Properties

Label 690.2.w.a.37.7
Level $690$
Weight $2$
Character 690.37
Analytic conductor $5.510$
Analytic rank $0$
Dimension $240$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.w (of order \(44\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(12\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 37.7
Character \(\chi\) \(=\) 690.37
Dual form 690.2.w.a.373.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.877679 + 0.479249i) q^{2} +(0.997452 + 0.0713392i) q^{3} +(0.540641 + 0.841254i) q^{4} +(-1.94930 + 1.09554i) q^{5} +(0.841254 + 0.540641i) q^{6} +(0.266002 + 0.713180i) q^{7} +(0.0713392 + 0.997452i) q^{8} +(0.989821 + 0.142315i) q^{9} +O(q^{10})\) \(q+(0.877679 + 0.479249i) q^{2} +(0.997452 + 0.0713392i) q^{3} +(0.540641 + 0.841254i) q^{4} +(-1.94930 + 1.09554i) q^{5} +(0.841254 + 0.540641i) q^{6} +(0.266002 + 0.713180i) q^{7} +(0.0713392 + 0.997452i) q^{8} +(0.989821 + 0.142315i) q^{9} +(-2.23590 + 0.0273353i) q^{10} +(-1.07796 + 3.67121i) q^{11} +(0.479249 + 0.877679i) q^{12} +(1.99930 + 0.745701i) q^{13} +(-0.108326 + 0.753424i) q^{14} +(-2.02249 + 0.953692i) q^{15} +(-0.415415 + 0.909632i) q^{16} +(-3.59684 + 0.782446i) q^{17} +(0.800541 + 0.599278i) q^{18} +(0.402082 - 0.258402i) q^{19} +(-1.97550 - 1.04756i) q^{20} +(0.214447 + 0.730339i) q^{21} +(-2.70553 + 2.70553i) q^{22} +(2.66718 + 3.98574i) q^{23} +1.00000i q^{24} +(2.59956 - 4.27110i) q^{25} +(1.39737 + 1.61265i) q^{26} +(0.977147 + 0.212565i) q^{27} +(-0.456153 + 0.609350i) q^{28} +(1.30424 - 2.02944i) q^{29} +(-2.23215 - 0.132242i) q^{30} +(-1.58642 + 1.83082i) q^{31} +(-0.800541 + 0.599278i) q^{32} +(-1.33712 + 3.58495i) q^{33} +(-3.53186 - 1.03705i) q^{34} +(-1.29984 - 1.09879i) q^{35} +(0.415415 + 0.909632i) q^{36} +(2.32132 + 3.10092i) q^{37} +(0.476738 - 0.0340970i) q^{38} +(1.94101 + 0.886429i) q^{39} +(-1.23182 - 1.86618i) q^{40} +(0.610814 + 4.24831i) q^{41} +(-0.161799 + 0.743777i) q^{42} +(0.197108 - 2.75593i) q^{43} +(-3.67121 + 1.07796i) q^{44} +(-2.08537 + 0.806979i) q^{45} +(0.430764 + 4.77645i) q^{46} +(-3.20158 - 3.20158i) q^{47} +(-0.479249 + 0.877679i) q^{48} +(4.85238 - 4.20461i) q^{49} +(4.32850 - 2.50281i) q^{50} +(-3.64350 + 0.523856i) q^{51} +(0.453580 + 2.08507i) q^{52} +(1.42225 - 0.530471i) q^{53} +(0.755750 + 0.654861i) q^{54} +(-1.92069 - 8.33725i) q^{55} +(-0.692386 + 0.316202i) q^{56} +(0.419492 - 0.229060i) q^{57} +(2.11731 - 1.15614i) q^{58} +(7.27790 - 3.32370i) q^{59} +(-1.89574 - 1.18582i) q^{60} +(-3.67344 - 3.18305i) q^{61} +(-2.26978 + 0.846586i) q^{62} +(0.161799 + 0.743777i) q^{63} +(-0.989821 + 0.142315i) q^{64} +(-4.71419 + 0.736727i) q^{65} +(-2.89164 + 2.50562i) q^{66} +(3.93580 - 7.20789i) q^{67} +(-2.60284 - 2.60284i) q^{68} +(2.37604 + 4.16586i) q^{69} +(-0.614250 - 1.58733i) q^{70} +(3.48967 - 1.02466i) q^{71} +(-0.0713392 + 0.997452i) q^{72} +(1.41187 - 6.49025i) q^{73} +(0.551261 + 3.83410i) q^{74} +(2.89764 - 4.07476i) q^{75} +(0.434764 + 0.198550i) q^{76} +(-2.90497 + 0.207768i) q^{77} +(1.27876 + 1.70823i) q^{78} +(2.14420 + 4.69513i) q^{79} +(-0.186773 - 2.22825i) q^{80} +(0.959493 + 0.281733i) q^{81} +(-1.49990 + 4.02138i) q^{82} +(0.565465 - 0.423302i) q^{83} +(-0.498462 + 0.575255i) q^{84} +(6.15413 - 5.46573i) q^{85} +(1.49378 - 2.32436i) q^{86} +(1.44570 - 1.93122i) q^{87} +(-3.73875 - 0.813316i) q^{88} +(0.972526 + 1.12236i) q^{89} +(-2.21703 - 0.291145i) q^{90} +1.62422i q^{91} +(-1.91103 + 4.39863i) q^{92} +(-1.71298 + 1.71298i) q^{93} +(-1.27561 - 4.34431i) q^{94} +(-0.500688 + 0.944203i) q^{95} +(-0.841254 + 0.540641i) q^{96} +(8.22520 + 6.15731i) q^{97} +(6.27389 - 1.36480i) q^{98} +(-1.58946 + 3.48043i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 24q^{6} + O(q^{10}) \) \( 240q - 24q^{6} + 44q^{10} - 16q^{13} + 24q^{16} + 44q^{21} + 72q^{23} + 16q^{25} + 44q^{28} - 16q^{31} - 44q^{33} - 24q^{36} + 44q^{37} + 88q^{43} - 8q^{46} + 48q^{47} + 8q^{50} - 16q^{52} + 56q^{55} + 44q^{57} + 16q^{58} + 88q^{61} + 8q^{62} + 88q^{65} - 132q^{67} + 56q^{70} - 64q^{71} + 16q^{73} - 32q^{75} - 16q^{77} - 16q^{78} + 24q^{81} - 24q^{82} + 92q^{85} - 16q^{87} - 44q^{88} + 116q^{92} - 80q^{93} + 20q^{95} + 24q^{96} - 88q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{21}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.877679 + 0.479249i 0.620613 + 0.338880i
\(3\) 0.997452 + 0.0713392i 0.575879 + 0.0411877i
\(4\) 0.540641 + 0.841254i 0.270320 + 0.420627i
\(5\) −1.94930 + 1.09554i −0.871755 + 0.489943i
\(6\) 0.841254 + 0.540641i 0.343440 + 0.220716i
