Properties

Label 690.2.w.a.7.8
Level $690$
Weight $2$
Character 690.7
Analytic conductor $5.510$
Analytic rank $0$
Dimension $240$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.w (of order \(44\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(12\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 7.8
Character \(\chi\) \(=\) 690.7
Dual form 690.2.w.a.493.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.997452 - 0.0713392i) q^{2} +(-0.212565 + 0.977147i) q^{3} +(0.989821 - 0.142315i) q^{4} +(-1.79544 + 1.33281i) q^{5} +(-0.142315 + 0.989821i) q^{6} +(2.35788 - 4.31814i) q^{7} +(0.977147 - 0.212565i) q^{8} +(-0.909632 - 0.415415i) q^{9} +O(q^{10})\) \(q+(0.997452 - 0.0713392i) q^{2} +(-0.212565 + 0.977147i) q^{3} +(0.989821 - 0.142315i) q^{4} +(-1.79544 + 1.33281i) q^{5} +(-0.142315 + 0.989821i) q^{6} +(2.35788 - 4.31814i) q^{7} +(0.977147 - 0.212565i) q^{8} +(-0.909632 - 0.415415i) q^{9} +(-1.69579 + 1.45750i) q^{10} +(0.567261 - 0.491535i) q^{11} +(-0.0713392 + 0.997452i) q^{12} +(5.56150 - 3.03681i) q^{13} +(2.04382 - 4.47535i) q^{14} +(-0.920703 - 2.03772i) q^{15} +(0.959493 - 0.281733i) q^{16} +(0.838978 + 1.12074i) q^{17} +(-0.936950 - 0.349464i) q^{18} +(0.534494 + 3.71749i) q^{19} +(-1.58749 + 1.57476i) q^{20} +(3.71825 + 3.22189i) q^{21} +(0.530750 - 0.530750i) q^{22} +(1.94164 + 4.38521i) q^{23} +1.00000i q^{24} +(1.44723 - 4.78597i) q^{25} +(5.33069 - 3.42583i) q^{26} +(0.599278 - 0.800541i) q^{27} +(1.71935 - 4.60975i) q^{28} +(-6.83863 - 0.983246i) q^{29} +(-1.06373 - 1.96685i) q^{30} +(6.38294 + 4.10207i) q^{31} +(0.936950 - 0.349464i) q^{32} +(0.359721 + 0.658781i) q^{33} +(0.916793 + 1.05804i) q^{34} +(1.52182 + 10.8956i) q^{35} +(-0.959493 - 0.281733i) q^{36} +(1.34936 + 3.61778i) q^{37} +(0.798335 + 3.66989i) q^{38} +(1.78523 + 6.07993i) q^{39} +(-1.47110 + 1.68400i) q^{40} +(-0.469073 - 1.02713i) q^{41} +(3.93863 + 2.94842i) q^{42} +(-2.55221 - 0.555199i) q^{43} +(0.491535 - 0.567261i) q^{44} +(2.18686 - 0.466514i) q^{45} +(2.24953 + 4.23552i) q^{46} +(-8.63275 - 8.63275i) q^{47} +(0.0713392 + 0.997452i) q^{48} +(-9.30224 - 14.4746i) q^{49} +(1.10211 - 4.87702i) q^{50} +(-1.27347 + 0.581573i) q^{51} +(5.07271 - 3.79739i) q^{52} +(9.22729 + 5.03848i) q^{53} +(0.540641 - 0.841254i) q^{54} +(-0.363362 + 1.63857i) q^{55} +(1.38611 - 4.72066i) q^{56} +(-3.74615 - 0.267930i) q^{57} +(-6.89135 - 0.492879i) q^{58} +(1.73187 - 5.89822i) q^{59} +(-1.20133 - 1.88595i) q^{60} +(-0.0184279 + 0.0286744i) q^{61} +(6.65932 + 3.63626i) q^{62} +(-3.93863 + 2.94842i) q^{63} +(0.909632 - 0.415415i) q^{64} +(-5.93787 + 12.8649i) q^{65} +(0.405802 + 0.631440i) q^{66} +(0.540569 + 7.55814i) q^{67} +(0.989936 + 0.989936i) q^{68} +(-4.69772 + 0.965123i) q^{69} +(2.29523 + 10.7593i) q^{70} +(2.93682 - 3.38928i) q^{71} +(-0.977147 - 0.212565i) q^{72} +(-7.74782 - 5.79995i) q^{73} +(1.60401 + 3.51230i) q^{74} +(4.36897 + 2.43149i) q^{75} +(1.05811 + 3.60358i) q^{76} +(-0.784980 - 3.60850i) q^{77} +(2.21442 + 5.93708i) q^{78} +(-11.4802 - 3.37088i) q^{79} +(-1.34722 + 1.78466i) q^{80} +(0.654861 + 0.755750i) q^{81} +(-0.541152 - 0.991045i) q^{82} +(-0.379967 + 0.141720i) q^{83} +(4.13893 + 2.65993i) q^{84} +(-3.00007 - 0.894031i) q^{85} +(-2.58531 - 0.371712i) q^{86} +(2.41443 - 6.47334i) q^{87} +(0.449814 - 0.600882i) q^{88} +(10.9546 - 7.04011i) q^{89} +(2.14801 - 0.621334i) q^{90} -31.1758i q^{91} +(2.54596 + 4.06425i) q^{92} +(-5.36512 + 5.36512i) q^{93} +(-9.22661 - 7.99490i) q^{94} +(-5.91437 - 5.96216i) q^{95} +(0.142315 + 0.989821i) q^{96} +(-2.96757 - 1.10685i) q^{97} +(-10.3111 - 13.7741i) q^{98} +(-0.720190 + 0.211467i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 24q^{6} + O(q^{10}) \) \( 240q - 24q^{6} + 44q^{10} - 16q^{13} + 24q^{16} + 44q^{21} + 72q^{23} + 16q^{25} + 44q^{28} - 16q^{31} - 44q^{33} - 24q^{36} + 44q^{37} + 88q^{43} - 8q^{46} + 48q^{47} + 8q^{50} - 16q^{52} + 56q^{55} + 44q^{57} + 16q^{58} + 88q^{61} + 8q^{62} + 88q^{65} - 132q^{67} + 56q^{70} - 64q^{71} + 16q^{73} - 32q^{75} - 16q^{77} - 16q^{78} + 24q^{81} - 24q^{82} + 92q^{85} - 16q^{87} - 44q^{88} + 116q^{92} - 80q^{93} + 20q^{95} + 24q^{96} - 88q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{19}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.997452 0.0713392i 0.705305 0.0504444i
\(3\) −0.212565 + 0.977147i −0.122725 + 0.564156i
\(4\) 0.989821 0.142315i 0.494911 0.0711574i
\(5\) −1.79544 + 1.33281i −0.802946 + 0.596051i
\(6\) −0.142315 + 0.989821i −0.0580998 + 0.404093i
\(7\) 2.35788 4.31814i 0.891196 1.63210i 0.122520 0.992466i \(-0.460902\pi\)
0.768676 0.639638i \(-0.220916\pi\)
\(8\) 0.977147 0.212565i 0.345474 0.0751532i
\(9\) −0.909632 0.415415i −0.303211 0.138472i
\(10\) −1.69579 + 1.45750i −0.536255 + 0.460902i
\(11\) 0.567261 0.491535i 0.171036 0.148203i −0.565137 0.824997i \(-0.691177\pi\)
0.736173 + 0.676794i \(0.236631\pi\)
\(12\) −0.0713392 + 0.997452i −0.0205938 + 0.287940i
\(13\) 5.56150 3.03681i 1.54248 0.842260i 0.542486 0.840065i \(-0.317483\pi\)
0.999998 0.00219532i \(-0.000698794\pi\)
\(14\) 2.04382 4.47535i 0.546235 1.19609i
\(15\) −0.920703 2.03772i −0.237725 0.526137i
\(16\) 0.959493 0.281733i 0.239873 0.0704331i
\(17\) 0.838978 + 1.12074i 0.203482 + 0.271820i 0.890661 0.454668i \(-0.150242\pi\)
−0.687179 + 0.726488i \(0.741151\pi\)
\(18\) −0.936950 0.349464i −0.220841 0.0823695i
\(19\) 0.534494 + 3.71749i 0.122621 + 0.852851i 0.954568 + 0.297994i \(0.0963177\pi\)
−0.831946 + 0.554856i \(0.812773\pi\)
\(20\) −1.58749 + 1.57476i −0.354973 + 0.352128i
\(21\) 3.71825 + 3.22189i 0.811390 + 0.703073i
\(22\) 0.530750 0.530750i 0.113156 0.113156i
\(23\) 1.94164 + 4.38521i 0.404860 + 0.914379i
\(24\) 1.00000i 0.204124i
\(25\) 1.44723 4.78597i 0.289446 0.957194i
\(26\) 5.33069 3.42583i 1.04543 0.671860i
\(27\) 0.599278 0.800541i 0.115331 0.154064i
\(28\) 1.71935 4.60975i 0.324926 0.871161i
\(29\) −6.83863 0.983246i −1.26990 0.182584i −0.525775 0.850623i \(-0.676225\pi\)
−0.744126 + 0.668039i \(0.767134\pi\)
\(30\) −1.06373 1.96685i −0.194209 0.359095i
\(31\) 6.38294 + 4.10207i 1.14641 + 0.736753i 0.968921 0.247369i \(-0.0795661\pi\)
0.177489 + 0.984123i \(0.443202\pi\)
\(32\) 0.936950 0.349464i 0.165631 0.0617771i
\(33\) 0.359721 + 0.658781i 0.0626195 + 0.114679i
\(34\) 0.916793 + 1.05804i 0.157229 + 0.181452i
\(35\) 1.52182 + 10.8956i 0.257235 + 1.84169i
