582 1.23337i 0.358441 0.0659266i
\(351\) −0.802441 + 5.58110i −0.0428311 + 0.297897i
\(352\) 1.01559 1.85992i 0.0541313 0.0991340i
\(353\) −1.04608 + 0.227561i −0.0556772 + 0.0121118i −0.240318 0.970694i \(-0.577252\pi\)
0.184640 + 0.982806i \(0.440888\pi\)
\(354\) 1.02457 + 0.467908i 0.0544555 + 0.0248690i
\(355\) −22.5266 + 8.90730i −1.19559 + 0.472751i
\(356\) 13.2713 11.4997i 0.703380 0.609482i
\(357\) −0.205351 + 2.87118i −0.0108683 + 0.151959i
\(358\) −6.33459 + 3.45895i −0.334793 + 0.182811i
\(359\) 1.12498 2.46337i 0.0593744 0.130012i −0.877619 0.479359i \(-0.840869\pi\)
0.936993 + 0.349347i \(0.113597\pi\)
\(360\) 1.71821 + 1.43100i 0.0905574 + 0.0754205i
\(361\) 13.9856 4.10655i 0.736086 0.216134i
\(362\) 6.02126 + 8.04346i 0.316470 + 0.422755i
\(363\) −6.09886 2.27476i −0.320107 0.119394i
\(364\) −1.09426 7.61073i −0.0573547 0.398911i
\(365\) 0.597841 + 1.24415i 0.0312925 + 0.0651216i
\(366\) −0.609418 0.528064i −0.0318548 0.0276023i
\(367\) −3.64681 + 3.64681i −0.190362 + 0.190362i −0.795852 0.605491i \(-0.792977\pi\)
0.605491 + 0.795852i \(0.292977\pi\)
\(368\) −4.71762 0.862565i −0.245923 0.0449643i
\(369\) 7.97514i 0.415169i
\(370\) 1.01416 19.5407i 0.0527235 1.01587i
\(371\) 3.51165 2.25680i 0.182316 0.117167i
\(372\) 0.623823 0.833330i 0.0323437 0.0432061i
\(373\) −1.62871 + 4.36673i −0.0843312 + 0.226101i −0.972270 0.233861i \(-0.924864\pi\)
0.887939 + 0.459961i \(0.152137\pi\)
\(374\) −4.42769 0.636606i −0.228951 0.0329181i
\(375\) −11.1408 0.939827i −0.575307 0.0485325i
\(376\) 1.66289 + 1.06867i 0.0857570 + 0.0551127i
\(377\) −27.3080 + 10.1853i −1.40643 + 0.524572i
\(378\) −0.653533 1.19686i −0.0336141 0.0615597i
\(379\) 7.72162 + 8.91122i 0.396633 + 0.457739i 0.918578 0.395241i \(-0.129339\pi\)
−0.521945 + 0.852979i \(0.674793\pi\)
\(380\) −0.909713 + 4.61433i −0.0466673 + 0.236710i
\(381\) 12.7000 + 3.72907i 0.650643 + 0.191046i
\(382\) −3.75148 10.0581i −0.191942 0.514617i
\(383\) −0.296861 1.36465i −0.0151689 0.0697302i 0.968940 0.247295i \(-0.0795417\pi\)
−0.984109 + 0.177565i \(0.943178\pi\)
\(384\) −0.281733 0.959493i −0.0143771 0.0489639i
\(385\) 1.69895 6.23439i 0.0865867 0.317734i
\(386\) 0.739502 + 1.61928i 0.0376397 + 0.0824194i
\(387\) 4.91942 + 3.68263i 0.250068 + 0.187199i
\(388\) 11.0297 + 2.39936i 0.559947 + 0.121809i
\(389\) −20.1673 + 23.2743i −1.02252 + 1.18006i −0.0390075 + 0.999239i \(0.512420\pi\)
−0.983517 + 0.180817i \(0.942126\pi\)
\(390\) −1.55005 + 12.5124i −0.0784898 + 0.633590i
\(391\) 1.77411 + 9.96673i 0.0897204 + 0.504039i
\(392\) −3.63483 3.63483i −0.183587 0.183587i
\(393\) 0.851276 + 11.9024i 0.0429412 + 0.600396i
\(394\) −11.2044 17.4344i −0.564469 0.878331i
\(395\) −21.9862 21.1430i −1.10624 1.06382i
\(396\) 1.92763 0.880320i 0.0968671 0.0442377i
\(397\) 11.2269 8.40433i 0.563461 0.421801i −0.279210 0.960230i \(-0.590073\pi\)
0.842671 + 0.538428i \(0.180982\pi\)
\(398\) 5.30027 + 2.89417i 0.265679 + 0.145072i
\(399\) 1.55067 2.41289i 0.0776306 0.120796i
\(400\) 3.90383 + 3.12412i 0.195192 + 0.156206i
\(401\) 0.481013 1.63818i 0.0240206 0.0818067i −0.946610 0.322380i \(-0.895517\pi\)
0.970631 + 0.240573i \(0.0773354\pi\)