\(7\) 0.266002 + 0.713180i 0.100539 + 0.269557i 0.977475 0.211051i \(-0.0676887\pi\)
−0.876936 + 0.480608i \(0.840416\pi\)
\(8\) 0.0713392 + 0.997452i 0.0252222 + 0.352653i
\(9\) 0.989821 + 0.142315i 0.329940 + 0.0474383i
\(10\) −2.23590 + 0.0273353i −0.707054 + 0.00864419i
\(11\) −1.07796 + 3.67121i −0.325018 + 1.10691i 0.621273 + 0.783594i \(0.286616\pi\)
−0.946291 + 0.323316i \(0.895202\pi\)
\(12\) 0.479249 + 0.877679i 0.138347 + 0.253364i
\(13\) 1.99930 + 0.745701i 0.554506 + 0.206820i 0.611067 0.791579i \(-0.290741\pi\)
−0.0565606 + 0.998399i \(0.518013\pi\)
\(14\) −0.108326 + 0.753424i −0.0289514 + 0.201361i
\(15\) −2.02249 + 0.953692i −0.522205 + 0.246242i
\(16\) −0.415415 + 0.909632i −0.103854 + 0.227408i
\(17\) −3.59684 + 0.782446i −0.872363 + 0.189771i −0.626394 0.779507i \(-0.715470\pi\)
−0.245969 + 0.969278i \(0.579106\pi\)
\(18\) 0.800541 + 0.599278i 0.188689 + 0.141251i
\(19\) 0.402082 0.258402i 0.0922439 0.0592816i −0.493706 0.869629i \(-0.664358\pi\)
0.585950 + 0.810347i \(0.300722\pi\)
\(20\) −1.97550 1.04756i −0.441736 0.234242i
\(21\) 0.214447 + 0.730339i 0.0467962 + 0.159373i
\(22\) −2.70553 + 2.70553i −0.576820 + 0.576820i
\(23\) 2.66718 + 3.98574i 0.556145 + 0.831085i
\(24\) 1.00000i 0.204124i
\(25\) 2.59956 4.27110i 0.519913 0.854219i
\(26\) 1.39737 + 1.61265i 0.274046 + 0.316266i
\(27\) 0.977147 + 0.212565i 0.188052 + 0.0409082i
\(28\) −0.456153 + 0.609350i −0.0862049 + 0.115156i
\(29\) 1.30424 2.02944i 0.242192 0.376857i −0.698784 0.715333i \(-0.746275\pi\)
0.940975 + 0.338476i \(0.109911\pi\)
\(30\) −2.23215 0.132242i −0.407534 0.0241439i
\(31\) −1.58642 + 1.83082i −0.284929 + 0.328826i −0.880113 0.474764i \(-0.842534\pi\)
0.595184 + 0.803589i \(0.297079\pi\)
\(32\) −0.800541 + 0.599278i −0.141517 + 0.105938i
\(33\) −1.33712 + 3.58495i −0.232762 + 0.624060i
\(34\) −3.53186 1.03705i −0.605709 0.177852i
\(35\) −1.29984 1.09879i −0.219713 0.185729i
\(36\) 0.415415 + 0.909632i 0.0692358 + 0.151605i
\(37\) 2.32132 + 3.10092i 0.381623 + 0.509788i 0.949689 0.313194i \(-0.101399\pi\)
−0.568066 + 0.822983i \(0.692308\pi\)
\(38\) 0.476738 0.0340970i 0.0773371 0.00553126i
\(39\) 1.94101 + 0.886429i 0.310810 + 0.141942i
\(40\) −1.23182 1.86618i −0.194767 0.295069i
\(41\) 0.610814 + 4.24831i 0.0953932 + 0.663474i 0.980272 + 0.197653i \(0.0633319\pi\)
−0.884879 + 0.465821i \(0.845759\pi\)
\(42\) −0.161799 + 0.743777i −0.0249661 + 0.114767i
\(43\) 0.197108 2.75593i 0.0300587 0.420276i −0.960036 0.279876i \(-0.909707\pi\)
0.990095 0.140400i \(-0.0448388\pi\)
\(44\) −3.67121 + 1.07796i −0.553455 + 0.162509i
\(45\) −2.08537 + 0.806979i −0.310869 + 0.120297i
\(46\) 0.430764 + 4.77645i 0.0635127 + 0.704249i
\(47\) −3.20158 3.20158i −0.466999 0.466999i 0.433942 0.900941i \(-0.357122\pi\)
−0.900941 + 0.433942i \(0.857122\pi\)
\(48\) −0.479249 + 0.877679i −0.0691736 + 0.126682i
\(49\) 4.85238 4.20461i 0.693197 0.600659i
\(50\) 4.32850 2.50281i 0.612142 0.353951i
\(51\) −3.64350 + 0.523856i −0.510192 + 0.0733545i
\(52\) 0.453580 + 2.08507i 0.0629003 + 0.289148i
\(53\) 1.42225 0.530471i 0.195361 0.0728658i −0.249879 0.968277i \(-0.580391\pi\)
0.445240 + 0.895411i \(0.353118\pi\)
\(54\) 0.755750 + 0.654861i 0.102844 + 0.0891153i
\(55\) −1.92069 8.33725i −0.258986 1.12419i
\(56\) −0.692386 + 0.316202i −0.0925240 + 0.0422543i
\(57\) 0.419492 0.229060i 0.0555630 0.0303397i
\(58\) 2.11731 1.15614i 0.278017 0.151809i
\(59\) 7.27790 3.32370i 0.947501 0.432709i 0.119124 0.992879i \(-0.461991\pi\)
0.828378 + 0.560170i \(0.189264\pi\)
\(60\) −1.89574 1.18582i −0.244739 0.153089i
\(61\) −3.67344 3.18305i −0.470336 0.407548i 0.387182 0.922004i \(-0.373449\pi\)
−0.857517 + 0.514455i \(0.827994\pi\)
\(62\) −2.26978 + 0.846586i −0.288263 + 0.107517i
\(63\) 0.161799 + 0.743777i 0.0203847 + 0.0937071i
\(64\) −0.989821 + 0.142315i −0.123728 + 0.0177894i
\(65\) −4.71419 + 0.736727i −0.584723 + 0.0913798i
\(66\) −2.89164 + 2.50562i −0.355937 + 0.308421i
\(67\) 3.93580 7.20789i 0.480835 0.880584i −0.518834 0.854875i \(-0.673634\pi\)
0.999669 0.0257089i \(-0.00818431\pi\)
\(68\) −2.60284 2.60284i −0.315640 0.315640i
\(69\) 2.37604 + 4.16586i 0.286042 + 0.501511i
\(70\) −0.614250 1.58733i −0.0734169 0.189722i
\(71\) 3.48967 1.02466i 0.414147 0.121605i −0.0680196 0.997684i \(-0.521668\pi\)
0.482167 + 0.876079i \(0.339850\pi\)
\(72\) −0.0713392 + 0.997452i −0.00840740 + 0.117551i
\(73\) 1.41187 6.49025i 0.165247 0.759627i −0.817686 0.575664i \(-0.804744\pi\)
0.982933 0.183963i \(-0.0588927\pi\)
\(74\) 0.551261 + 3.83410i 0.0640828 + 0.445706i
\(75\) 2.89764 4.07476i 0.334590 0.470513i