\(36\) −0.959493 0.281733i −0.159915 0.0469554i
\(37\) 1.34936 + 3.61778i 0.221834 + 0.594759i 0.999421 0.0340153i \(-0.0108295\pi\)
−0.777587 + 0.628775i \(0.783557\pi\)
\(38\) 0.798335 + 3.66989i 0.129507 + 0.595334i
\(39\) 1.78523 + 6.07993i 0.285865 + 0.973568i
\(40\) −1.47110 + 1.68400i −0.232602 + 0.266264i
\(41\) −0.469073 1.02713i −0.0732568 0.160410i 0.869461 0.494002i \(-0.164466\pi\)
−0.942718 + 0.333592i \(0.891739\pi\)
\(42\) 3.93863 + 2.94842i 0.607743 + 0.454951i
\(43\) −2.55221 0.555199i −0.389208 0.0846670i 0.0137032 0.999906i \(-0.495638\pi\)
−0.402911 + 0.915239i \(0.632002\pi\)
\(44\) 0.491535 0.567261i 0.0741016 0.0855178i
\(45\) 2.18686 0.466514i 0.325998 0.0695438i
\(46\) 2.24953 + 4.23552i 0.331675 + 0.624493i
\(47\) −8.63275 8.63275i −1.25922 1.25922i −0.951468 0.307748i \(-0.900425\pi\)
−0.307748 0.951468i \(-0.599575\pi\)
\(48\) 0.0713392 + 0.997452i 0.0102969 + 0.143970i
\(49\) −9.30224 14.4746i −1.32889 2.06780i
\(50\) 1.10211 4.87702i 0.155863 0.689715i
\(51\) −1.27347 + 0.581573i −0.178321 + 0.0814366i
\(52\) 5.07271 3.79739i 0.703459 0.526603i
\(53\) 9.22729 + 5.03848i 1.26747 + 0.692088i 0.965294 0.261165i \(-0.0841068\pi\)
0.302171 + 0.953254i \(0.402289\pi\)
\(54\) 0.540641 0.841254i 0.0735719 0.114480i
\(55\) −0.363362 + 1.63857i −0.0489957 + 0.220945i
\(56\) 1.38611 4.72066i 0.185227 0.630825i
\(57\) −3.74615 0.267930i −0.496189 0.0354882i
\(58\) −6.89135 0.492879i −0.904878 0.0647182i
\(59\) 1.73187 5.89822i 0.225471 0.767883i −0.766591 0.642135i \(-0.778049\pi\)
0.992062 0.125748i \(-0.0401331\pi\)
\(60\) −1.20133 1.88595i −0.155091 0.243475i
\(61\) −0.0184279 + 0.0286744i −0.00235946 + 0.00367138i −0.842431 0.538804i \(-0.818876\pi\)
0.840072 + 0.542475i \(0.182513\pi\)
\(62\) 6.65932 + 3.63626i 0.845734 + 0.461806i
\(63\) −3.93863 + 2.94842i −0.496220 + 0.371466i
\(64\) 0.909632 0.415415i 0.113704 0.0519269i
\(65\) −5.93787 + 12.8649i −0.736502 + 1.59569i
\(66\) 0.405802 + 0.631440i 0.0499507 + 0.0777249i
\(67\) 0.540569 + 7.55814i 0.0660410 + 0.923374i 0.917190 + 0.398450i \(0.130452\pi\)
−0.851149 + 0.524924i \(0.824094\pi\)
\(68\) 0.989936 + 0.989936i 0.120047 + 0.120047i
\(69\) −4.69772 + 0.965123i −0.565539 + 0.116187i
\(70\) 2.29523 + 10.7593i 0.274332 + 1.28598i
\(71\) 2.93682 3.38928i 0.348537 0.402233i −0.554230 0.832364i \(-0.686987\pi\)
0.902767 + 0.430131i \(0.141533\pi\)
\(72\) −0.977147 0.212565i −0.115158 0.0250511i
\(73\) −7.74782 5.79995i −0.906814 0.678832i 0.0404861 0.999180i \(-0.487109\pi\)
−0.947300 + 0.320348i \(0.896200\pi\)
\(74\) 1.60401 + 3.51230i 0.186463 + 0.408297i
\(75\) 4.36897 + 2.43149i 0.504485 + 0.280764i
\(76\) 1.05811 + 3.60358i 0.121373 + 0.413359i
\(77\) −0.784980 3.60850i −0.0894568 0.411226i
\(78\) 2.21442 + 5.93708i 0.250733 + 0.672242i
\(79\) −11.4802 3.37088i −1.29162 0.379254i −0.437448 0.899244i \(-0.644118\pi\)
−0.854173 + 0.519989i \(0.825936\pi\)
\(80\) −1.34722 + 1.78466i −0.150624 + 0.199531i
\(81\) 0.654861 + 0.755750i 0.0727623 + 0.0839722i
\(82\) −0.541152 0.991045i −0.0597602 0.109443i
\(83\) −0.379967 + 0.141720i −0.0417068 + 0.0155558i −0.370231 0.928940i \(-0.620721\pi\)
0.328524 + 0.944496i \(0.393449\pi\)
\(84\) 4.13893 + 2.65993i 0.451594 + 0.290222i
\(85\) −3.00007 0.894031i −0.325404 0.0969713i
\(86\) −2.58531 0.371712i −0.278781 0.0400827i
\(87\) 2.41443 6.47334i 0.258854 0.694015i
\(88\) 0.449814 0.600882i 0.0479504 0.0640542i
\(89\) 10.9546 7.04011i 1.16119 0.746250i 0.189352 0.981909i \(-0.439361\pi\)
0.971836 + 0.235659i \(0.0757249\pi\)
\(90\) 2.14801 0.621334i 0.226420 0.0654944i
\(91\) 31.1758i 3.26811i
\(92\) 2.54596 + 4.06425i 0.265434 + 0.423727i
\(93\) −5.36512 + 5.36512i −0.556337 + 0.556337i
\(94\) −9.22661 7.99490i −0.951652 0.824611i
\(95\) −5.91437 5.96216i −0.606801 0.611705i
\(96\) 0.142315 + 0.989821i 0.0145249 + 0.101023i
\(97\) −2.96757 1.10685i −0.301311 0.112383i 0.194262 0.980950i \(-0.437769\pi\)
−0.495572 + 0.868567i \(0.665042\pi\)
\(98\) −10.3111 13.7741i −1.04158 1.39139i
\(99\) −0.720190 + 0.211467i −0.0723818 + 0.0212532i
\(100\) 0.751384 4.94322i 0.0751384 0.494322i
\(101\) 1.39059 3.04497i 0.138369 0.302986i −0.827744 0.561106i \(-0.810376\pi\)
0.966113 + 0.258120i \(0.0831031\pi\)
\(102\) −1.22873 + 0.670940i −0.121663 + 0.0664329i
\(103\) −0.903417 + 12.6314i −0.0890163 + 1.24461i 0.735009 + 0.678057i \(0.237178\pi\)
−0.824025 + 0.566553i \(0.808277\pi\)
\(104\) 4.78889 4.14959i 0.469589 0.406901i
\(105\) −10.9701 0.828981i −1.07057 0.0809002i
\(106\) 9.56322 + 4.36737i 0.928862 + 0.424197i
\(107\) −12.7799 + 2.78010i −1.23548 + 0.268763i −0.782440 0.622726i \(-0.786025\pi\)
−0.453043 + 0.891489i \(0.649661\pi\)
\(108\) 0.479249 0.877679i 0.0461158 0.0844547i
\(109\) 0.234240 1.62918i 0.0224361 0.156047i −0.975523 0.219895i \(-0.929428\pi\)
0.997960 + 0.0638487i \(0.0203375\pi\)
\(110\) −0.245542 + 1.66032i −0.0234115 + 0.158305i
\(111\) −3.82193 + 0.549511i −0.362762 + 0.0521572i
\(112\) 1.04581 4.80752i 0.0988199 0.454268i
\(113\) −4.95942 + 0.354705i −0.466543 + 0.0333678i −0.302632 0.953107i \(-0.597865\pi\)
−0.163911 + 0.986475i \(0.552411\pi\)
\(114\) −3.75572 −0.351755
\(115\) −9.33075 5.28555i −0.870097 0.492880i
\(116\) −6.90895 −0.641480
\(117\) −6.32046 + 0.452048i −0.584327 + 0.0417919i
\(118\) 1.30669 6.00675i 0.120290 0.552966i
\(119\) 6.81774 0.980243i 0.624981 0.0898587i
\(120\) −1.33281 1.79544i −0.121668 0.163901i
\(121\) −1.48528 + 10.3304i −0.135026 + 0.939125i
\(122\) −0.0163354 + 0.0299160i −0.00147894 + 0.00270847i
\(123\) 1.10336 0.240022i 0.0994867 0.0216420i
\(124\) 6.90176 + 3.15193i 0.619796 + 0.283051i
\(125\) 3.78038 + 10.5218i 0.338127 + 0.941100i
\(126\) −3.71825 + 3.22189i −0.331248 + 0.287028i
\(127\) −0.798904 + 11.1701i −0.0708913 + 0.991190i 0.830173 + 0.557505i \(0.188241\pi\)
−0.901065 + 0.433685i \(0.857213\pi\)
\(128\) 0.877679 0.479249i 0.0775766 0.0423600i
\(129\) 1.08502 2.37586i 0.0955308 0.209183i
\(130\) −5.00497 + 13.2557i −0.438965 + 1.16260i
\(131\) −0.777663 + 0.228343i −0.0679448 + 0.0199504i −0.315528 0.948916i \(-0.602182\pi\)
0.247584 + 0.968867i \(0.420364\pi\)
\(132\) 0.449814 + 0.600882i 0.0391513 + 0.0523000i
\(133\) 17.3129 + 6.45739i 1.50122 + 0.559926i
\(134\) 1.07838 + 7.50032i 0.0931581 + 0.647929i
\(135\) −0.00899852 + 2.23605i −0.000774470 + 0.192449i
\(136\) 1.05804 + 0.916793i 0.0907258 + 0.0786143i