\(402\) 16.0291 + 1.14642i 0.799458 + 0.0571783i
\(403\) 5.85448 + 0.418721i 0.291632 + 0.0208580i
\(404\) −1.58411 + 5.39499i −0.0788126 + 0.268411i
\(405\) 0.517925 + 2.17526i 0.0257359 + 0.108090i
\(406\) 3.81088 5.92985i 0.189131 0.294293i
\(407\) −16.2754 8.88707i −0.806744 0.440515i
\(408\) −1.68984 + 1.26500i −0.0836596 + 0.0626268i
\(409\) −1.33912 + 0.611554i −0.0662150 + 0.0302394i −0.448247 0.893910i \(-0.647952\pi\)
0.382032 + 0.924149i \(0.375224\pi\)
\(410\) 0.348551 + 17.8296i 0.0172137 + 0.880539i
\(411\) 2.54806 + 3.96485i 0.125686 + 0.195572i
\(412\) 1.15802 + 16.1912i 0.0570516 + 0.797685i
\(413\) −1.08610 1.08610i −0.0534434 0.0534434i
\(414\) −3.25974 3.51769i −0.160207 0.172885i
\(415\) −3.30694 0.409667i −0.162331 0.0201098i
\(416\) 3.69243 4.26129i 0.181036 0.208927i
\(417\) −18.3070 3.98244i −0.896498 0.195021i
\(418\) 3.56818 + 2.67110i 0.174525 + 0.130648i
\(419\) 4.63401 + 10.1471i 0.226386 + 0.495717i 0.988405 0.151838i \(-0.0485191\pi\)
−0.762019 + 0.647555i \(0.775792\pi\)
\(420\) −1.51337 2.64718i −0.0738451 0.129169i
\(421\) 3.03356 + 10.3314i 0.147847 + 0.503520i 0.999798 0.0201014i \(-0.00639892\pi\)
−0.851951 + 0.523621i \(0.824581\pi\)
\(422\) −2.03360 9.34832i −0.0989943 0.455069i
\(423\) 0.690779 + 1.85205i 0.0335868 + 0.0900498i
\(424\) 2.93711 + 0.862413i 0.142639 + 0.0418825i
\(425\) 3.29907 10.0255i 0.160028 0.486309i
\(426\) 7.09421 + 8.18716i 0.343716 + 0.396669i
\(427\) 0.526993 + 0.965116i 0.0255030 + 0.0467053i
\(428\) −0.851624 + 0.317639i −0.0411648 + 0.0153537i
\(429\) 10.0519 + 6.45996i 0.485310 + 0.311890i
\(430\) 11.1590 + 8.01804i 0.538135 + 0.386664i
\(431\) 0.686463 + 0.0986985i 0.0330658 + 0.00475414i 0.158828 0.987306i \(-0.449229\pi\)
−0.125762 + 0.992060i \(0.540138\pi\)
\(432\) 0.349464 0.936950i 0.0168136 0.0450790i
\(433\) −4.29264 + 5.73430i −0.206291 + 0.275573i −0.891740 0.452548i \(-0.850515\pi\)
0.685449 + 0.728121i \(0.259606\pi\)
\(434\) −1.19417 + 0.767447i −0.0573220 + 0.0368386i
\(435\) −8.58559 + 7.73838i −0.411648 + 0.371027i
\(436\) 15.9615i 0.764419i
\(437\) 3.20792 9.56346i 0.153456 0.457482i
\(438\) 0.436499 0.436499i 0.0208567 0.0208567i
\(439\) −0.738650 0.640044i −0.0352539 0.0305476i 0.637056 0.770818i \(-0.280152\pi\)
−0.672310 + 0.740270i \(0.734698\pi\)
\(440\) 4.27102 2.05233i 0.203613 0.0978408i
\(441\) −0.731559 5.08811i −0.0348362 0.242291i
\(442\) −11.1517 4.15937i −0.530433 0.197841i
\(443\) −16.9697 22.6689i −0.806255 1.07703i −0.995468 0.0950943i \(-0.969685\pi\)
0.189213 0.981936i \(-0.439406\pi\)
\(444\) −8.39616 + 2.46534i −0.398464 + 0.117000i
\(445\) 39.1042 3.56622i 1.85372 0.169055i
\(446\) −10.9574 + 23.9933i −0.518847 + 1.13612i
\(447\) −3.50020 + 1.91125i −0.165554 + 0.0903991i
\(448\) −0.0972825 + 1.36019i −0.00459616 + 0.0642628i
\(449\) −19.9243 + 17.2645i −0.940288 + 0.814764i −0.982865 0.184329i \(-0.940989\pi\)
0.0425770 + 0.999093i \(0.486443\pi\)
\(450\) 1.25296 + 4.84046i 0.0590653 + 0.228182i
\(451\) 15.3731 + 7.02068i 0.723893 + 0.330591i
\(452\) −0.954557 + 0.207651i −0.0448986 + 0.00976709i
\(453\) −11.5385 + 21.1311i −0.542124 + 0.992826i