\(76\) 0.434764 + 0.198550i 0.0498708 + 0.0227752i
\(77\) −2.90497 + 0.207768i −0.331052 + 0.0236773i
\(78\) 1.27876 + 1.70823i 0.144791 + 0.193419i
\(79\) 2.14420 + 4.69513i 0.241241 + 0.528244i 0.991063 0.133396i \(-0.0425882\pi\)
−0.749822 + 0.661640i \(0.769861\pi\)
\(80\) −0.186773 2.22825i −0.0208819 0.249126i
\(81\) 0.959493 + 0.281733i 0.106610 + 0.0313036i
\(82\) −1.49990 + 4.02138i −0.165636 + 0.444087i
\(83\) 0.565465 0.423302i 0.0620679 0.0464634i −0.567793 0.823171i \(-0.692203\pi\)
0.629861 + 0.776708i \(0.283112\pi\)
\(84\) −0.498462 + 0.575255i −0.0543866 + 0.0627655i
\(85\) 6.15413 5.46573i 0.667510 0.592841i
\(86\) 1.49378 2.32436i 0.161078 0.250642i
\(87\) 1.44570 1.93122i 0.154995 0.207049i
\(88\) −3.73875 0.813316i −0.398552 0.0866998i
\(89\) 0.972526 + 1.12236i 0.103088 + 0.118969i 0.804949 0.593344i \(-0.202193\pi\)
−0.701861 + 0.712314i \(0.747647\pi\)
\(90\) −2.21703 0.291145i −0.233696 0.0306894i
\(91\) 1.62422i 0.170264i
\(92\) −1.91103 + 4.39863i −0.199239 + 0.458589i
\(93\) −1.71298 + 1.71298i −0.177628 + 0.177628i
\(94\) −1.27561 4.34431i −0.131569 0.448082i
\(95\) −0.500688 + 0.944203i −0.0513695 + 0.0968732i
\(96\) −0.841254 + 0.540641i −0.0858601 + 0.0551789i
\(97\) 8.22520 + 6.15731i 0.835143 + 0.625180i 0.928865 0.370418i \(-0.120786\pi\)
−0.0937222 + 0.995598i \(0.529877\pi\)
\(98\) 6.27389 1.36480i 0.633758 0.137866i
\(99\) −1.58946 + 3.48043i −0.159747 + 0.349796i
\(100\) 4.99851 0.122238i 0.499851 0.0122238i
\(101\) 1.96156 13.6430i 0.195183 1.35752i −0.622845 0.782345i \(-0.714023\pi\)
0.818027 0.575179i \(-0.195068\pi\)
\(102\) −3.44888 1.28637i −0.341490 0.127369i
\(103\) −4.79010 8.77241i −0.471982 0.864371i −0.999886 0.0150670i \(-0.995204\pi\)
0.527904 0.849304i \(-0.322978\pi\)
\(104\) −0.601172 + 2.04740i −0.0589498 + 0.200765i
\(105\) −1.21814 1.18872i −0.118878 0.116007i
\(106\) 1.50250 + 0.216028i 0.145936 + 0.0209825i
\(107\) −0.525609 7.34898i −0.0508126 0.710453i −0.957460 0.288564i \(-0.906822\pi\)
0.906648 0.421888i \(-0.138633\pi\)
\(108\) 0.349464 + 0.936950i 0.0336272 + 0.0901580i
\(109\) 3.03951 + 1.95337i 0.291132 + 0.187099i 0.678052 0.735014i \(-0.262825\pi\)
−0.386920 + 0.922113i \(0.626461\pi\)
\(110\) 2.30987 8.23792i 0.220237 0.785455i
\(111\) 2.09419 + 3.25862i 0.198772 + 0.309295i
\(112\) −0.759233 0.0543014i −0.0717407 0.00513100i
\(113\) −11.9558 6.52834i −1.12470 0.614134i −0.194399 0.980923i \(-0.562276\pi\)
−0.930304 + 0.366788i \(0.880457\pi\)
\(114\) 0.477956 0.0447647
\(115\) −9.56570 4.84741i −0.892006 0.452023i
\(116\) 2.41240 0.223986
\(117\) 1.87283 + 1.02264i 0.173143 + 0.0945432i
\(118\) 7.98054 + 0.570779i 0.734668 + 0.0525445i
\(119\) −1.51479 2.35706i −0.138861 0.216072i
\(120\) −1.09554 1.94930i −0.100009 0.177946i
\(121\) −3.06196 1.96780i −0.278360 0.178891i
\(122\) −1.69863 4.55419i −0.153786 0.412317i
\(123\) 0.306187 + 4.28106i 0.0276080 + 0.386010i
\(124\) −2.39787 0.344761i −0.215335 0.0309605i
\(125\) −0.388156 + 11.1736i −0.0347178 + 0.999397i
\(126\) −0.214447 + 0.730339i −0.0191045 + 0.0650638i
\(127\) 5.32619 + 9.75419i 0.472623 + 0.865545i 0.999875 + 0.0158353i \(0.00504073\pi\)
−0.527252 + 0.849709i \(0.676777\pi\)
\(128\) −0.936950 0.349464i −0.0828154 0.0308886i
\(129\) 0.393212 2.73485i 0.0346204 0.240790i
\(130\) −4.49062 1.61266i −0.393854 0.141440i
\(131\) −7.78879 + 17.0551i −0.680510 + 1.49011i 0.181592 + 0.983374i \(0.441875\pi\)
−0.862102 + 0.506735i \(0.830852\pi\)
\(132\) −3.73875 + 0.813316i −0.325417 + 0.0707901i
\(133\) 0.291242 + 0.218021i 0.0252539 + 0.0189048i
\(134\) 6.90875 4.43998i 0.596825 0.383556i
\(135\) −2.13763 + 0.656154i −0.183978 + 0.0564728i
\(136\) −1.03705 3.53186i −0.0889261 0.302855i
\(137\) −5.75959 + 5.75959i −0.492075 + 0.492075i −0.908959 0.416885i \(-0.863122\pi\)
0.416885 + 0.908959i \(0.363122\pi\)
\(138\) 0.0889186 + 4.79501i 0.00756926 + 0.408178i
\(139\) 11.6902i 0.991551i −0.868451 0.495775i \(-0.834884\pi\)
0.868451 0.495775i \(-0.165116\pi\)
\(140\) 0.221611 1.68754i 0.0187296 0.142623i
\(141\) −2.96503 3.42182i −0.249700 0.288169i
\(142\) 3.55387 + 0.773098i 0.298235 + 0.0648769i
\(143\) −4.89279 + 6.53601i −0.409156 + 0.546568i
\(144\) −0.540641 + 0.841254i −0.0450534 + 0.0701045i
\(145\) −0.319020 + 5.38485i −0.0264931 + 0.447187i
\(146\) 4.34962 5.01972i 0.359977 0.415435i
\(147\) 5.13997 3.84773i 0.423937 0.317356i
\(148\) −1.35366 + 3.62930i −0.111270 + 0.298327i
\(149\) 10.3170 + 3.02936i 0.845205 + 0.248174i 0.675536 0.737327i \(-0.263912\pi\)
0.169668 + 0.985501i \(0.445730\pi\)