\(137\) −5.44313 + 5.44313i −0.465038 + 0.465038i −0.900302 0.435265i \(-0.856655\pi\)
0.435265 + 0.900302i \(0.356655\pi\)
\(138\) −4.61690 + 1.29780i −0.393016 + 0.110476i
\(139\) 0.149384i 0.0126706i 0.999980 + 0.00633530i \(0.00201660\pi\)
−0.999980 + 0.00633530i \(0.997983\pi\)
\(140\) 3.05694 + 10.5681i 0.258358 + 0.893168i
\(141\) 10.2705 6.60044i 0.864931 0.555858i
\(142\) 2.68755 3.59015i 0.225535 0.301279i
\(143\) 1.66213 4.45634i 0.138994 0.372658i
\(144\) −0.989821 0.142315i −0.0824851 0.0118596i
\(145\) 13.5888 7.34924i 1.12849 0.610321i
\(146\) −8.14184 5.23245i −0.673824 0.433040i
\(147\) 16.1211 6.01287i 1.32965 0.495933i
\(148\) 1.85049 + 3.38892i 0.152109 + 0.278568i
\(149\) 8.99761 + 10.3838i 0.737113 + 0.850674i 0.993253 0.115966i \(-0.0369964\pi\)
−0.256140 + 0.966640i \(0.582451\pi\)
\(150\) 4.53130 + 2.11361i 0.369979 + 0.172576i
\(151\) −18.4094 5.40549i −1.49814 0.439892i −0.573008 0.819550i \(-0.694224\pi\)
−0.925127 + 0.379657i \(0.876042\pi\)
\(152\) 1.31249 + 3.51892i 0.106457 + 0.285422i
\(153\) −0.297587 1.36799i −0.0240585 0.110595i
\(154\) −1.04041 3.54330i −0.0838384 0.285527i
\(155\) −16.9275 + 1.14223i −1.35965 + 0.0917460i
\(156\) 2.63232 + 5.76398i 0.210754 + 0.461488i
\(157\) 3.71894 + 2.78397i 0.296804 + 0.222185i 0.737293 0.675573i \(-0.236104\pi\)
−0.440489 + 0.897758i \(0.645195\pi\)
\(158\) −11.6914 2.54331i −0.930118 0.202335i
\(159\) −6.88473 + 7.94541i −0.545995 + 0.630112i
\(160\) −1.21647 + 1.87622i −0.0961704 + 0.148328i
\(161\) 23.5141 + 1.95554i 1.85317 + 0.154118i
\(162\) 0.707107 + 0.707107i 0.0555556 + 0.0555556i
\(163\) 0.819633 + 11.4600i 0.0641986 + 0.897614i 0.922876 + 0.385097i \(0.125832\pi\)
−0.858677 + 0.512516i \(0.828713\pi\)
\(164\) −0.610473 0.949915i −0.0476700 0.0741759i
\(165\) −1.52389 0.703362i −0.118635 0.0547567i
\(166\) −0.368889 + 0.168466i −0.0286313 + 0.0130755i
\(167\) −12.0130 + 8.99282i −0.929594 + 0.695886i −0.952721 0.303847i \(-0.901729\pi\)
0.0231265 + 0.999733i \(0.492638\pi\)
\(168\) 4.31814 + 2.35788i 0.333152 + 0.181915i
\(169\) 14.6798 22.8422i 1.12921 1.75709i
\(170\) −3.05621 0.677730i −0.234401 0.0519795i
\(171\) 1.05811 3.60358i 0.0809155 0.275573i
\(172\) −2.60524 0.186331i −0.198648 0.0142076i
\(173\) −7.34793 0.525534i −0.558653 0.0399556i −0.210842 0.977520i \(-0.567620\pi\)
−0.347811 + 0.937565i \(0.613075\pi\)
\(174\) 1.94648 6.62909i 0.147562 0.502550i
\(175\) −17.2541 17.5341i −1.30429 1.32545i
\(176\) 0.405802 0.631440i 0.0305885 0.0475966i
\(177\) 5.39529 + 2.94605i 0.405535 + 0.221439i
\(178\) 10.4245 7.80367i 0.781348 0.584910i
\(179\) −14.4095 + 6.58058i −1.07701 + 0.491856i −0.873304 0.487175i \(-0.838027\pi\)
−0.203710 + 0.979031i \(0.565300\pi\)
\(180\) 2.09821 0.772988i 0.156391 0.0576151i
\(181\) 13.4906 + 20.9918i 1.00275 + 1.56031i 0.816123 + 0.577878i \(0.196119\pi\)
0.186626 + 0.982431i \(0.440245\pi\)
\(182\) −2.22406 31.0964i −0.164858 2.30502i
\(183\) −0.0241020 0.0241020i −0.00178167 0.00178167i
\(184\) 2.82941 + 3.87227i 0.208587 + 0.285467i
\(185\) −7.24452 4.69707i −0.532628 0.345336i
\(186\) −4.96870 + 5.73419i −0.364323 + 0.420451i
\(187\) 1.02680 + 0.223367i 0.0750873 + 0.0163342i
\(188\) −9.77345 7.31631i −0.712802 0.533597i
\(189\) −2.04382 4.47535i −0.148666 0.325534i
\(190\) −6.32463 5.52504i −0.458837 0.400829i
\(191\) 4.29162 + 14.6159i 0.310530 + 1.05757i 0.955898 + 0.293698i \(0.0948859\pi\)
−0.645368 + 0.763872i \(0.723296\pi\)
\(192\) 0.212565 + 0.977147i 0.0153406 + 0.0705195i
\(193\) −3.76392 10.0915i −0.270933 0.726400i −0.999157 0.0410603i \(-0.986926\pi\)
0.728223 0.685340i \(-0.240346\pi\)
\(194\) −3.03897 0.892321i −0.218185 0.0640649i
\(195\) −11.3087 8.53679i −0.809831 0.611332i
\(196\) −11.2675 13.0034i −0.804822 0.928814i
\(197\) 7.85260 + 14.3810i 0.559475 + 1.02460i 0.992386 + 0.123165i \(0.0393045\pi\)
−0.432911 + 0.901436i \(0.642514\pi\)
\(198\) −0.703269 + 0.262306i −0.0499791 + 0.0186413i
\(199\) −20.5702 13.2196i −1.45818 0.937116i −0.998805 0.0488743i \(-0.984437\pi\)
−0.459376 0.888242i \(-0.651927\pi\)
\(200\) 0.396824 4.98423i 0.0280597 0.352438i
\(201\) −7.50032 1.07838i −0.529032 0.0760633i
\(202\) 1.16982 3.13642i 0.0823085 0.220678i
\(203\) −20.3705 + 27.2118i −1.42973 + 1.90989i
\(204\) −1.17774 + 0.756887i −0.0824582 + 0.0529927i
\(205\) 2.21116 + 1.21896i 0.154434 + 0.0851359i
\(206\) 12.6637i 0.882320i
\(207\) 0.0555044 4.79551i 0.00385782 0.333311i
\(208\) 4.48066 4.48066i 0.310678 0.310678i
\(209\) 2.13047 + 1.84607i 0.147368 + 0.127695i
\(210\) −11.0013 0.0442723i −0.759159 0.00305508i
\(211\) −0.683538 4.75411i −0.0470567 0.327287i −0.999729 0.0232869i \(-0.992587\pi\)
0.952672 0.304000i \(-0.0983222\pi\)
\(212\) 9.85042 + 3.67402i 0.676529 + 0.252332i
\(213\) 2.68755 + 3.59015i 0.184148 + 0.245993i
\(214\) −12.5490 + 3.68473i −0.857835 + 0.251883i
\(215\) 5.32232 2.40478i 0.362979 0.164005i
\(216\) 0.415415 0.909632i 0.0282654 0.0618926i
\(217\) 32.7635 17.8903i 2.22413 1.21447i
\(218\) 0.117419 1.64173i 0.00795263 0.111192i
\(219\) 7.31432 6.33789i 0.494256 0.428275i
\(220\) −0.126470 + 1.67361i −0.00852662 + 0.112835i
\(221\) 8.06946 + 3.68520i 0.542811 + 0.247893i
\(222\) −3.77299 + 0.820764i −0.253227 + 0.0550861i
\(223\) 5.54810 10.1606i 0.371528 0.680403i −0.623299 0.781984i \(-0.714208\pi\)
0.994827 + 0.101580i \(0.0323899\pi\)
\(224\) 0.700183 4.86988i 0.0467829 0.325382i
\(225\) −3.30461 + 3.75227i −0.220307 + 0.250151i
\(226\) −4.92148 + 0.707602i −0.327372 + 0.0470690i
\(227\) 2.20080 10.1169i 0.146072 0.671482i −0.844621 0.535365i \(-0.820174\pi\)
0.990693 0.136117i \(-0.0434623\pi\)
\(228\) −3.74615 + 0.267930i −0.248095 + 0.0177441i
\(229\) −21.3745 −1.41247 −0.706234 0.707978i \(-0.749607\pi\)
−0.706234 + 0.707978i \(0.749607\pi\)
\(230\) −9.68405 4.60644i −0.638547 0.303739i
\(231\) 3.69289 0.242974
\(232\) −6.89135 + 0.492879i −0.452439 + 0.0323591i
\(233\) −3.75734 + 17.2722i −0.246152 + 1.13154i 0.673617 + 0.739081i \(0.264740\pi\)
−0.919769 + 0.392461i \(0.871624\pi\)
\(234\) −6.27211 + 0.901793i −0.410020 + 0.0589520i
\(235\) 27.0054 + 3.99378i 1.76164 + 0.260526i
\(236\) 0.874842 6.08466i 0.0569474 0.396078i
\(237\) 5.73414 10.5013i 0.372472 0.682132i
\(238\) 6.73044 1.46412i 0.436269 0.0949046i
\(239\) −13.0099 5.94141i −0.841539 0.384318i −0.0524698 0.998623i \(-0.516709\pi\)