\(454\) 0.247259 1.71972i 0.0116044 0.0807105i
\(455\) 7.94327 15.2482i 0.372386 0.714847i
\(456\) 2.08191 0.299333i 0.0974942 0.0140175i
\(457\) 7.70254 35.4080i 0.360310 1.65632i −0.338468 0.940978i \(-0.609909\pi\)
0.698778 0.715339i \(-0.253728\pi\)
\(458\) 0.509574 0.0364454i 0.0238108 0.00170298i
\(459\) −2.11087 −0.0985272
\(460\) −7.44134 7.72182i −0.346954 0.360032i
\(461\) −9.52809 −0.443767 −0.221884 0.975073i \(-0.571221\pi\)
−0.221884 + 0.975073i \(0.571221\pi\)
\(462\) −2.88242 + 0.206154i −0.134102 + 0.00959118i
\(463\) −4.51561 + 20.7579i −0.209858 + 0.964702i 0.744867 + 0.667213i \(0.232513\pi\)
−0.954725 + 0.297489i \(0.903851\pi\)
\(464\) 5.11643 0.735631i 0.237524 0.0341508i
\(465\) 2.22012 0.699302i 0.102956 0.0324294i
\(466\) −2.29317 + 15.9494i −0.106229 + 0.738841i
\(467\) 18.0134 32.9891i 0.833561 1.52655i −0.0164971 0.999864i \(-0.505251\pi\)
0.850058 0.526689i \(-0.176567\pi\)
\(468\) 5.50964 1.19855i 0.254683 0.0554029i
\(469\) −19.9337 9.10343i −0.920454 0.420357i
\(470\) 1.62528 + 4.11033i 0.0749685 + 0.189595i
\(471\) −4.36651 + 3.78360i −0.201198 + 0.174339i
\(472\) 0.0803537 1.12349i 0.00369858 0.0517129i
\(473\) 11.4294 6.24094i 0.525525 0.286959i
\(474\) −5.66678 + 12.4085i −0.260284 + 0.569942i
\(475\) −7.67266 + 7.19226i −0.352046 + 0.330003i
\(476\) 2.76192 0.810972i 0.126592 0.0371708i
\(477\) 1.83445 + 2.45054i 0.0839938 + 0.112203i
\(478\) 10.0533 + 3.74970i 0.459829 + 0.171507i
\(479\) 4.54229 + 31.5923i 0.207543 + 1.44349i 0.781142 + 0.624354i \(0.214638\pi\)
−0.573599 + 0.819136i \(0.694453\pi\)
\(480\) 0.740327 2.10996i 0.0337912 0.0963059i
\(481\) −37.2889 32.3110i −1.70023 1.47326i
\(482\) 13.0203 13.0203i 0.593058 0.593058i
\(483\) 2.48855 + 6.04791i 0.113233 + 0.275190i
\(484\) 6.50927i 0.295876i
\(485\) 16.8983 + 18.7483i 0.767312 + 0.851318i
\(486\) 0.841254 0.540641i 0.0381600 0.0245240i
\(487\) 5.08167 6.78831i 0.230272 0.307608i −0.670491 0.741917i \(-0.733917\pi\)
0.900764 + 0.434309i \(0.143008\pi\)
\(488\) −0.281800 + 0.755534i −0.0127565 + 0.0342014i
\(489\) 10.1559 + 1.46020i 0.459265 + 0.0660323i
\(490\) −1.85788 11.3432i −0.0839304 0.512434i
\(491\) −20.9053 13.4351i −0.943445 0.606315i −0.0240755 0.999710i \(-0.507664\pi\)
−0.919370 + 0.393395i \(0.871301\pi\)
\(492\) 7.47231 2.78703i 0.336878 0.125649i
\(493\) −5.22918 9.57653i −0.235510 0.431305i
\(494\) 7.76634 + 8.96283i 0.349424 + 0.403257i
\(495\) 4.64904 + 0.916554i 0.208959 + 0.0411961i
\(496\) −0.998792 0.293272i −0.0448471 0.0131683i
\(497\) −5.16255 13.8413i −0.231572 0.620869i
\(498\) 0.316767 + 1.45616i 0.0141947 + 0.0652519i
\(499\) −7.79598 26.5507i −0.348996 1.18857i −0.927792 0.373099i \(-0.878295\pi\)
0.578796 0.815473i \(-0.303523\pi\)
\(500\) 3.01273 + 10.7668i 0.134733 + 0.481505i
\(501\) 0.418212 + 0.915757i 0.0186843 + 0.0409130i
\(502\) −7.82168 5.85523i −0.349099 0.261332i
\(503\) 19.4937 + 4.24060i 0.869183 + 0.189079i 0.624976 0.780644i \(-0.285109\pi\)
0.244207 + 0.969723i \(0.421472\pi\)
\(504\) −0.893008 + 1.03059i −0.0397777 + 0.0459060i
\(505\) −9.91590 + 7.72992i −0.441252 + 0.343977i
\(506\) −9.65041 + 3.18688i −0.429013 + 0.141674i