\(150\) 4.49602 2.18765i 0.367099 0.178621i
\(151\) 3.96417 + 8.68031i 0.322599 + 0.706394i 0.999561 0.0296243i \(-0.00943110\pi\)
−0.676962 + 0.736018i \(0.736704\pi\)
\(152\) 0.286428 + 0.382623i 0.0232324 + 0.0310349i
\(153\) −3.67159 + 0.262597i −0.296830 + 0.0212297i
\(154\) −2.64920 1.20985i −0.213479 0.0974926i
\(155\) 1.08666 5.30682i 0.0872825 0.426254i
\(156\) 0.303677 + 2.11212i 0.0243136 + 0.169105i
\(157\) 1.47772 6.79298i 0.117935 0.542139i −0.879828 0.475292i \(-0.842342\pi\)
0.997763 0.0668471i \(-0.0212940\pi\)
\(158\) −0.368223 + 5.14842i −0.0292942 + 0.409587i
\(159\) 1.45647 0.427657i 0.115505 0.0339154i
\(160\) 0.903962 2.04520i 0.0714644 0.161687i
\(161\) −2.13308 + 2.96240i −0.168110 + 0.233470i
\(162\) 0.707107 + 0.707107i 0.0555556 + 0.0555556i
\(163\) 10.1272 18.5465i 0.793221 1.45268i −0.0960904 0.995373i \(-0.530634\pi\)
0.889311 0.457303i \(-0.151184\pi\)
\(164\) −3.24367 + 2.81066i −0.253288 + 0.219475i
\(165\) −1.32103 8.45303i −0.102842 0.658067i
\(166\) 0.699164 0.100525i 0.0542656 0.00780222i
\(167\) 1.70593 + 7.84206i 0.132009 + 0.606836i 0.994850 + 0.101360i \(0.0323195\pi\)
−0.862841 + 0.505476i \(0.831317\pi\)
\(168\) −0.713180 + 0.266002i −0.0550230 + 0.0205225i
\(169\) −6.38361 5.53143i −0.491047 0.425495i
\(170\) 8.02080 1.84779i 0.615167 0.141719i
\(171\) 0.434764 0.198550i 0.0332472 0.0151835i
\(172\) 2.42500 1.32415i 0.184905 0.100966i
\(173\) −11.4585 + 6.25684i −0.871177 + 0.475698i −0.851650 0.524111i \(-0.824398\pi\)
−0.0195267 + 0.999809i \(0.506216\pi\)
\(174\) 2.19440 1.00215i 0.166357 0.0759725i
\(175\) 3.73755 + 0.717834i 0.282532 + 0.0542632i
\(176\) −2.89164 2.50562i −0.217966 0.188869i
\(177\) 7.49646 2.79604i 0.563469 0.210163i
\(178\) 0.315678 + 1.45115i 0.0236611 + 0.108768i
\(179\) 14.5315 2.08931i 1.08613 0.156163i 0.424085 0.905622i \(-0.360596\pi\)
0.662050 + 0.749460i \(0.269687\pi\)
\(180\) −1.80631 1.31804i −0.134635 0.0982411i
\(181\) −11.4645 + 9.93407i −0.852152 + 0.738394i −0.966942 0.254996i \(-0.917926\pi\)
0.114790 + 0.993390i \(0.463380\pi\)
\(182\) −0.778405 + 1.42554i −0.0576992 + 0.105668i
\(183\) −3.43700 3.43700i −0.254071 0.254071i
\(184\) −3.78531 + 2.94472i −0.279057 + 0.217088i
\(185\) −7.92216 3.50152i −0.582449 0.257437i
\(186\) −2.32440 + 0.682504i −0.170433 + 0.0500437i
\(187\) 1.00475 14.0482i 0.0734744 1.02731i
\(188\) 0.962436 4.42425i 0.0701928 0.322671i
\(189\) 0.108326 + 0.753424i 0.00787956 + 0.0548036i
\(190\) −0.891952 + 0.588753i −0.0647090 + 0.0427126i
\(191\) 21.2098 + 9.68618i 1.53469 + 0.700868i 0.990425 0.138048i \(-0.0440830\pi\)
0.544261 + 0.838916i \(0.316810\pi\)
\(192\) −0.997452 + 0.0713392i −0.0719849 + 0.00514846i
\(193\) −12.6623 16.9148i −0.911449 1.21755i −0.975587 0.219612i \(-0.929521\pi\)
0.0641383 0.997941i \(-0.479570\pi\)
\(194\) 4.26820 + 9.34606i 0.306439 + 0.671008i
\(195\) −4.75474 + 0.398544i −0.340494 + 0.0285403i
\(196\) 6.16054 + 1.80890i 0.440038 + 0.129207i
\(197\) −0.0704870 + 0.188983i −0.00502199 + 0.0134645i −0.939437 0.342723i \(-0.888651\pi\)
0.934415 + 0.356187i \(0.115924\pi\)
\(198\) −3.06303 + 2.29295i −0.217680 + 0.162953i
\(199\) 5.55458 6.41033i 0.393754 0.454416i −0.523910 0.851774i \(-0.675527\pi\)
0.917664 + 0.397358i \(0.130073\pi\)
\(200\) 4.44567 + 2.28824i 0.314356 + 0.161803i
\(201\) 4.43998 6.90875i 0.313172 0.487305i
\(202\) 8.25999 11.0341i 0.581171 0.776354i
\(203\) 1.79429 + 0.390323i 0.125934 + 0.0273953i
\(204\) −2.41052 2.78189i −0.168770 0.194771i
\(205\) −5.84487 7.61206i −0.408224 0.531649i
\(206\) 9.99501i 0.696385i
\(207\) 2.07280 + 4.32475i 0.144070 + 0.300591i
\(208\) −1.50885 + 1.50885i −0.104620 + 0.104620i
\(209\) 0.515219 + 1.75467i 0.0356384 + 0.121373i
\(210\) −0.499446 1.62710i −0.0344651 0.112281i
\(211\) 2.11962 1.36220i 0.145921 0.0937775i −0.465643 0.884972i \(-0.654177\pi\)
0.611564 + 0.791195i \(0.290541\pi\)
\(212\) 1.21519 + 0.909677i 0.0834593 + 0.0624769i
\(213\) 3.55387 0.773098i 0.243507 0.0529718i
\(214\) 3.06067 6.70194i 0.209223 0.458135i
\(215\) 2.63502 + 5.58809i 0.179707 + 0.381104i
\(216\) −0.142315 + 0.989821i −0.00968330 + 0.0673488i
\(217\) −1.72770 0.644398i −0.117284 0.0437446i
\(218\) 1.73156 + 3.17112i 0.117276 + 0.214775i
\(219\) 1.87128 6.37300i 0.126449 0.430647i
\(220\) 5.97534 6.12325i 0.402857 0.412829i
\(221\) −7.77464 1.11782i −0.522979 0.0751930i
\(222\) 0.276335 + 3.86366i 0.0185464 + 0.259312i
\(223\) −0.741723 1.98864i −0.0496694 0.133169i 0.909746 0.415165i \(-0.136276\pi\)
−0.959416 + 0.281996i \(0.909003\pi\)