−0.789069 + 0.614305i \(0.789437\pi\)
\(240\) −1.45750 1.69579i −0.0940813 0.109463i
\(241\) −13.1576 + 11.4011i −0.847553 + 0.734409i −0.965997 0.258551i \(-0.916755\pi\)
0.118444 + 0.992961i \(0.462209\pi\)
\(242\) −0.744539 + 10.4100i −0.0478608 + 0.669181i
\(243\) −0.877679 + 0.479249i −0.0563031 + 0.0307438i
\(244\) −0.0141596 + 0.0310051i −0.000906473 + 0.00198490i
\(245\) 35.9935 + 13.5901i 2.29954 + 0.868242i
\(246\) 1.08343 0.318123i 0.0690768 0.0202828i
\(247\) 14.2619 + 19.0517i 0.907463 + 1.21223i
\(248\) 7.10903 + 2.65153i 0.451424 + 0.168372i
\(249\) −0.0577138 0.401408i −0.00365746 0.0254382i
\(250\) 4.52137 + 10.2253i 0.285956 + 0.646706i
\(251\) −11.8975 10.3093i −0.750965 0.650715i 0.192835 0.981231i \(-0.438232\pi\)
−0.943800 + 0.330516i \(0.892777\pi\)
\(252\) −3.47893 + 3.47893i −0.219152 + 0.219152i
\(253\) 3.25690 + 1.53318i 0.204759 + 0.0963899i
\(254\) 11.1987i 0.702667i
\(255\) 1.51131 2.74147i 0.0946420 0.171678i
\(256\) 0.841254 0.540641i 0.0525783 0.0337901i
\(257\) −2.85577 + 3.81487i −0.178138 + 0.237965i −0.880719 0.473639i \(-0.842940\pi\)
0.702581 + 0.711604i \(0.252031\pi\)
\(258\) 0.912764 2.44722i 0.0568262 0.152357i
\(259\) 18.8037 + 2.70357i 1.16841 + 0.167992i
\(260\) −4.04657 + 13.5790i −0.250958 + 0.842131i
\(261\) 5.81218 + 3.73526i 0.359765 + 0.231207i
\(262\) −0.759392 + 0.283239i −0.0469154 + 0.0174985i
\(263\) −2.37823 4.35541i −0.146648 0.268566i 0.794022 0.607890i \(-0.207984\pi\)
−0.940670 + 0.339324i \(0.889802\pi\)
\(264\) 0.491535 + 0.567261i 0.0302519 + 0.0349125i
\(265\) −23.2824 + 3.25193i −1.43023 + 0.199764i
\(266\) 17.7295 + 5.20584i 1.08706 + 0.319191i
\(267\) 4.55065 + 12.2008i 0.278495 + 0.746674i
\(268\) 1.61070 + 7.40428i 0.0983893 + 0.452288i
\(269\) −3.22334 10.9777i −0.196530 0.669321i −0.997503 0.0706205i \(-0.977502\pi\)
0.800973 0.598701i \(-0.204316\pi\)
\(270\) 0.150542 + 2.23099i 0.00916172 + 0.135774i
\(271\) 0.0408956 + 0.0895489i 0.00248423 + 0.00543971i 0.910870 0.412693i \(-0.135412\pi\)
−0.908386 + 0.418133i \(0.862685\pi\)
\(272\) 1.12074 + 0.838978i 0.0679550 + 0.0508705i
\(273\) 30.4633 + 6.62690i 1.84373 + 0.401078i
\(274\) −5.04095 + 5.81757i −0.304535 + 0.351452i
\(275\) −1.53151 3.42626i −0.0923538 0.206611i
\(276\) −4.51255 + 1.62385i −0.271624 + 0.0977445i
\(277\) 1.92518 + 1.92518i 0.115673 + 0.115673i 0.762574 0.646901i \(-0.223935\pi\)
−0.646901 + 0.762574i \(0.723935\pi\)
\(278\) 0.0106569 + 0.149004i 0.000639161 + 0.00893664i
\(279\) −4.10207 6.38294i −0.245584 0.382137i
\(280\) 3.80307 + 10.3231i 0.227277 + 0.616923i
\(281\) 9.63694 4.40104i 0.574892 0.262544i −0.106683 0.994293i \(-0.534023\pi\)
0.681574 + 0.731749i \(0.261296\pi\)
\(282\) 9.77345 7.31631i 0.582001 0.435680i
\(283\) 3.08610 + 1.68514i 0.183450 + 0.100171i 0.568349 0.822787i \(-0.307582\pi\)
−0.384900 + 0.922958i \(0.625764\pi\)
\(284\) 2.42459 3.77273i 0.143873 0.223870i
\(285\) 7.08309 4.51186i 0.419566 0.267259i
\(286\) 1.33998 4.56356i 0.0792348 0.269849i
\(287\) −5.54129 0.396321i −0.327092 0.0233941i
\(288\) −0.997452 0.0713392i −0.0587754 0.00420370i
\(289\) 4.23727 14.4308i 0.249251 0.848872i
\(290\) 13.0299 8.29993i 0.765144 0.487389i
\(291\) 1.71235 2.66447i 0.100380 0.156194i
\(292\) −8.49438 4.63828i −0.497096 0.271435i
\(293\) 20.2558 15.1633i 1.18336 0.885849i 0.188005 0.982168i \(-0.439798\pi\)
0.995351 + 0.0963189i \(0.0307068\pi\)
\(294\) 15.6511 7.14761i 0.912790 0.416857i
\(295\) 4.75173 + 12.8982i 0.276657 + 0.750961i
\(296\) 2.08754 + 3.24828i 0.121336 + 0.188802i
\(297\) −0.0535468 0.748682i −0.00310710 0.0434429i
\(298\) 9.71546 + 9.71546i 0.562801 + 0.562801i
\(299\) 24.1155 + 18.4920i 1.39463 + 1.06942i
\(300\) 4.67053 + 1.78497i 0.269653 + 0.103055i
\(301\) −8.41523 + 9.71170i −0.485046 + 0.559773i
\(302\) −18.7481 4.07840i −1.07883 0.234686i
\(303\) 2.67979 + 2.00607i 0.153950 + 0.115246i
\(304\) 1.56018 + 3.41632i 0.0894825 + 0.195939i
\(305\) −0.00513129 0.0760442i −0.000293817 0.00435428i
\(306\) −0.394420 1.34327i −0.0225475 0.0767898i
\(307\) 1.19711 + 5.50300i 0.0683224 + 0.314073i 0.998607 0.0527658i \(-0.0168037\pi\)
−0.930285 + 0.366839i \(0.880440\pi\)
\(308\) −1.29053 3.46005i −0.0735349 0.197155i
\(309\) −12.1507 3.56777i −0.691230 0.202963i
\(310\) −16.8029 + 2.34691i −0.954339 + 0.133296i
\(311\) −5.40438 6.23699i −0.306454 0.353667i 0.581543 0.813516i \(-0.302449\pi\)
−0.887997 + 0.459848i \(0.847904\pi\)
\(312\) 3.03681 + 5.56150i 0.171926 + 0.314858i
\(313\) −10.0631 + 3.75335i −0.568802 + 0.212152i −0.617377 0.786668i \(-0.711805\pi\)
0.0485754 + 0.998820i \(0.484532\pi\)
\(314\) 3.90807 + 2.51157i 0.220545 + 0.141736i
\(315\) 3.14189 10.5432i 0.177026 0.594040i
\(316\) −11.8431 1.70277i −0.666224 0.0957885i
\(317\) 1.92705 5.16661i 0.108234 0.290186i −0.871530 0.490342i \(-0.836872\pi\)
0.979764 + 0.200156i \(0.0641448\pi\)
\(318\) −6.30037 + 8.41632i −0.353307 + 0.471964i
\(319\) −4.36259 + 2.80367i −0.244258 + 0.156975i
\(320\) −1.07952 + 1.95822i −0.0603471 + 0.109468i
\(321\) 13.0788i 0.729989i
\(322\) 23.5937 + 0.273079i 1.31483 + 0.0152181i
\(323\) −3.71792 + 3.71792i −0.206871 + 0.206871i
\(324\) 0.755750 + 0.654861i 0.0419861 + 0.0363812i
\(325\) −6.48532 31.0122i −0.359741 1.72025i
\(326\) 1.63509 + 11.3723i 0.0905592 + 0.629853i
\(327\) 1.54215 + 0.575193i 0.0852812 + 0.0318082i
\(328\) −0.676684 0.903944i −0.0373636 0.0499120i
\(329\) −57.6325 + 16.9224i −3.17738 + 0.932963i
\(330\) −1.57018 0.592857i −0.0864358 0.0326357i
\(331\) 2.21340 4.84666i 0.121659 0.266397i −0.838997 0.544136i \(-0.816858\pi\)
0.960657 + 0.277739i \(0.0895850\pi\)
\(332\) −0.355931 + 0.194353i −0.0195342 + 0.0106665i
\(333\) 0.275457 3.85139i 0.0150950 0.211055i
\(334\) −11.3409 + 9.82691i −0.620544 + 0.537705i
\(335\) −11.0441 12.8497i −0.603406 0.702056i
\(336\) 4.47535 + 2.04382i 0.244150 + 0.111500i
\(337\) 9.65584 2.10050i 0.525987 0.114422i 0.0582720 0.998301i \(-0.481441\pi\)
0.467715 + 0.883879i \(0.345077\pi\)
\(338\) 13.0128 23.8312i 0.707805 1.29625i
\(339\) 0.707602 4.92148i 0.0384317 0.267298i
\(340\) −3.09677 0.457976i −0.167946 0.0248372i
\(341\) 5.63710 0.810493i 0.305266 0.0438907i
\(342\) 0.798335 3.66989i 0.0431690 0.198445i
\(343\) −50.0849 + 3.58214i −2.70433 + 0.193418i
\(344\) −2.61190 −0.140824
\(345\) 7.14815 7.99399i 0.384844 0.430382i
\(346\) −7.36670 −0.396036