\(507\) 13.2884 + 13.2884i 0.590157 + 0.590157i
\(508\) −0.944260 13.2025i −0.0418948 0.585765i
\(509\) 10.0052 + 15.5683i 0.443471 + 0.690055i 0.988980 0.148051i \(-0.0472998\pi\)
−0.545509 + 0.838105i \(0.683663\pi\)
\(510\) −4.71916 + 0.0922550i −0.208968 + 0.00408512i
\(511\) −0.765720 + 0.349693i −0.0338735 + 0.0154695i
\(512\) −0.800541 + 0.599278i −0.0353793 + 0.0264846i
\(513\) 1.84603 + 1.00801i 0.0815044 + 0.0445048i
\(514\) 12.9314 20.1217i 0.570380 0.887529i
\(515\) −19.0232 + 30.9129i −0.838261 + 1.36218i
\(516\) 1.73128 5.89620i 0.0762154 0.259566i
\(517\) 4.17818 + 0.298829i 0.183756 + 0.0131425i
\(518\) 11.9025 + 0.851282i 0.522965 + 0.0374032i
\(519\) −3.62317 + 12.3394i −0.159039 + 0.541638i
\(520\) 12.2652 2.92032i 0.537864 0.128064i
\(521\) 21.2785 33.1100i 0.932227 1.45057i 0.0398903 0.999204i \(-0.487299\pi\)
0.892337 0.451370i \(-0.149064\pi\)
\(522\) 4.53676 + 2.47726i 0.198569 + 0.108427i
\(523\) 14.9681 11.2050i 0.654510 0.489960i −0.219662 0.975576i \(-0.570495\pi\)
0.874172 + 0.485616i \(0.161405\pi\)
\(524\) 10.8545 4.95706i 0.474179 0.216550i
\(525\) 0.705836 6.78167i 0.0308052 0.295976i
\(526\) −4.61402 7.17955i −0.201181 0.313043i
\(527\) 0.156756 + 2.19173i 0.00682839 + 0.0954734i
\(528\) −1.49845 1.49845i −0.0652118 0.0652118i
\(529\) 13.6970 + 18.4768i 0.595522 + 0.803339i
\(530\) 4.20828 + 5.39836i 0.182796 + 0.234490i
\(531\) 0.737610 0.851248i 0.0320096 0.0369410i
\(532\) −2.80266 0.609681i −0.121511 0.0264330i
\(533\) 35.9986 + 26.9482i 1.55927 + 1.16726i
\(534\) −7.29490 15.9736i −0.315681 0.691245i
\(535\) −1.96093 0.534378i −0.0847782 0.0231032i
\(536\) −4.52745 15.4191i −0.195556 0.666003i
\(537\) 1.53417 + 7.05249i 0.0662045 + 0.304337i
\(538\) −9.42619 25.2726i −0.406392 1.08958i
\(539\) −10.4520 3.06898i −0.450199 0.132190i
\(540\) 1.85711 1.24545i 0.0799174 0.0535954i
\(541\) −20.6548 23.8369i −0.888019 1.02483i −0.999517 0.0310644i \(-0.990110\pi\)
0.111498 0.993765i \(-0.464435\pi\)
\(542\) −2.47241 4.52788i −0.106199 0.194489i
\(543\) 9.41403 3.51125i 0.403995 0.150682i
\(544\) 1.77578 + 1.14122i 0.0761360 + 0.0489296i
\(545\) 20.8263 28.9848i 0.892102 1.24157i
\(546\) −7.61073 1.09426i −0.325709 0.0468299i
\(547\) 12.8656 34.4941i 0.550094 1.47486i −0.302942 0.953009i \(-0.597969\pi\)
0.853037 0.521851i \(-0.174758\pi\)
\(548\) 2.82441 3.77298i 0.120653 0.161174i
\(549\) −0.678367 + 0.435960i −0.0289520 + 0.0186063i
\(550\) 10.4336 + 1.84590i 0.444892 + 0.0787095i
\(551\) 10.8721i 0.463168i
\(552\) −2.15673 + 4.28351i −0.0917967 + 0.182319i
\(553\) 13.1536 13.1536i 0.559349 0.559349i
\(554\) −4.70566 4.07748i −0.199924 0.173236i
\(555\) −18.4634 6.47832i −0.783729 0.274990i
\(556\) 2.66629 + 18.5445i 0.113076 + 0.786460i
\(557\) −4.18296 1.56016i −0.177238 0.0661062i 0.259279 0.965803i \(-0.416515\pi\)
−0.436516 + 0.899696i \(0.643788\pi\)
\(558\) −0.623823 0.833330i −0.0264085 0.0352777i
\(559\) 33.2457 9.76181i 1.40614 0.412881i
\(560\) −1.95140 + 2.34305i −0.0824619 + 0.0990119i
\(561\) −1.85824 + 4.06899i −0.0784551 + 0.171793i
\(562\) −6.94067 + 3.78989i −0.292774 + 0.159867i