\(224\) −0.640339 0.411521i −0.0427844 0.0274959i
\(225\) 3.18094 3.85767i 0.212063 0.257178i
\(226\) −7.36462 11.4596i −0.489887 0.762279i
\(227\) −16.7456 1.19767i −1.11144 0.0794919i −0.496479 0.868048i \(-0.665374\pi\)
−0.614962 + 0.788557i \(0.710829\pi\)
\(228\) 0.419492 + 0.229060i 0.0277815 + 0.0151699i
\(229\) 24.4597 1.61634 0.808171 0.588948i \(-0.200458\pi\)
0.808171 + 0.588948i \(0.200458\pi\)
\(230\) −6.07250 8.83882i −0.400409 0.582815i
\(231\) −2.91239 −0.191621
\(232\) 2.11731 + 1.15614i 0.139008 + 0.0759043i
\(233\) −12.1534 0.869230i −0.796198 0.0569452i −0.332688 0.943037i \(-0.607956\pi\)
−0.463510 + 0.886092i \(0.653410\pi\)
\(234\) 1.15364 + 1.79510i 0.0754159 + 0.117349i
\(235\) 9.74833 + 2.73337i 0.635911 + 0.178306i
\(236\) 6.73081 + 4.32563i 0.438138 + 0.281574i
\(237\) 1.80379 + 4.83614i 0.117168 + 0.314141i
\(238\) −0.199882 2.79471i −0.0129564 0.181154i
\(239\) 28.0439 + 4.03211i 1.81401 + 0.260815i 0.963991 0.265936i \(-0.0856811\pi\)
0.850019 + 0.526752i \(0.176590\pi\)
\(240\) −0.0273353 2.23590i −0.00176449 0.144327i
\(241\) −3.22361 + 10.9786i −0.207651 + 0.707194i 0.788136 + 0.615501i \(0.211046\pi\)
−0.995787 + 0.0916933i \(0.970772\pi\)
\(242\) −1.74435 3.19454i −0.112131 0.205353i
\(243\) 0.936950 + 0.349464i 0.0601054 + 0.0224181i
\(244\) 0.691744 4.81118i 0.0442843 0.308004i
\(245\) −4.85242 + 13.5121i −0.310010 + 0.863254i
\(246\) −1.78296 + 3.90413i −0.113677 + 0.248918i
\(247\) 0.996574 0.216791i 0.0634105 0.0137941i
\(248\) −1.93933 1.45177i −0.123148 0.0921872i
\(249\) 0.594222 0.381884i 0.0376573 0.0242009i
\(250\) −5.69561 + 9.62081i −0.360222 + 0.608473i
\(251\) −2.53587 8.63636i −0.160062 0.545122i −0.999997 0.00243486i \(-0.999225\pi\)
0.839935 0.542688i \(-0.182593\pi\)
\(252\) −0.538230 + 0.538230i −0.0339053 + 0.0339053i
\(253\) −17.5076 + 5.49528i −1.10069 + 0.345485i
\(254\) 11.1136i 0.697331i
\(255\) 6.52838 5.01277i 0.408823 0.313912i
\(256\) −0.654861 0.755750i −0.0409288 0.0472343i
\(257\) −18.7242 4.07320i −1.16798 0.254079i −0.413566 0.910474i \(-0.635717\pi\)
−0.754418 + 0.656395i \(0.772081\pi\)
\(258\) 1.65579 2.21187i 0.103085 0.137705i
\(259\) −1.59404 + 2.48037i −0.0990487 + 0.154123i
\(260\) −3.16846 3.56752i −0.196499 0.221248i
\(261\) 1.57979 1.82317i 0.0977863 0.112851i
\(262\) −15.0097 + 11.2361i −0.927302 + 0.694169i
\(263\) −7.92785 + 21.2554i −0.488852 + 1.31066i 0.425212 + 0.905094i \(0.360200\pi\)
−0.914064 + 0.405570i \(0.867073\pi\)
\(264\) −3.67121 1.07796i −0.225947 0.0663441i
\(265\) −2.19124 + 2.59219i −0.134607 + 0.159237i
\(266\) 0.151131 + 0.330930i 0.00926642 + 0.0202906i
\(267\) 0.889981 + 1.18887i 0.0544659 + 0.0727580i
\(268\) 8.19152 0.585869i 0.500377 0.0357876i
\(269\) −10.7483 4.90859i −0.655336 0.299282i 0.0598591 0.998207i \(-0.480935\pi\)
−0.715195 + 0.698925i \(0.753662\pi\)
\(270\) −2.19061 0.448564i −0.133317 0.0272988i
\(271\) 4.13826 + 28.7823i 0.251382 + 1.74840i 0.589936 + 0.807450i \(0.299153\pi\)
−0.338554 + 0.940947i \(0.609938\pi\)
\(272\) 0.782446 3.59684i 0.0474427 0.218091i
\(273\) −0.115870 + 1.62008i −0.00701280 + 0.0980518i
\(274\) −7.81534 + 2.29479i −0.472142 + 0.138633i
\(275\) 12.8778 + 14.1476i 0.776563 + 0.853133i
\(276\) −2.21996 + 4.25109i −0.133626 + 0.255886i
\(277\) −0.981150 0.981150i −0.0589516 0.0589516i 0.677016 0.735968i \(-0.263273\pi\)
−0.735968 + 0.677016i \(0.763273\pi\)
\(278\) 5.60252 10.2603i 0.336017 0.615369i
\(279\) −1.83082 + 1.58642i −0.109609 + 0.0949763i
\(280\) 1.00326 1.37491i 0.0599561 0.0821669i
\(281\) −1.14077 + 0.164018i −0.0680528 + 0.00978452i −0.176257 0.984344i \(-0.556399\pi\)
0.108204 + 0.994129i \(0.465490\pi\)
\(282\) −0.962436 4.42425i −0.0573122 0.263460i
\(283\) 20.9687 7.82091i 1.24646 0.464905i 0.362286 0.932067i \(-0.381996\pi\)
0.884172 + 0.467162i \(0.154724\pi\)
\(284\) 2.74865 + 2.38172i 0.163103 + 0.141329i
\(285\) −0.566771 + 0.906079i −0.0335726 + 0.0536715i
\(286\) −7.42668 + 3.39165i −0.439149 + 0.200552i
\(287\) −2.86733 + 1.56568i −0.169253 + 0.0924192i
\(288\) −0.877679 + 0.479249i −0.0517177 + 0.0282400i
\(289\) −3.13867 + 1.43338i −0.184628 + 0.0843167i
\(290\) −2.86068 + 4.57328i −0.167985 + 0.268552i
\(291\) 7.76499 + 6.72840i 0.455192 + 0.394426i
\(292\) 6.22326 2.32116i 0.364189 0.135835i
\(293\) −6.98427 32.1062i −0.408026 1.87566i −0.478398 0.878143i \(-0.658782\pi\)
0.0703726 0.997521i \(-0.477581\pi\)
\(294\) 6.35526 0.913749i 0.370647 0.0532909i
\(295\) −10.5456 + 14.4522i −0.613986 + 0.841438i
\(296\) −2.92742 + 2.53662i −0.170153 + 0.147438i