\(347\) 35.9704 2.57265i 1.93099 0.138107i 0.947582 0.319512i \(-0.103519\pi\)
0.983409 + 0.181405i \(0.0580644\pi\)
\(348\) 1.46860 6.75106i 0.0787254 0.361895i
\(349\) 22.7925 3.27706i 1.22005 0.175417i 0.497952 0.867204i \(-0.334085\pi\)
0.722101 + 0.691787i \(0.243176\pi\)
\(350\) −18.4610 16.2585i −0.986783 0.869055i
\(351\) 0.901793 6.27211i 0.0481341 0.334780i
\(352\) 0.359721 0.658781i 0.0191732 0.0351131i
\(353\) 28.2864 6.15333i 1.50553 0.327508i 0.617235 0.786778i \(-0.288253\pi\)
0.888297 + 0.459270i \(0.151889\pi\)
\(354\) 5.59172 + 2.55365i 0.297196 + 0.135725i
\(355\) −0.755636 + 9.99948i −0.0401050 + 0.530718i
\(356\) 9.84121 8.52746i 0.521583 0.451954i
\(357\) −0.491373 + 6.87030i −0.0260062 + 0.363615i
\(358\) −13.9033 + 7.59178i −0.734812 + 0.401238i
\(359\) −5.12912 + 11.2312i −0.270704 + 0.592760i −0.995346 0.0963661i \(-0.969278\pi\)
0.724642 + 0.689126i \(0.242005\pi\)
\(360\) 2.03772 0.920703i 0.107397 0.0485253i
\(361\) 4.69632 1.37896i 0.247175 0.0725771i
\(362\) 14.9538 + 19.9759i 0.785953 + 1.04991i
\(363\) −9.77858 3.64722i −0.513242 0.191429i
\(364\) −4.43678 30.8585i −0.232550 1.61742i
\(365\) 21.6410 + 0.0870898i 1.13274 + 0.00455849i
\(366\) −0.0257600 0.0223212i −0.00134650 0.00116675i
\(367\) −19.4385 + 19.4385i −1.01468 + 1.01468i −0.0147888 + 0.999891i \(0.504708\pi\)
−0.999891 + 0.0147888i \(0.995292\pi\)
\(368\) 3.09844 + 3.66055i 0.161518 + 0.190819i
\(369\) 1.12917i 0.0587820i
\(370\) −7.56115 4.16829i −0.393085 0.216699i
\(371\) 43.5137 27.9646i 2.25912 1.45185i
\(372\) −4.54697 + 6.07404i −0.235749 + 0.314924i
\(373\) −4.34306 + 11.6442i −0.224875 + 0.602913i −0.999567 0.0294256i \(-0.990632\pi\)
0.774692 + 0.632339i \(0.217905\pi\)
\(374\) 1.04012 + 0.149547i 0.0537834 + 0.00773289i
\(375\) −11.0849 + 1.45741i −0.572424 + 0.0752604i
\(376\) −10.2705 6.60044i −0.529660 0.340392i
\(377\) −41.0190 + 15.2993i −2.11259 + 0.787954i
\(378\) −2.35788 4.31814i −0.121276 0.222101i
\(379\) 22.1103 + 25.5167i 1.13573 + 1.31070i 0.944258 + 0.329205i \(0.106781\pi\)
0.191472 + 0.981498i \(0.438674\pi\)
\(380\) −6.70267 5.05977i −0.343840 0.259561i
\(381\) −10.7450 3.15503i −0.550486 0.161637i
\(382\) 5.32337 + 14.2725i 0.272367 + 0.730245i
\(383\) −5.53752 25.4556i −0.282954 1.30072i −0.870757 0.491714i \(-0.836371\pi\)
0.587803 0.809004i \(-0.299993\pi\)
\(384\) 0.281733 + 0.959493i 0.0143771 + 0.0489639i
\(385\) 6.21883 + 5.43262i 0.316941 + 0.276872i
\(386\) −4.47425 9.79725i −0.227733 0.498667i
\(387\) 2.09093 + 1.56525i 0.106288 + 0.0795662i
\(388\) −3.09488 0.673250i −0.157119 0.0341791i
\(389\) −0.632306 + 0.729720i −0.0320592 + 0.0369983i −0.771553 0.636165i \(-0.780520\pi\)
0.739494 + 0.673164i \(0.235065\pi\)
\(390\) −11.8889 7.70829i −0.602016 0.390324i
\(391\) −3.28570 + 5.85517i −0.166165 + 0.296109i
\(392\) −12.1664 12.1664i −0.614499 0.614499i
\(393\) −0.0578200 0.808429i −0.00291663 0.0407799i
\(394\) 8.85852 + 13.7841i 0.446286 + 0.694434i
\(395\) 25.1048 9.24868i 1.26316 0.465352i
\(396\) −0.682764 + 0.311808i −0.0343102 + 0.0156689i
\(397\) 7.89714 5.91172i 0.396346 0.296701i −0.382452 0.923975i \(-0.624920\pi\)
0.778798 + 0.627274i \(0.215829\pi\)
\(398\) −21.4608 11.7185i −1.07573 0.587396i
\(399\) −9.98994 + 15.5446i −0.500123 + 0.778206i
\(400\) 0.0402423 4.99984i 0.00201211 0.249992i
\(401\) 6.46808 22.0282i 0.323000 1.10004i −0.624697 0.780867i \(-0.714777\pi\)
0.947697 0.319171i \(-0.103404\pi\)
\(402\) −7.55814 0.540569i −0.376966 0.0269611i
\(403\) 47.9560 + 3.42988i 2.38886 + 0.170854i
\(404\) 0.943094 3.21188i 0.0469207 0.159797i
\(405\) −2.18304 0.484099i −0.108476 0.0240551i
\(406\) −18.3773 + 28.5957i −0.912051 + 1.41918i
\(407\) 2.54371 + 1.38897i 0.126087 + 0.0688486i
\(408\) −1.12074 + 0.838978i −0.0554850 + 0.0415356i
\(409\) 32.3656 14.7809i 1.60037 0.730867i 0.602632 0.798019i \(-0.294119\pi\)
0.997743 + 0.0671528i \(0.0213915\pi\)
\(410\) 2.29248 + 1.05811i 0.113218 + 0.0522564i
\(411\) −4.16171 6.47575i −0.205282 0.319425i
\(412\) 0.903417 + 12.6314i 0.0445081 + 0.622305i
\(413\) −21.3858 21.3858i −1.05233 1.05233i
\(414\) −0.286745 4.78725i −0.0140927 0.235281i
\(415\) 0.493322 0.760875i 0.0242162 0.0373499i
\(416\) 4.14959 4.78889i 0.203451 0.234794i
\(417\) −0.145970 0.0317539i −0.00714820 0.00155499i
\(418\) 2.25674 + 1.68938i 0.110381 + 0.0826300i
\(419\) −8.32405 18.2271i −0.406656 0.890453i −0.996552 0.0829734i \(-0.973558\pi\)
0.589896 0.807480i \(-0.299169\pi\)
\(420\) −10.9764 + 0.740662i −0.535593 + 0.0361406i
\(421\) −8.95419 30.4952i −0.436401 1.48624i −0.825157 0.564904i \(-0.808913\pi\)
0.388756 0.921341i \(-0.372905\pi\)
\(422\) −1.02095 4.69324i −0.0496991 0.228463i
\(423\) 4.26645 + 11.4388i 0.207442 + 0.556174i
\(424\) 10.0874 + 2.96193i 0.489888 + 0.143844i
\(425\) 6.57804 2.39335i 0.319082 0.116095i
\(426\) 2.93682 + 3.38928i 0.142290 + 0.164211i
\(427\) 0.0803693 + 0.147185i 0.00388934 + 0.00712280i
\(428\) −12.2542 + 4.57058i −0.592329 + 0.220927i
\(429\) 4.00119 + 2.57141i 0.193179 + 0.124149i
\(430\) 5.13720 2.77834i 0.247738 0.133984i
\(431\) 2.41040 + 0.346563i 0.116105 + 0.0166934i 0.200122 0.979771i \(-0.435866\pi\)
−0.0840174 + 0.996464i \(0.526775\pi\)
\(432\) 0.349464 0.936950i 0.0168136 0.0450790i
\(433\) 14.8669 19.8599i 0.714459 0.954406i −0.285533 0.958369i \(-0.592171\pi\)
0.999992 + 0.00396308i \(0.00126149\pi\)
\(434\) 31.4038 20.1820i 1.50743 0.968767i
\(435\) 4.29277 + 14.8405i 0.205822 + 0.711547i
\(436\) 1.64593i 0.0788257i
\(437\) −15.2642 + 9.56189i −0.730184 + 0.457407i
\(438\) 6.84354 6.84354i 0.326997 0.326997i
\(439\) 3.49731 + 3.03044i 0.166918 + 0.144635i 0.734314 0.678810i \(-0.237504\pi\)
−0.567397 + 0.823445i \(0.692049\pi\)
\(440\) −0.00675424 + 1.67837i −0.000321996 + 0.0800130i
\(441\) 2.44866 + 17.0308i 0.116603 + 0.810992i
\(442\) 8.31180 + 3.10014i 0.395352 + 0.147459i
\(443\) 7.09989 + 9.48434i 0.337326 + 0.450615i 0.936844 0.349746i \(-0.113732\pi\)
−0.599519 + 0.800361i \(0.704641\pi\)
\(444\) −3.70483 + 1.08783i −0.175823 + 0.0516264i
\(445\) −10.2853 + 27.2406i −0.487568 + 1.29133i
\(446\) 4.80912 10.5305i 0.227718 0.498633i
\(447\) −12.0591 + 6.58475i −0.570375 + 0.311448i
\(448\) 0.350986 4.90742i 0.0165825 0.231854i
\(449\) 3.55513 3.08054i 0.167777 0.145380i −0.566925 0.823769i \(-0.691867\pi\)
0.734702 + 0.678389i \(0.237322\pi\)
\(450\) −3.02851 + 3.97846i −0.142765 + 0.187546i