\(563\) 0.793937 11.1007i 0.0334605 0.467839i −0.952905 0.303269i \(-0.901922\pi\)
0.986365 0.164570i \(-0.0526235\pi\)
\(564\) 1.49388 1.29445i 0.0629035 0.0545062i
\(565\) −2.00433 0.868413i −0.0843230 0.0365344i
\(566\) 2.44608 + 1.11709i 0.102816 + 0.0469546i
\(567\) −1.33250 + 0.289867i −0.0559596 + 0.0121733i
\(568\) 5.19178 9.50804i 0.217842 0.398949i
\(569\) 3.11620 21.6736i 0.130638 0.908606i −0.814087 0.580743i \(-0.802762\pi\)
0.944725 0.327864i \(-0.106329\pi\)
\(570\) 4.17113 + 2.17287i 0.174709 + 0.0910116i
\(571\) 19.6100 2.81949i 0.820651 0.117992i 0.280815 0.959762i \(-0.409395\pi\)
0.539836 + 0.841770i \(0.318486\pi\)
\(572\) 2.53988 11.6757i 0.106198 0.488184i
\(573\) −10.7076 + 0.765822i −0.447316 + 0.0319927i
\(574\) −10.8754 −0.453930
\(575\) −3.43754 23.7315i −0.143355 0.989671i
\(576\) −1.00000 −0.0416667
\(577\) 13.7421 0.982858i 0.572093 0.0409169i 0.217704 0.976015i \(-0.430143\pi\)
0.354389 + 0.935098i \(0.384689\pi\)
\(578\) −2.66646 + 12.2575i −0.110910 + 0.509846i
\(579\) 1.76203 0.253342i 0.0732276 0.0105285i
\(580\) 10.2508 + 5.33998i 0.425643 + 0.221731i
\(581\) 0.289204 2.01146i 0.0119982 0.0834494i
\(582\) 5.40958 9.90691i 0.224234 0.410655i
\(583\) 6.33865 1.37889i 0.262520 0.0571077i
\(584\) −0.561518 0.256437i −0.0232358 0.0106114i
\(585\) 11.5689 + 5.01241i 0.478314 + 0.207238i
\(586\) −11.0640 + 9.58702i −0.457050 + 0.396036i
\(587\) 0.607129 8.48878i 0.0250589 0.350369i −0.969418 0.245415i \(-0.921076\pi\)
0.994477 0.104954i \(-0.0334697\pi\)
\(588\) −4.51165 + 2.46355i −0.186057 + 0.101595i
\(589\) 0.909535 1.99160i 0.0374768 0.0820626i
\(590\) 1.61183 1.93532i 0.0663579 0.0796759i
\(591\) −19.8848 + 5.83871i −0.817952 + 0.240172i
\(592\) 5.24405 + 7.00523i 0.215529 + 0.287913i
\(593\) −17.4811 6.52010i −0.717862 0.267749i −0.0361262 0.999347i \(-0.511502\pi\)
−0.681736 + 0.731599i \(0.738775\pi\)
\(594\) −0.301584 2.09756i −0.0123741 0.0860641i
\(595\) 6.07354 + 2.13104i 0.248991 + 0.0873643i
\(596\) 3.01394 + 2.61159i 0.123456 + 0.106975i
\(597\) 4.27019 4.27019i 0.174767 0.174767i
\(598\) −26.8930 + 2.82761i −1.09974 + 0.115630i
\(599\) 26.0165i 1.06301i 0.847056 + 0.531503i \(0.178373\pi\)
−0.847056 + 0.531503i \(0.821627\pi\)
\(600\) 4.09740 2.86553i 0.167276 0.116985i
\(601\) −19.5792 + 12.5828i −0.798654 + 0.513263i −0.875176 0.483804i \(-0.839255\pi\)
0.0765226 + 0.997068i \(0.475618\pi\)
\(602\) −5.02186 + 6.70842i −0.204676 + 0.273415i
\(603\) 5.61590 15.0568i 0.228697 0.613160i
\(604\) 23.8311 + 3.42639i 0.969673 + 0.139418i
\(605\) −8.49319 + 11.8203i −0.345297 + 0.480563i
\(606\) 4.73016 + 3.03989i 0.192150 + 0.123487i
\(607\) −19.4890 + 7.26903i −0.791035 + 0.295041i −0.712319 0.701856i \(-0.752355\pi\)
−0.0787165 + 0.996897i \(0.525082\pi\)
\(608\) −1.00801 1.84603i −0.0408803 0.0748666i
\(609\) −4.61600 5.32714i −0.187050 0.215867i
\(610\) −1.49753 + 1.00430i −0.0606332 + 0.0406628i
\(611\) 10.6940 + 3.14005i 0.432634 + 0.127033i
\(612\) 0.737675 + 1.97778i 0.0298187 + 0.0799471i
\(613\) −4.58172 21.0618i −0.185054 0.850680i −0.972244 0.233969i \(-0.924829\pi\)
0.787190 0.616711i \(-0.211535\pi\)
\(614\) −3.60783 12.2871i −0.145600 0.495869i