\(297\) −1.83370 + 3.35817i −0.106402 + 0.194861i
\(298\) 7.60323 + 7.60323i 0.440443 + 0.440443i
\(299\) 2.36032 + 9.95762i 0.136501 + 0.575864i
\(300\) 4.99449 + 0.234663i 0.288357 + 0.0135483i
\(301\) 2.01791 0.592511i 0.116310 0.0341518i
\(302\) −0.680766 + 9.51835i −0.0391737 + 0.547719i
\(303\) 2.92984 13.4683i 0.168315 0.773731i
\(304\) 0.0680202 + 0.473091i 0.00390123 + 0.0271336i
\(305\) 10.6478 + 2.18032i 0.609693 + 0.124845i
\(306\) −3.34832 1.52913i −0.191411 0.0874145i
\(307\) −19.7503 + 1.41257i −1.12721 + 0.0806194i −0.622463 0.782650i \(-0.713868\pi\)
−0.504744 + 0.863269i \(0.668413\pi\)
\(308\) −1.74533 2.33149i −0.0994495 0.132849i
\(309\) −4.15208 9.09178i −0.236203 0.517213i
\(310\) 3.49703 4.13690i 0.198618 0.234960i
\(311\) 24.9753 + 7.33341i 1.41622 + 0.415840i 0.898222 0.439542i \(-0.144859\pi\)
0.517998 + 0.855382i \(0.326677\pi\)
\(312\) −0.745701 + 1.99930i −0.0422170 + 0.113188i
\(313\) −24.4909 + 18.3336i −1.38431 + 1.03628i −0.391046 + 0.920371i \(0.627887\pi\)
−0.993260 + 0.115907i \(0.963023\pi\)
\(314\) 4.55250 5.25386i 0.256912 0.296493i
\(315\) −1.13024 1.27259i −0.0636816 0.0717022i
\(316\) −2.79056 + 4.34219i −0.156981 + 0.244267i
\(317\) −18.6170 + 24.8694i −1.04564 + 1.39681i −0.131539 + 0.991311i \(0.541992\pi\)
−0.914097 + 0.405496i \(0.867099\pi\)
\(318\) 1.48327 + 0.322665i 0.0831774 + 0.0180941i
\(319\) 6.04456 + 6.97580i 0.338431 + 0.390570i
\(320\) 1.77355 1.36181i 0.0991444 0.0761274i
\(321\) 7.36775i 0.411228i
\(322\) −3.29188 + 1.57776i −0.183449 + 0.0879250i
\(323\) −1.24404 + 1.24404i −0.0692203 + 0.0692203i
\(324\) 0.281733 + 0.959493i 0.0156518 + 0.0533052i
\(325\) 8.38227 6.60071i 0.464965 0.366142i
\(326\) 17.7768 11.4245i 0.984566 0.632742i
\(327\) 2.89241 + 2.16523i 0.159951 + 0.119738i
\(328\) −4.19391 + 0.912329i −0.231570 + 0.0503749i
\(329\) 1.43168 3.13493i 0.0789308 0.172834i
\(330\) 2.89167 8.05215i 0.159181 0.443256i
\(331\) −0.256742 + 1.78568i −0.0141118 + 0.0981498i −0.995660 0.0930649i \(-0.970334\pi\)
0.981548 + 0.191215i \(0.0612427\pi\)
\(332\) 0.661818 + 0.246845i 0.0363220 + 0.0135474i
\(333\) 1.85639 + 3.39972i 0.101729 + 0.186303i
\(334\) −2.26103 + 7.70037i −0.123718 + 0.421346i
\(335\) 0.224490 + 18.3622i 0.0122652 + 1.00323i
\(336\) −0.753424 0.108326i −0.0411027 0.00590967i
\(337\) 0.0239514 + 0.334884i 0.00130472 + 0.0182423i 0.998063 0.0622150i \(-0.0198165\pi\)
−0.996758 + 0.0804574i \(0.974362\pi\)
\(338\) −2.95183 7.91416i −0.160558 0.430474i
\(339\) −11.4596 7.36462i −0.622398 0.399991i
\(340\) 7.92524 + 2.22219i 0.429806 + 0.120515i
\(341\) −5.01123 7.79762i −0.271373 0.422265i
\(342\) 0.476738 + 0.0340970i 0.0257790 + 0.00184375i
\(343\) 8.96584 + 4.89572i 0.484110 + 0.264344i
\(344\) 2.76297 0.148969
\(345\) −9.19552 5.51746i −0.495070 0.297050i
\(346\) −13.0555 −0.701868
\(347\) −7.69316 4.20078i −0.412990 0.225510i 0.259301 0.965797i \(-0.416508\pi\)
−0.672291 + 0.740287i \(0.734690\pi\)
\(348\) 2.40625 + 0.172099i 0.128989 + 0.00922545i
\(349\) −12.8120 19.9358i −0.685810 1.06714i −0.993297 0.115589i \(-0.963125\pi\)
0.307487 0.951552i \(-0.400512\pi\)
\(350\) 2.93635 + 2.42125i 0.156954 + 0.129421i
\(351\) 1.79510 + 1.15364i 0.0958154 + 0.0615768i
\(352\) −1.33712 3.58495i −0.0712686 0.191079i
\(353\) −2.11431 29.5619i −0.112533 1.57342i −0.669453 0.742854i \(-0.733472\pi\)
0.556920 0.830566i \(-0.311983\pi\)
\(354\) 7.91949 + 1.13865i 0.420916 + 0.0605186i
\(355\) −5.67986 + 5.82046i −0.301456 + 0.308918i
\(356\) −0.418398 + 1.42493i −0.0221750 + 0.0755213i
\(357\) −1.34278 2.45912i −0.0710676 0.130151i
\(358\) 13.7553 + 5.13046i 0.726989 + 0.271153i
\(359\) −1.15549 + 8.03664i −0.0609847 + 0.424158i 0.936342 + 0.351089i \(0.114188\pi\)
−0.997327 + 0.0730691i \(0.976721\pi\)
\(360\) −0.953692 2.02249i −0.0502640 0.106595i
\(361\) −7.79799 + 17.0752i −0.410420 + 0.898695i
\(362\) −14.8231 + 3.22456i −0.779083 + 0.169479i
\(363\) −2.91378 2.18123i −0.152934 0.114485i
\(364\) −1.36638 + 0.878119i −0.0716178 + 0.0460259i
\(365\) 4.35821 + 14.1982i 0.228119 + 0.743170i
\(366\) −1.36941 4.66377i −0.0715800 0.243779i
\(367\) −15.3107 + 15.3107i −0.799211 + 0.799211i −0.982971 0.183760i \(-0.941173\pi\)
0.183760 + 0.982971i \(0.441173\pi\)
\(368\) −4.73355 + 0.770414i −0.246753 + 0.0401606i
\(369\) 4.29199i 0.223432i
\(370\) −5.27501 6.86990i −0.274235 0.357149i
\(371\) 0.756643 + 0.873212i 0.0392829 + 0.0453349i
\(372\) −2.36716 0.514945i −0.122732 0.0266987i
\(373\) −20.2441 + 27.0430i −1.04820 + 1.40023i −0.135895 + 0.990723i \(0.543391\pi\)