\(451\) −0.770955 0.352083i −0.0363028 0.0165789i
\(452\) −4.85846 + 1.05689i −0.228523 + 0.0497121i
\(453\) 9.19515 16.8397i 0.432026 0.791197i
\(454\) 1.47346 10.2481i 0.0691528 0.480968i
\(455\) 41.5515 + 55.9744i 1.94796 + 2.62412i
\(456\) −3.71749 + 0.534494i −0.174087 + 0.0250300i
\(457\) −3.88867 + 17.8759i −0.181904 + 0.836201i 0.792229 + 0.610224i \(0.208921\pi\)
−0.974133 + 0.225976i \(0.927443\pi\)
\(458\) −21.3201 + 1.52484i −0.996221 + 0.0712512i
\(459\) 1.39998 0.0653455
\(460\) −9.98799 3.90385i −0.465693 0.182018i
\(461\) −27.8588 −1.29751 −0.648756 0.760996i \(-0.724711\pi\)
−0.648756 + 0.760996i \(0.724711\pi\)
\(462\) 3.68348 0.263448i 0.171371 0.0122567i
\(463\) −6.28766 + 28.9039i −0.292212 + 1.34328i 0.563624 + 0.826032i \(0.309407\pi\)
−0.855836 + 0.517247i \(0.826957\pi\)
\(464\) −6.83863 + 0.983246i −0.317475 + 0.0456461i
\(465\) 2.48207 16.7834i 0.115103 0.778314i
\(466\) −2.51558 + 17.4963i −0.116532 + 0.810499i
\(467\) −8.25213 + 15.1126i −0.381863 + 0.699330i −0.995950 0.0899086i \(-0.971343\pi\)
0.614087 + 0.789238i \(0.289524\pi\)
\(468\) −6.19179 + 1.34694i −0.286216 + 0.0622624i
\(469\) 33.9117 + 15.4870i 1.56590 + 0.715122i
\(470\) 27.2215 + 2.05706i 1.25564 + 0.0948852i
\(471\) −3.51086 + 3.04218i −0.161772 + 0.140176i
\(472\) 0.438538 6.13157i 0.0201854 0.282228i
\(473\) −1.72067 + 0.939555i −0.0791164 + 0.0432008i
\(474\) 4.97037 10.8836i 0.228297 0.499900i
\(475\) 18.5653 + 2.82199i 0.851836 + 0.129482i
\(476\) 6.60884 1.94053i 0.302916 0.0889441i
\(477\) −6.30037 8.41632i −0.288474 0.385357i
\(478\) −13.4006 4.99816i −0.612928 0.228610i
\(479\) −3.77808 26.2771i −0.172625 1.20063i −0.873311 0.487163i \(-0.838032\pi\)
0.700686 0.713469i \(-0.252877\pi\)
\(480\) −1.57476 1.58749i −0.0718778 0.0724586i
\(481\) 18.4910 + 16.0225i 0.843117 + 0.730565i
\(482\) −12.3107 + 12.3107i −0.560737 + 0.560737i
\(483\) −6.90913 + 22.5610i −0.314376 + 1.02656i
\(484\) 10.4366i 0.474391i
\(485\) 6.80331 1.96793i 0.308922 0.0893590i
\(486\) −0.841254 + 0.540641i −0.0381600 + 0.0245240i
\(487\) 6.50751 8.69302i 0.294884 0.393918i −0.628492 0.777816i \(-0.716328\pi\)
0.923376 + 0.383898i \(0.125418\pi\)
\(488\) −0.0119116 + 0.0319363i −0.000539213 + 0.00144569i
\(489\) −11.3723 1.63509i −0.514273 0.0739413i
\(490\) 36.8713 + 10.9878i 1.66568 + 0.496376i
\(491\) 5.29304 + 3.40163i 0.238871 + 0.153513i 0.654600 0.755975i \(-0.272837\pi\)
−0.415729 + 0.909489i \(0.636473\pi\)
\(492\) 1.05797 0.394603i 0.0476971 0.0177901i
\(493\) −4.63549 8.48927i −0.208772 0.382337i
\(494\) 15.5847 + 17.9857i 0.701189 + 0.809215i
\(495\) 1.01121 1.33955i 0.0454507 0.0602084i
\(496\) 7.28008 + 2.13762i 0.326885 + 0.0959821i
\(497\) −7.71068 20.6731i −0.345871 0.927317i
\(498\) −0.0862029 0.396268i −0.00386284 0.0177572i
\(499\) −8.03873 27.3774i −0.359863 1.22558i −0.918250 0.396000i \(-0.870398\pi\)
0.558387 0.829580i \(-0.311420\pi\)
\(500\) 5.23931 + 9.87672i 0.234309 + 0.441700i
\(501\) −6.23376 13.6500i −0.278504 0.609839i
\(502\) −12.6027 9.43424i −0.562485 0.421071i
\(503\) 41.4530 + 9.01756i 1.84830 + 0.402073i 0.993203 0.116396i \(-0.0371342\pi\)
0.855097 + 0.518469i \(0.173498\pi\)
\(504\) −3.22189 + 3.71825i −0.143514 + 0.165624i
\(505\) 1.56164 + 7.32047i 0.0694923 + 0.325757i
\(506\) 3.35797 + 1.29692i 0.149280 + 0.0576553i
\(507\) 19.1998 + 19.1998i 0.852691 + 0.852691i
\(508\) 0.798904 + 11.1701i 0.0354456 + 0.495595i
\(509\) 20.6803 + 32.1791i 0.916637 + 1.42632i 0.904540 + 0.426389i \(0.140214\pi\)
0.0120972 + 0.999927i \(0.496149\pi\)
\(510\) 1.31189 2.84230i 0.0580913 0.125859i
\(511\) −43.3134 + 19.7806i −1.91607 + 0.875042i
\(512\) 0.800541 0.599278i 0.0353793 0.0264846i
\(513\) 3.29631 + 1.79992i 0.145536 + 0.0794686i
\(514\) −2.57635 + 4.00888i −0.113638 + 0.176824i
\(515\) −15.2133 23.8831i −0.670376 1.05241i
\(516\) 0.735856 2.50610i 0.0323943 0.110325i
\(517\) −9.14032 0.653729i −0.401991 0.0287510i
\(518\) 18.9487 + 1.35524i 0.832558 + 0.0595457i
\(519\) 2.07544 7.06830i 0.0911017 0.310264i
\(520\) −3.06755 + 13.8330i −0.134521 + 0.606619i
\(521\) −6.92156 + 10.7702i −0.303239 + 0.471849i −0.959114 0.283021i \(-0.908664\pi\)
0.655875 + 0.754870i \(0.272300\pi\)
\(522\) 6.06384 + 3.31111i 0.265407 + 0.144923i
\(523\) 8.79048 6.58047i 0.384381 0.287744i −0.389561 0.921001i \(-0.627373\pi\)
0.773942 + 0.633257i \(0.218282\pi\)
\(524\) −0.737251 + 0.336691i −0.0322070 + 0.0147084i
\(525\) 20.8010 13.1327i 0.907831 0.573156i
\(526\) −2.68289 4.17465i −0.116979 0.182023i
\(527\) 0.757782 + 10.5952i 0.0330095 + 0.461533i
\(528\) 0.530750 + 0.530750i 0.0230979 + 0.0230979i
\(529\) −15.4601 + 17.0290i −0.672177 + 0.740390i
\(530\) −22.9911 + 4.90459i −0.998669 + 0.213042i
\(531\) −4.02558 + 4.64577i −0.174695 + 0.201609i
\(532\) 18.0557 + 3.92777i 0.782813 + 0.170291i
\(533\) −5.72794 4.28788i −0.248104 0.185729i
\(534\) 5.40945 + 11.8450i 0.234090 + 0.512585i
\(535\) 19.2403 22.0248i 0.831830 0.952213i
\(536\) 2.13481 + 7.27051i 0.0922099 + 0.314038i
\(537\) −3.36724 15.4790i −0.145307 0.667967i
\(538\) −3.99826 10.7198i −0.172377 0.462162i
\(539\) −12.3916 3.63849i −0.533742 0.156721i
\(540\) 0.309316 + 2.21457i 0.0133108 + 0.0953000i
\(541\) −1.04569 1.20679i −0.0449578 0.0518840i 0.732825 0.680417i \(-0.238201\pi\)
−0.777783 + 0.628533i \(0.783656\pi\)
\(542\) 0.0471797 + 0.0864032i 0.00202654 + 0.00371134i
\(543\) −23.3797 + 8.72018i −1.00332 + 0.374219i
\(544\) 1.17774 + 0.756887i 0.0504952 + 0.0324513i
\(545\) 1.75082 + 3.23729i 0.0749968 + 0.138670i
\(546\) 30.8585 + 4.43678i 1.32062 + 0.189877i
\(547\) −5.80148 + 15.5544i −0.248054 + 0.665057i 0.751930 + 0.659243i \(0.229123\pi\)
−0.999983 + 0.00581380i \(0.998149\pi\)
\(548\) −4.61309 + 6.16236i −0.197061 + 0.263243i
\(549\) 0.0286744 0.0184279i 0.00122379 0.000786485i
\(550\) −1.77204 3.30827i −0.0755600 0.141065i
\(551\) 25.9481i 1.10542i
\(552\) −4.38521 + 1.94164i −0.186647 + 0.0826416i
\(553\) −41.6249 + 41.6249i −1.77007 + 1.77007i
\(554\) 2.05761 + 1.78293i 0.0874195 + 0.0757494i
\(555\) 6.12966 6.08053i 0.260190 0.258104i
\(556\) 0.0212596 + 0.147864i 0.000901607 + 0.00627082i
\(557\) −37.4216 13.9575i −1.58560 0.591400i −0.606558 0.795039i \(-0.707450\pi\)
−0.979046 + 0.203639i \(0.934723\pi\)
\(558\) −4.54697 6.07404i −0.192489 0.257135i
\(559\) −15.8801 + 4.66283i −0.671659 + 0.197217i