\(615\) 17.2055 + 4.68873i 0.693794 + 0.189068i
\(616\) 1.20046 + 2.62864i 0.0483678 + 0.105911i
\(617\) 27.6152 + 20.6725i 1.11175 + 0.832243i 0.987123 0.159961i \(-0.0511369\pi\)
0.124623 + 0.992204i \(0.460228\pi\)
\(618\) 15.8616 + 3.45049i 0.638049 + 0.138799i
\(619\) −4.73589 + 5.46551i −0.190352 + 0.219677i −0.842901 0.538069i \(-0.819154\pi\)
0.652549 + 0.757746i \(0.273700\pi\)
\(620\) −1.43106 1.83576i −0.0574729 0.0737260i
\(621\) −4.29357 + 2.13665i −0.172295 + 0.0857407i
\(622\) 9.30161 + 9.30161i 0.372960 + 0.372960i
\(623\) 1.70833 + 23.8856i 0.0684427 + 0.956955i
\(624\) −3.04840 4.74340i −0.122034 0.189888i
\(625\) −8.57744 + 23.4825i −0.343098 + 0.939300i
\(626\) 18.3394 8.37530i 0.732988 0.334744i
\(627\) 3.56818 2.67110i 0.142499 0.106674i
\(628\) 5.07099 + 2.76897i 0.202354 + 0.110494i
\(629\) 9.98643 15.5392i 0.398185 0.619588i
\(630\) −2.96632 + 0.706275i −0.118181 + 0.0281387i
\(631\) −14.0116 + 47.7192i −0.557794 + 1.89967i −0.143111 + 0.989707i \(0.545710\pi\)
−0.414684 + 0.909966i \(0.636108\pi\)
\(632\) 13.6065 + 0.973156i 0.541237 + 0.0387101i
\(633\) −9.54258 0.682499i −0.379284 0.0271269i
\(634\) −5.09831 + 17.3632i −0.202480 + 0.689582i
\(635\) 15.5117 25.2066i 0.615562 1.00029i
\(636\) 1.65496 2.57517i 0.0656234 0.102112i
\(637\) −25.4389 13.8907i −1.00793 0.550369i
\(638\) 8.76904 6.56442i 0.347170 0.259888i
\(639\) 9.85419 4.50026i 0.389826 0.178027i
\(640\) −2.23564 + 0.0437046i −0.0883715 + 0.00172758i
\(641\) 18.0069 + 28.0193i 0.711231 + 1.10670i 0.989266 + 0.146126i \(0.0466805\pi\)
−0.278035 + 0.960571i \(0.589683\pi\)
\(642\) 0.0648425 + 0.906617i 0.00255913 + 0.0357813i
\(643\) 35.1839 + 35.1839i 1.38752 + 1.38752i 0.830501 + 0.557018i \(0.188054\pi\)
0.557018 + 0.830501i \(0.311946\pi\)
\(644\) 4.79693 4.44518i 0.189026 0.175164i
\(645\) 10.8371 8.44805i 0.426711 0.332641i
\(646\) −2.90747 + 3.35540i −0.114393 + 0.132017i
\(647\) −33.2418 7.23132i −1.30687 0.284292i −0.495390 0.868671i \(-0.664975\pi\)
−0.811481 + 0.584379i \(0.801338\pi\)
\(648\) −0.800541 0.599278i −0.0314482 0.0235419i
\(649\) −0.991559 2.17121i −0.0389221 0.0852275i
\(650\) 26.0829 + 10.7003i 1.02306 + 0.419702i
\(651\) 0.399923 + 1.36201i 0.0156742 + 0.0533815i
\(652\) −2.18099 10.0258i −0.0854140 0.392642i
\(653\) −11.0624 29.6595i −0.432906 1.16067i −0.952040 0.305974i \(-0.901018\pi\)
0.519134 0.854693i \(-0.326255\pi\)
\(654\) −15.3150 4.49689i −0.598864 0.175842i
\(655\) 26.1786 + 5.16110i 1.02288 + 0.201661i
\(656\) −5.22261 6.02721i −0.203909 0.235323i
\(657\) −0.295842 0.541794i −0.0115419 0.0211374i
\(658\) −2.52557 + 0.941989i −0.0984570 + 0.0367225i
\(659\) 17.3319 + 11.1385i 0.675156 + 0.433896i 0.832781 0.553603i \(-0.186747\pi\)
−0.157625 + 0.987499i \(0.550384\pi\)
\(660\) −0.765907 4.67622i −0.0298129 0.182022i
\(661\) −29.8793 4.29599i −1.16217 0.167095i −0.465874 0.884851i \(-0.654260\pi\)
−0.696294 + 0.717756i \(0.745169\pi\)
\(662\) −1.94661 + 5.21908i −0.0756573 + 0.202845i
\(663\) −7.13269 + 9.52816i −0.277011 + 0.370043i
\(664\) 1.25365 0.805670i 0.0486509 0.0312660i
\(665\) −4.29389 4.76399i −0.166510 0.184740i