−0.912306 + 0.409510i \(0.865700\pi\)
\(374\) 7.61443 11.8483i 0.393733 0.612661i
\(375\) −1.18428 + 11.1174i −0.0611561 + 0.574102i
\(376\) 2.96503 3.42182i 0.152909 0.176467i
\(377\) 4.12092 3.08489i 0.212238 0.158880i
\(378\) −0.266002 + 0.713180i −0.0136817 + 0.0366820i
\(379\) −12.6670 3.71938i −0.650662 0.191052i −0.0602878 0.998181i \(-0.519202\pi\)
−0.590375 + 0.807129i \(0.701020\pi\)
\(380\) −1.06501 + 0.0892692i −0.0546337 + 0.00457942i
\(381\) 4.61676 + 10.1093i 0.236524 + 0.517915i
\(382\) 13.9733 + 18.6661i 0.714936 + 0.955042i
\(383\) 14.6906 1.05069i 0.750656 0.0536880i 0.309232 0.950987i \(-0.399928\pi\)
0.441424 + 0.897299i \(0.354473\pi\)
\(384\) −0.909632 0.415415i −0.0464195 0.0211991i
\(385\) 5.43505 3.58753i 0.276996 0.182837i
\(386\) −3.00700 20.9141i −0.153052 1.06450i
\(387\) 0.587312 2.69983i 0.0298547 0.137240i
\(388\) −0.732978 + 10.2484i −0.0372113 + 0.520282i
\(389\) −34.0453 + 9.99660i −1.72617 + 0.506848i −0.986166 0.165760i \(-0.946992\pi\)
−0.739999 + 0.672608i \(0.765174\pi\)
\(390\) −4.36413 1.92891i −0.220987 0.0976741i
\(391\) −12.7121 12.2492i −0.642876 0.619468i
\(392\) 4.54006 + 4.54006i 0.229308 + 0.229308i
\(393\) −8.98564 + 16.4560i −0.453266 + 0.830094i
\(394\) −0.152435 + 0.132086i −0.00767956 + 0.00665438i
\(395\) −9.32342 6.80317i −0.469112 0.342305i
\(396\) −3.78725 + 0.544524i −0.190316 + 0.0273634i
\(397\) 7.13860 + 32.8156i 0.358276 + 1.64697i 0.705152 + 0.709056i \(0.250879\pi\)
−0.346876 + 0.937911i \(0.612758\pi\)
\(398\) 7.94728 2.96418i 0.398361 0.148581i
\(399\) 0.274947 + 0.238243i 0.0137646 + 0.0119271i
\(400\) 2.80523 + 4.13892i 0.140261 + 0.206946i
\(401\) 7.46094 3.40730i 0.372582 0.170152i −0.220319 0.975428i \(-0.570710\pi\)
0.592901 + 0.805275i \(0.297983\pi\)
\(402\) 7.20789 3.93580i 0.359497 0.196300i
\(403\) −4.53697 + 2.47737i −0.226003 + 0.123407i
\(404\) 12.5377 5.72577i 0.623773 0.284868i
\(405\) −2.17899 + 0.501986i −0.108275 + 0.0249439i
\(406\) 1.38775 + 1.20249i 0.0688727 + 0.0596785i
\(407\) −13.8864 + 5.17937i −0.688324 + 0.256732i
\(408\) −0.782446 3.59684i −0.0387368 0.178070i
\(409\) 33.5296 4.82082i 1.65793 0.238374i 0.751196 0.660079i \(-0.229477\pi\)
0.906733 + 0.421705i \(0.138568\pi\)
\(410\) −1.48185 9.48210i −0.0731833 0.468287i
\(411\) −6.15579 + 5.33403i −0.303643 + 0.263108i
\(412\) 4.79010 8.77241i 0.235991 0.432185i
\(413\) 4.30634 + 4.30634i 0.211901 + 0.211901i
\(414\) −0.253380 + 4.78913i −0.0124529 + 0.235373i
\(415\) −0.638516 + 1.44464i −0.0313435 + 0.0709144i
\(416\) −2.04740 + 0.601172i −0.100382 + 0.0294749i
\(417\) 0.833970 11.6604i 0.0408397 0.571013i
\(418\) −0.388729 + 1.78696i −0.0190134 + 0.0874030i
\(419\) −1.12235 7.80612i −0.0548304 0.381354i −0.998697 0.0510277i \(-0.983750\pi\)
0.943867 0.330326i \(-0.107159\pi\)
\(420\) 0.341435 1.66743i 0.0166603 0.0813625i
\(421\) 13.0850 + 5.97573i 0.637725 + 0.291239i 0.707918 0.706294i \(-0.249634\pi\)
−0.0701936 + 0.997533i \(0.522362\pi\)
\(422\) 2.51318 0.179746i 0.122340 0.00874990i
\(423\) −2.71336 3.62463i −0.131928 0.176235i
\(424\) 0.630582 + 1.38078i 0.0306237 + 0.0670566i
\(425\) −6.00832 + 17.3965i −0.291446 + 0.843854i
\(426\) 3.48967 + 1.02466i 0.169075 + 0.0496449i
\(427\) 1.29295 3.46652i 0.0625700 0.167757i
\(428\) 5.89819 4.41533i 0.285100 0.213423i
\(429\) −5.34660 + 6.17031i −0.258136 + 0.297905i
\(430\) −0.365380 + 6.16738i −0.0176202 + 0.297417i
\(431\) 17.1350 26.6626i 0.825364 1.28429i −0.130785 0.991411i \(-0.541750\pi\)
0.956149 0.292881i \(-0.0946140\pi\)
\(432\) −0.599278 + 0.800541i −0.0288328 + 0.0385161i
\(433\) −6.59901 1.43553i −0.317128 0.0689870i 0.0511838 0.998689i \(-0.483701\pi\)
−0.368312 + 0.929702i \(0.620064\pi\)
\(434\) −1.20754 1.39357i −0.0579636 0.0668936i
\(435\) −0.702357 + 5.34837i −0.0336755 + 0.256435i
\(436\) 3.61307i 0.173035i
\(437\) 2.10235 + 0.913390i 0.100569 + 0.0436934i
\(438\) 4.69664 4.69664i 0.224414 0.224414i
\(439\) 6.42342 + 21.8762i 0.306573 + 1.04409i 0.958330 + 0.285664i \(0.0922143\pi\)
−0.651756 + 0.758428i \(0.725968\pi\)
\(440\) 8.17899 2.51057i 0.389918 0.119687i
\(441\) 5.40137 3.47125i 0.257208 0.165298i
\(442\) −6.28792 4.70708i −0.299086 0.223893i
\(443\) 32.7002 7.11349i 1.55363 0.337972i 0.647868 0.761752i \(-0.275661\pi\)
0.905765 + 0.423780i \(0.139297\pi\)
\(444\) −1.60912 + 3.52349i −0.0763656 + 0.167217i
\(445\) −3.12534 1.12236i −0.148155 0.0532052i
\(446\) 0.302057 2.10085i 0.0143028 0.0994783i
\(447\) 10.0746 + 3.75765i 0.476514 + 0.177731i
\(448\) −0.364791 0.668065i −0.0172348 0.0315631i