\(560\) 4.52982 + 10.0255i 0.191420 + 0.423654i
\(561\) −0.436526 + 0.955858i −0.0184301 + 0.0403563i
\(562\) 9.29842 5.07732i 0.392230 0.214174i
\(563\) 0.445899 6.23449i 0.0187924 0.262752i −0.979366 0.202094i \(-0.935225\pi\)
0.998159 0.0606584i \(-0.0193200\pi\)
\(564\) 9.22661 7.99490i 0.388510 0.336646i
\(565\) 8.43160 7.24683i 0.354720 0.304876i
\(566\) 3.19845 + 1.46068i 0.134441 + 0.0613971i
\(567\) 4.80752 1.04581i 0.201897 0.0439200i
\(568\) 2.14927 3.93609i 0.0901812 0.165155i
\(569\) 2.54810 17.7224i 0.106822 0.742963i −0.864057 0.503394i \(-0.832085\pi\)
0.970879 0.239569i \(-0.0770063\pi\)
\(570\) 6.74318 5.00566i 0.282441 0.209664i
\(571\) −6.19033 + 0.890035i −0.259057 + 0.0372468i −0.270620 0.962686i \(-0.587229\pi\)
0.0115625 + 0.999933i \(0.496319\pi\)
\(572\) 1.01101 4.64752i 0.0422723 0.194323i
\(573\) −15.1941 + 1.08671i −0.634744 + 0.0453978i
\(574\) −5.55545 −0.231880
\(575\) 23.7975 2.94623i 0.992423 0.122866i
\(576\) −1.00000 −0.0416667
\(577\) −8.60566 + 0.615489i −0.358258 + 0.0256231i −0.249309 0.968424i \(-0.580203\pi\)
−0.108950 + 0.994047i \(0.534749\pi\)
\(578\) 3.19699 14.6963i 0.132977 0.611287i
\(579\) 10.6609 1.53281i 0.443053 0.0637014i
\(580\) 12.4046 9.20833i 0.515074 0.382355i
\(581\) −0.283949 + 1.97491i −0.0117802 + 0.0819331i
\(582\) 1.51791 2.77984i 0.0629193 0.115228i
\(583\) 7.71087 1.67740i 0.319352 0.0694707i
\(584\) −8.80363 4.02048i −0.364297 0.166369i
\(585\) 10.7455 9.23561i 0.444273 0.381845i
\(586\) 19.1224 16.5697i 0.789941 0.684488i
\(587\) 0.985348 13.7770i 0.0406697 0.568636i −0.935737 0.352698i \(-0.885264\pi\)
0.976407 0.215939i \(-0.0692811\pi\)
\(588\) 15.1013 8.24594i 0.622767 0.340057i
\(589\) −11.8378 + 25.9211i −0.487766 + 1.06806i
\(590\) 5.65977 + 12.5263i 0.233009 + 0.515701i
\(591\) −15.7215 + 4.61625i −0.646697 + 0.189887i
\(592\) 2.31395 + 3.09108i 0.0951028 + 0.127042i
\(593\) 15.3866 + 5.73890i 0.631851 + 0.235668i 0.644925 0.764246i \(-0.276889\pi\)
−0.0130734 + 0.999915i \(0.504162\pi\)
\(594\) −0.106821 0.742954i −0.00438291 0.0304838i
\(595\) −10.9344 + 10.8467i −0.448266 + 0.444672i
\(596\) 10.3838 + 8.99761i 0.425337 + 0.368556i
\(597\) 17.2900 17.2900i 0.707634 0.707634i
\(598\) 25.3732 + 16.7245i 1.03759 + 0.683914i
\(599\) 30.9444i 1.26435i −0.774824 0.632177i \(-0.782161\pi\)
0.774824 0.632177i \(-0.217839\pi\)
\(600\) 4.78597 + 1.44723i 0.195386 + 0.0590829i
\(601\) 19.4352 12.4902i 0.792778 0.509487i −0.0804740 0.996757i \(-0.525643\pi\)
0.873252 + 0.487269i \(0.162007\pi\)
\(602\) −7.70097 + 10.2873i −0.313868 + 0.419279i
\(603\) 2.64805 7.09969i 0.107837 0.289122i
\(604\) −18.9913 2.73054i −0.772745 0.111104i
\(605\) −11.1017 20.5272i −0.451348 0.834550i
\(606\) 2.81608 + 1.80978i 0.114395 + 0.0735174i
\(607\) −8.03428 + 2.99663i −0.326101 + 0.121630i −0.507183 0.861839i \(-0.669313\pi\)
0.181081 + 0.983468i \(0.442040\pi\)
\(608\) 1.79992 + 3.29631i 0.0729965 + 0.133683i
\(609\) −22.2599 25.6892i −0.902015 1.04098i
\(610\) −0.0105432 0.0754844i −0.000426880 0.00305628i
\(611\) −74.2271 21.7950i −3.00291 0.881733i
\(612\) −0.489243 1.31171i −0.0197765 0.0530228i
\(613\) 1.26685 + 5.82362i 0.0511676 + 0.235214i 0.995627 0.0934132i \(-0.0297777\pi\)
−0.944460 + 0.328627i \(0.893414\pi\)
\(614\) 1.58664 + 5.40358i 0.0640314 + 0.218071i
\(615\) −1.66112 + 1.90152i −0.0669828 + 0.0766766i
\(616\) −1.53408 3.35917i −0.0618099 0.135345i
\(617\) 12.6855 + 9.49624i 0.510699 + 0.382304i 0.823323 0.567572i \(-0.192117\pi\)
−0.312625 + 0.949877i \(0.601208\pi\)
\(618\) −12.3743 2.69186i −0.497766 0.108282i
\(619\) −29.7685 + 34.3547i −1.19650 + 1.38083i −0.290865 + 0.956764i \(0.593943\pi\)
−0.905631 + 0.424066i \(0.860602\pi\)
\(620\) −16.5926 + 3.53964i −0.666376 + 0.142155i
\(621\) 4.67412 + 1.07359i 0.187566 + 0.0430819i
\(622\) −5.83555 5.83555i −0.233984 0.233984i
\(623\) −4.57046 63.9034i −0.183112 2.56023i
\(624\) 3.42583 + 5.33069i 0.137143 + 0.213398i
\(625\) −20.8111 13.8528i −0.832442 0.554112i
\(626\) −9.76973 + 4.46168i −0.390477 + 0.178325i
\(627\) −2.25674 + 1.68938i −0.0901256 + 0.0674671i
\(628\) 4.07729 + 2.22637i 0.162702 + 0.0888418i
\(629\) −2.92252 + 4.54753i −0.116528 + 0.181322i
\(630\) 2.38175 10.7404i 0.0948911 0.427909i
\(631\) −13.3158 + 45.3496i −0.530095 + 1.80534i 0.0602459 + 0.998184i \(0.480812\pi\)
−0.590341 + 0.807154i \(0.701007\pi\)
\(632\) −11.9344 0.853562i −0.474723 0.0339529i
\(633\) 4.79076 + 0.342642i 0.190416 + 0.0136188i
\(634\) 1.55356 5.29092i 0.0616996 0.210129i
\(635\) −13.4533 21.1201i −0.533878 0.838127i
\(636\) −5.68391 + 8.84433i −0.225382 + 0.350701i
\(637\) −95.6910 52.2513i −3.79142 2.07027i
\(638\) −4.15146 + 3.10775i −0.164358 + 0.123037i
\(639\) −4.07939 + 1.86299i −0.161378 + 0.0736989i
\(640\) −0.937074 + 2.03024i −0.0370411 + 0.0802525i
\(641\) 1.54625 + 2.40601i 0.0610731 + 0.0950316i 0.870447 0.492262i \(-0.163830\pi\)
−0.809374 + 0.587294i \(0.800193\pi\)
\(642\) −0.933033 13.0455i −0.0368239 0.514865i
\(643\) 2.03772 + 2.03772i 0.0803597 + 0.0803597i 0.746144 0.665784i \(-0.231903\pi\)
−0.665784 + 0.746144i \(0.731903\pi\)
\(644\) 23.5531 1.41077i 0.928121 0.0555922i
\(645\) 1.21849 + 5.71186i 0.0479778 + 0.224904i
\(646\) −3.44321 + 3.97368i −0.135471 + 0.156342i
\(647\) −20.3423 4.42519i −0.799737 0.173972i −0.205916 0.978570i \(-0.566017\pi\)
−0.593820 + 0.804598i \(0.702381\pi\)
\(648\) 0.800541 + 0.599278i 0.0314482 + 0.0235419i
\(649\) −1.91676 4.19711i −0.0752392 0.164751i
\(650\) −8.68118 30.4705i −0.340504 1.19515i
\(651\) 10.5170 + 35.8176i 0.412194 + 1.40380i
\(652\) 2.44221 + 11.2267i 0.0956445 + 0.439670i
\(653\) 1.10983 + 2.97558i 0.0434312 + 0.116443i 0.956855 0.290567i \(-0.0938439\pi\)
−0.913423 + 0.407011i \(0.866571\pi\)
\(654\) 1.57926 + 0.463712i 0.0617538 + 0.0181326i
\(655\) 1.09191 1.44645i 0.0426646 0.0565177i
\(656\) −0.739447 0.853367i −0.0288705 0.0333184i
\(657\) 4.63828 + 8.49438i 0.180957 + 0.331397i
\(658\) −56.2784 + 20.9908i −2.19396 + 0.818305i
\(659\) 39.7931 + 25.5735i 1.55012 + 0.996202i 0.985269 + 0.171010i \(0.0547030\pi\)
0.564852 + 0.825193i \(0.308933\pi\)
\(660\) −1.60848 0.479331i −0.0626099 0.0186579i
\(661\) −27.9161 4.01373i −1.08581 0.156116i −0.423908 0.905705i \(-0.639342\pi\)
−0.661903 + 0.749589i \(0.730251\pi\)
\(662\) 1.86200 4.99222i 0.0723687 0.194028i
\(663\) −5.31627 + 7.10170i −0.206467 + 0.275807i