\(666\) 8.75062i 0.339080i
\(667\) −20.3297 14.1859i −0.787171 0.549279i
\(668\) 0.711868 0.711868i 0.0275430 0.0275430i
\(669\) 19.9344 + 17.2732i 0.770707 + 0.667821i
\(670\) 11.8971 33.9070i 0.459624 1.30994i
\(671\) 0.243190 + 1.69142i 0.00938825 + 0.0652967i
\(672\) 1.27768 + 0.476551i 0.0492876 + 0.0183833i
\(673\) 3.59910 + 4.80783i 0.138735 + 0.185328i 0.864528 0.502585i \(-0.167618\pi\)
−0.725793 + 0.687914i \(0.758527\pi\)
\(674\) −32.7125 + 9.60527i −1.26004 + 0.369981i
\(675\) 4.99739 + 0.161505i 0.192350 + 0.00621635i
\(676\) 7.80673 17.0943i 0.300259 0.657475i
\(677\) −33.8655 + 18.4920i −1.30156 + 0.710704i −0.972345 0.233551i \(-0.924965\pi\)
−0.329213 + 0.944256i \(0.606784\pi\)
\(678\) −0.0696900 + 0.974393i −0.00267643 + 0.0374213i
\(679\) −11.6329 + 10.0799i −0.446429 + 0.386833i
\(680\) 1.73561 + 4.38937i 0.0665578 + 0.168325i
\(681\) −1.58040 0.721745i −0.0605611 0.0276573i
\(682\) −2.15552 + 0.468904i −0.0825390 + 0.0179553i
\(683\) 17.3029 31.6880i 0.662079 1.21251i −0.303608 0.952797i \(-0.598191\pi\)
0.965687 0.259710i \(-0.0836269\pi\)
\(684\) 0.299333 2.08191i 0.0114453 0.0796037i
\(685\) 10.0518 3.16615i 0.384060 0.120972i
\(686\) 16.3869 2.35608i 0.625655 0.0899557i
\(687\) 0.108594 0.499200i 0.00414313 0.0190457i
\(688\) −6.12946 + 0.438388i −0.233684 + 0.0167134i
\(689\) 17.2600 0.657555
\(690\) −9.50550 + 4.96443i −0.361868 + 0.188992i
\(691\) 44.6041 1.69682 0.848410 0.529339i \(-0.177560\pi\)
0.848410 + 0.529339i \(0.177560\pi\)
\(692\) 12.8275 0.917444i 0.487630 0.0348760i
\(693\) −0.614267 + 2.82374i −0.0233341 + 0.107265i
\(694\) 25.0586 3.60289i 0.951213 0.136764i
\(695\) −19.3547 + 37.1541i −0.734167 + 1.40933i
\(696\) 0.735631 5.11643i 0.0278840 0.193938i
\(697\) −8.06793 + 14.7753i −0.305595 + 0.559655i
\(698\) 14.4324 3.13957i 0.546273 0.118834i
\(699\) 14.6573 + 6.69375i 0.554388 + 0.253181i
\(700\) −6.60075 + 1.70862i −0.249485 + 0.0645797i
\(701\) 32.4796 28.1437i 1.22674 1.06297i 0.230793 0.973003i \(-0.425868\pi\)
0.995944 0.0899706i \(-0.0286773\pi\)
\(702\) 0.402245 5.62413i 0.0151818 0.212269i
\(703\) −16.1540 + 8.82073i −0.609258 + 0.332680i
\(704\) −0.880320 + 1.92763i −0.0331783 + 0.0726503i
\(705\) 4.40173 0.401429i 0.165779 0.0151187i
\(706\) 1.02718 0.301607i 0.0386584 0.0113511i
\(707\) −4.59498 6.13817i −0.172812 0.230850i
\(708\) −1.05534 0.393623i −0.0396623 0.0147933i
\(709\) 2.64756 + 18.4142i 0.0994312 + 0.691559i 0.977176 + 0.212431i \(0.0681380\pi\)
−0.877745 + 0.479128i \(0.840953\pi\)
\(710\) 21.8338 10.4916i 0.819406 0.393744i
\(711\) 10.3094 + 8.93312i 0.386632 + 0.335018i
\(712\) −12.4171 + 12.4171i −0.465352 + 0.465352i
\(713\) 2.53734 + 4.29937i 0.0950241 + 0.161013i
\(714\) 2.87852i 0.107726i
\(715\) 19.8464 17.8880i 0.742213 0.668973i
\(716\) 6.07169 3.90204i 0.226910 0.145826i
\(717\) 6.43017 8.58970i 0.240139 0.320788i
\(718\) −0.946383 + 2.53735i −0.0353187 + 0.0946931i
\(719\) −43.3179 6.22817i −1.61548 0.232272i −0.725486 0.688237i \(-0.758385\pi\)
−0.889998 + 0.455965i \(0.849294\pi\)
\(720\) −1.81591 1.30478i −0.0676751 0.0486264i
\(721\) −18.6218 11.9675i −0.693512 0.445693i
\(722\) −13.6570 + 5.09381i −0.508263 + 0.189572i
\(723\) −8.82464 16.1611i −0.328192 0.601039i
\(724\) −6.57973 7.59342i −0.244534 0.282207i
\(725\) 11.6471 + 23.0721i 0.432563 + 0.856875i
\(726\) 6.24560 + 1.83387i 0.231796 + 0.0680615i
\(727\) 3.27405 + 8.77806i 0.121428 + 0.325560i 0.983415 0.181370i \(-0.0580530\pi\)
−0.861987 + 0.506930i \(0.830780\pi\)
\(728\) 1.63441 + 7.51328i 0.0605754 + 0.278461i
\(729\) −0.281733 0.959493i −0.0104345 0.0355368i
\(730\) −0.685075 1.19833i −0.0253557 0.0443520i
\(731\) 5.38859 + 11.7994i 0.199304 + 0.436415i
\(732\) 0.645537 + 0.483243i 0.0238597 + 0.0178612i
\(733\) 5.16028 + 1.12255i 0.190599 + 0.0414624i 0.306852 0.951757i \(-0.400724\pi\)
−0.116252 + 0.993220i \(0.537088\pi\)
\(734\) 3.37735 3.89767i 0.124660 0.143866i
\(735\) −11.4072 1.41313i −0.420759 0.0521241i
\(736\) 4.76714 + 0.523816i 0.175719 + 0.0193081i
\(737\) −24.0802 24.0802i −0.887005 0.887005i
\(738\) −0.568940 7.95482i −0.0209430 0.292821i
\(739\) −15.1429 23.5629i −0.557042 0.866775i 0.442508 0.896765i \(-0.354089\pi\)
−0.999550 + 0.0299899i \(0.990452\pi\)
\(740\) 0.382443 + 19.5632i 0.0140589 + 0.719159i
\(741\) 10.7878 4.92662i 0.396300 0.180984i
\(742\) −3.34171 + 2.50157i −0.122678 + 0.0918356i
\(743\) −14.7384 8.04775i −0.540698 0.295243i 0.185598 0.982626i \(-0.440578\pi\)
−0.726296 + 0.687382i \(0.758760\pi\)
\(744\) −0.562784 + 0.875710i −0.0206327 + 0.0321051i
\(745\) 2.06549 + 8.67497i 0.0756739 + 0.317826i
\(746\) 1.31304 4.47180i 0.0480737 0.163724i
\(747\) 1.48642 + 0.106311i 0.0543851 + 0.00388970i
\(748\) 4.46183 + 0.319116i 0.163141 + 0.0116680i
\(749\) 0.349201 1.18927i 0.0127595 0.0434549i
\(750\) 11.1794 + 0.142659i 0.408215 + 0.00520917i
\(751\) −21.4500 + 33.3768i −0.782721 + 1.21794i 0.189040 + 0.981969i \(0.439462\pi\)
−0.971761 + 0.235968i \(0.924174\pi\)
\(752\) −1.73489 0.947322i −0.0632650 0.0345453i
\(753\) −7.82168 + 5.85523i −0.285038 + 0.213377i
\(754\) 26.5118 12.1075i 0.965502 0.440930i
\(755\) 38.8045 + 37.3164i 1.41224 + 1.35808i
\(756\) 0.737251 + 1.14718i 0.0268136 + 0.0417227i
\(757\) 1.89607 + 26.5105i 0.0689139 + 0.963542i 0.907845 + 0.419305i \(0.137726\pi\)
−0.838931 + 0.544237i \(0.816819\pi\)
\(758\) −8.33766 8.33766i −0.302838 0.302838i
\(759\) 0.338956 + 10.1574i 0.0123033 + 0.368689i
\(760\) 0.578212 4.66748i 0.0209739 0.169307i
\(761\) −22.9650 + 26.5030i −0.832479 + 0.960732i −0.999683 0.0251902i \(-0.991981\pi\)
0.167203 + 0.985922i \(0.446526\pi\)
\(762\) −12.9337 2.81356i −0.468539 0.101924i
\(763\) 17.4247 + 13.0440i 0.630816 + 0.472223i
\(764\) 4.45946 + 9.76485i 0.161338 + 0.353280i
\(765\) −1.24102 + 4.55399i −0.0448692 + 0.164650i
\(766\) 0.393457 + 1.33999i 0.0142162 + 0.0484159i
\(767\) −1.35000 6.20584i −0.0487456 0.224080i
\(768\) 0.349464 + 0.936950i 0.0126102 + 0.0338093i
\(769\) −23.8974 7.01691i −0.861762 0.253036i −0.179154 0.983821i \(-0.557336\pi\)
−0.682608 + 0.730785i \(0.739154\pi\)
\(770\) −1.24987 + 6.33971i −0.0450422 + 0.228467i
\(771\) −15.6634 18.0765i −0.564103 0.651010i
\(772\) −0.853136 1.56240i −0.0307051 0.0562321i
\(773\) −28.9247 + 10.7884i −1.04035 + 0.388030i −0.810835