\(664\) −0.341159 + 0.219249i −0.0132395 + 0.00850853i
\(665\) −39.6908 + 11.4810i −1.53914 + 0.445214i
\(666\) 3.86123i 0.149620i
\(667\) −8.96641 31.8979i −0.347181 1.23509i
\(668\) −10.6109 + 10.6109i −0.410549 + 0.410549i
\(669\) 8.74905 + 7.58110i 0.338258 + 0.293102i
\(670\) −11.9327 12.0291i −0.461000 0.464725i
\(671\) 0.00364102 + 0.0253239i 0.000140560 + 0.000977617i
\(672\) 4.60975 + 1.71935i 0.177825 + 0.0663253i
\(673\) −6.28919 8.40137i −0.242430 0.323849i 0.662779 0.748815i \(-0.269377\pi\)
−0.905209 + 0.424966i \(0.860286\pi\)
\(674\) 9.48139 2.78399i 0.365210 0.107235i
\(675\) −2.96408 4.02669i −0.114087 0.154987i
\(676\) 11.2796 24.6988i 0.433830 0.949955i
\(677\) 15.9536 8.71135i 0.613148 0.334804i −0.142487 0.989797i \(-0.545510\pi\)
0.755635 + 0.654992i \(0.227328\pi\)
\(678\) 0.354705 4.95942i 0.0136224 0.190465i
\(679\) −11.7767 + 10.2046i −0.451948 + 0.391615i
\(680\) −3.12155 0.235888i −0.119706 0.00904589i
\(681\) 9.41788 + 4.30100i 0.360894 + 0.164815i
\(682\) 5.56492 1.21057i 0.213092 0.0463553i
\(683\) −8.35695 + 15.3046i −0.319770 + 0.585614i −0.987281 0.158985i \(-0.949178\pi\)
0.667511 + 0.744600i \(0.267360\pi\)
\(684\) 0.534494 3.71749i 0.0204369 0.142142i
\(685\) 2.51816 17.0275i 0.0962141 0.650587i
\(686\) −49.7018 + 7.14603i −1.89762 + 0.272837i
\(687\) 4.54348 20.8861i 0.173345 0.796853i
\(688\) −2.60524 + 0.186331i −0.0993239 + 0.00710379i
\(689\) 66.6185 2.53796
\(690\) 6.55966 8.48357i 0.249722 0.322964i
\(691\) −28.9191 −1.10013 −0.550067 0.835121i \(-0.685398\pi\)
−0.550067 + 0.835121i \(0.685398\pi\)
\(692\) −7.34793 + 0.525534i −0.279326 + 0.0199778i
\(693\) −0.784980 + 3.60850i −0.0298189 + 0.137075i
\(694\) 35.6952 5.13219i 1.35497 0.194815i
\(695\) −0.199101 0.268211i −0.00755233 0.0101738i
\(696\) 0.983246 6.83863i 0.0372699 0.259218i
\(697\) 0.757602 1.38745i 0.0286962 0.0525532i
\(698\) 22.5006 4.89471i 0.851661 0.185268i
\(699\) −16.0788 7.34295i −0.608157 0.277736i
\(700\) −19.5738 14.9001i −0.739822 0.563172i
\(701\) −16.8924 + 14.6373i −0.638016 + 0.552844i −0.912669 0.408700i \(-0.865982\pi\)
0.274653 + 0.961543i \(0.411437\pi\)
\(702\) 0.452048 6.32046i 0.0170615 0.238550i
\(703\) −12.7278 + 6.94992i −0.480039 + 0.262121i
\(704\) 0.311808 0.682764i 0.0117517 0.0257327i
\(705\) −9.64293 + 25.5393i −0.363174 + 0.961867i
\(706\) 27.7753 8.15558i 1.04534 0.306939i
\(707\) −9.86977 13.1845i −0.371191 0.495853i
\(708\) 5.75964 + 2.14824i 0.216461 + 0.0807357i
\(709\) 6.31291 + 43.9073i 0.237086 + 1.64897i 0.666237 + 0.745740i \(0.267904\pi\)
−0.429151 + 0.903233i \(0.641187\pi\)
\(710\) −0.0403553 + 10.0279i −0.00151451 + 0.376341i
\(711\) 9.04242 + 7.83530i 0.339117 + 0.293847i
\(712\) 9.20779 9.20779i 0.345077 0.345077i
\(713\) −5.59505 + 35.9553i −0.209536 + 1.34654i
\(714\) 6.88785i 0.257771i
\(715\) 2.95520 + 10.2164i 0.110518 + 0.382072i
\(716\) −13.3263 + 8.56428i −0.498027 + 0.320062i
\(717\) 8.57108 11.4496i 0.320093 0.427594i
\(718\) −4.31482 + 11.5685i −0.161028 + 0.431732i
\(719\) 1.41070 + 0.202828i 0.0526103 + 0.00756422i 0.168570 0.985690i \(-0.446085\pi\)
−0.115959 + 0.993254i \(0.536994\pi\)
\(720\) 1.96685 1.06373i 0.0733000 0.0396428i
\(721\) 52.4141 + 33.6845i 1.95200 + 1.25448i
\(722\) 4.58598 1.71048i 0.170673 0.0636576i
\(723\) −8.34370 15.2804i −0.310306 0.568282i
\(724\) 16.3407 + 18.8582i 0.607299 + 0.700860i
\(725\) −14.6029 + 31.3065i −0.542336 + 1.16269i
\(726\) −10.0139 2.94033i −0.371649 0.109126i
\(727\) −5.48977 14.7186i −0.203604 0.545884i 0.794511 0.607250i \(-0.207727\pi\)
−0.998115 + 0.0613656i \(0.980454\pi\)
\(728\) −6.62690 30.4633i −0.245609 1.12905i
\(729\) −0.281733 0.959493i −0.0104345 0.0355368i
\(730\) 21.5921 1.45698i 0.799159 0.0539254i
\(731\) −1.51901 3.32617i −0.0561826 0.123023i
\(732\) −0.0272867 0.0204266i −0.00100855 0.000754989i
\(733\) 21.6440 + 4.70837i 0.799441 + 0.173908i 0.593687 0.804696i \(-0.297672\pi\)
0.205754 + 0.978604i \(0.434035\pi\)
\(734\) −18.0022 + 20.7757i −0.664474 + 0.766844i
\(735\) −20.9305 + 32.2822i −0.772034 + 1.19075i
\(736\) 3.35169 + 3.43019i 0.123545 + 0.126438i
\(737\) 4.02173 + 4.02173i 0.148142 + 0.148142i
\(738\) 0.0805538 + 1.12629i 0.00296523 + 0.0414593i
\(739\) −26.9555 41.9435i −0.991573 1.54292i −0.831284 0.555848i \(-0.812394\pi\)
−0.160290 0.987070i \(-0.551243\pi\)
\(740\) −7.83925 3.61826i −0.288176 0.133010i
\(741\) −21.6479 + 9.88625i −0.795255 + 0.363181i
\(742\) 41.4079 30.9976i 1.52013 1.13796i
\(743\) −24.9166 13.6055i −0.914101 0.499137i −0.0479107 0.998852i \(-0.515256\pi\)
−0.866190 + 0.499715i \(0.833438\pi\)
\(744\) −4.10207 + 6.38294i −0.150389 + 0.234010i
\(745\) −29.9943 6.65140i −1.09891 0.243688i
\(746\) −3.50130 + 11.9243i −0.128192 + 0.436581i
\(747\) 0.404503 + 0.0289306i 0.0148000 + 0.00105852i
\(748\) 1.04814 + 0.0749645i 0.0383238 + 0.00274097i
\(749\) −18.1287 + 61.7407i −0.662409 + 2.25596i
\(750\) −10.9527 + 2.24449i −0.399937 + 0.0819571i
\(751\) −2.28387 + 3.55377i −0.0833395 + 0.129679i −0.880421 0.474193i \(-0.842740\pi\)
0.797081 + 0.603872i \(0.206376\pi\)
\(752\) −10.7152 5.85094i −0.390743 0.213362i
\(753\) 12.6027 9.43424i 0.459267 0.343803i
\(754\) −39.8230 + 18.1866i −1.45027 + 0.662316i
\(755\) 40.2575 14.8310i 1.46512 0.539756i
\(756\) −2.65993 4.13893i −0.0967407 0.150531i
\(757\) −1.19537 16.7135i −0.0434466 0.607462i −0.971806 0.235780i \(-0.924236\pi\)
0.928360 0.371682i \(-0.121219\pi\)
\(758\) 23.8743 + 23.8743i 0.867154 + 0.867154i
\(759\) −2.19044 + 2.85657i −0.0795080 + 0.103687i
\(760\) −7.04655 4.56872i −0.255605 0.165725i
\(761\) 24.1779 27.9027i 0.876447 1.01147i −0.123370 0.992361i \(-0.539370\pi\)
0.999817 0.0191130i \(-0.00608422\pi\)
\(762\) −10.9427 2.38045i −0.396414 0.0862346i
\(763\) −6.48270 4.85289i −0.234689 0.175686i
\(764\) 6.32799 + 13.8564i 0.228939 + 0.501306i
\(765\) 2.35757 + 2.05952i 0.0852381 + 0.0744619i
\(766\) −7.33939 24.9957i −0.265183 0.903130i
\(767\) −8.27996 38.0624i −0.298972 1.37435i
\(768\) 0.349464 + 0.936950i 0.0126102 + 0.0338093i
\(769\) 10.0901 + 2.96273i 0.363860 + 0.106839i 0.458552 0.888668i \(-0.348368\pi\)
−0.0946919 + 0.995507i \(0.530187\pi\)
\(770\) 6.59054 + 4.97513i 0.237507 + 0.179291i
\(771\) −3.12065 3.60142i −0.112387 0.129702i
\(772\) −5.16178 9.45309i −0.185777 0.340224i
\(773\) 2.65025 0.988494i 0.0953230 0.0355537i −0.301350 &mi