\(449\) 1.15769 3.94273i 0.0546348 0.186069i −0.927655 0.373440i \(-0.878178\pi\)
0.982289 + 0.187371i \(0.0599965\pi\)
\(450\) 4.64063 1.86133i 0.218761 0.0877439i
\(451\) −16.2548 2.33709i −0.765411 0.110049i
\(452\) −0.971783 13.5873i −0.0457088 0.639093i
\(453\) 3.33482 + 8.94100i 0.156683 + 0.420085i
\(454\) −14.1232 9.07646i −0.662837 0.425979i
\(455\) −1.77940 3.16609i −0.0834198 0.148429i
\(456\) 0.258402 + 0.402082i 0.0121008 + 0.0188292i
\(457\) 11.5847 + 0.828553i 0.541909 + 0.0387581i 0.339611 0.940566i \(-0.389705\pi\)
0.202298 + 0.979324i \(0.435159\pi\)
\(458\) 21.4678 + 11.7223i 1.00312 + 0.547746i
\(459\) −3.68097 −0.171813
\(460\) −1.09371 10.6679i −0.0509945 0.497393i
\(461\) −2.76714 −0.128879 −0.0644393 0.997922i \(-0.520526\pi\)
−0.0644393 + 0.997922i \(0.520526\pi\)
\(462\) −2.55615 1.39576i −0.118923 0.0649367i
\(463\) −16.5747 1.18544i −0.770289 0.0550922i −0.319338 0.947641i \(-0.603461\pi\)
−0.450951 + 0.892549i \(0.648915\pi\)
\(464\) 1.30424 + 2.02944i 0.0605479 + 0.0942143i
\(465\) 1.46247 5.21578i 0.0678206 0.241876i
\(466\) −10.2502 6.58742i −0.474833 0.305157i
\(467\) −9.81415 26.3127i −0.454145 1.21761i −0.939275 0.343167i \(-0.888500\pi\)
0.485130 0.874442i \(-0.338772\pi\)
\(468\) 0.152226 + 2.12840i 0.00703667 + 0.0983855i
\(469\) 6.18745 + 0.889622i 0.285710 + 0.0410789i
\(470\) 7.24593 + 7.07090i 0.334230 + 0.326156i
\(471\) 1.95856 6.67026i 0.0902459 0.307349i
\(472\) 3.83443 + 7.02224i 0.176494 + 0.323225i
\(473\) 9.90512 + 3.69442i 0.455438 + 0.169870i
\(474\) −0.734569 + 5.10904i −0.0337399 + 0.234666i
\(475\) −0.0584244 2.38906i −0.00268070 0.109618i
\(476\) 1.16393 2.54865i 0.0533486 0.116817i
\(477\) 1.48327 0.322665i 0.0679141 0.0147738i
\(478\) 22.6812 + 16.9789i 1.03741 + 0.776597i
\(479\) −17.2771 + 11.1033i −0.789410 + 0.507323i −0.872144 0.489249i \(-0.837271\pi\)
0.0827346 + 0.996572i \(0.473635\pi\)
\(480\) 1.04756 1.97550i 0.0478144 0.0901690i
\(481\) 2.32866 + 7.93069i 0.106178 + 0.361608i
\(482\) −8.09078 + 8.09078i −0.368525 + 0.368525i
\(483\) −2.33898 + 2.80268i −0.106427 + 0.127526i
\(484\) 3.63976i 0.165444i
\(485\) −22.7790 2.99138i −1.03434 0.135832i
\(486\) 0.654861 + 0.755750i 0.0297051 + 0.0342815i
\(487\) 4.24775 + 0.924041i 0.192484 + 0.0418723i 0.307774 0.951460i \(-0.400416\pi\)
−0.115290 + 0.993332i \(0.536780\pi\)
\(488\) 2.91288 3.89116i 0.131860 0.176144i
\(489\) 11.4245 17.7768i 0.516632 0.803895i
\(490\) −10.7345 + 9.53373i −0.484935 + 0.430690i
\(491\) 14.6058 16.8560i 0.659149 0.760699i −0.323489 0.946232i \(-0.604856\pi\)
0.982638 + 0.185533i \(0.0594012\pi\)
\(492\) −3.43592 + 2.57210i −0.154903 + 0.115959i
\(493\) −3.10323 + 8.32007i −0.139762 + 0.374717i
\(494\) 0.978569 + 0.287334i 0.0440279 + 0.0129278i
\(495\) −0.714630 8.52573i −0.0321202 0.383203i
\(496\) −1.00635 2.20361i −0.0451866 0.0989449i
\(497\) 1.65903 + 2.21620i 0.0744175 + 0.0994101i
\(498\) 0.704554 0.0503907i 0.0315718 0.00225806i
\(499\) 13.8248 + 6.31359i 0.618885 + 0.282635i 0.700082 0.714063i \(-0.253147\pi\)
−0.0811968 + 0.996698i \(0.525874\pi\)
\(500\) −9.60968 + 5.71437i −0.429758 + 0.255554i
\(501\) 1.14214 + 7.94377i 0.0510272 + 0.354902i
\(502\) 1.91329 8.79527i 0.0853944 0.392552i
\(503\) 1.79675 25.1218i 0.0801129 1.12012i −0.785317 0.619094i \(-0.787500\pi\)
0.865430 0.501031i \(-0.167046\pi\)
\(504\) −0.730339 + 0.214447i −0.0325319 + 0.00955223i
\(505\) 11.1228 + 28.7432i 0.494958 + 1.27906i
\(506\) −17.9997 3.56741i −0.800183 0.158591i
\(507\) −5.97274 5.97274i −0.265259 0.265259i
\(508\) −5.32619 + 9.75419i −0.236312 + 0.432772i
\(509\) 10.5960 9.18150i 0.469660 0.406963i −0.387615 0.921821i \(-0.626701\pi\)
0.857275 + 0.514859i \(0.172156\pi\)
\(510\) 8.13218 1.27089i 0.360099 0.0562758i
\(511\) 5.00428 0.719507i 0.221376 0.0318291i
\(512\) −0.212565 0.977147i −0.00939415 0.0431842i
\(513\) 0.447821 0.167028i 0.0197718 0.00737449i
\(514\) −14.4818 12.5485i −0.638763 0.553491i
\(515\) 18.9479 + 11.8523i 0.834945 + 0.522275i
\(516\) 2.51329 1.14778i 0.110641 0.0505282i
\(517\) 15.2048 8.30248i 0.668708 0.365142i
\(518\) −2.58777 + 1.41303i −0.113700 + 0.0620849i
\(519\) −11.8757 + 5.42345i −0.521286 + 0.238063i
\(520\) −1.07116 4.64962i −0.0469733 0.203899i
\(521\) −14.5269 12.5876i −0.636434 0.551473i 0.275763 0.961226i \(-0.411070\pi\)
−0.912197 + 0.409753i \(0.865615\pi\)
\(522\) 2.26030 0.843047i 0.0989305 0.0368992i
\(523\) 3.61505 + 16.6181i 0.158075 + 0.726659i 0.986125 + 0.166005i \(0.0530868\pi\)
−0.828050 + 0.560655i \(0.810550\pi\)
\(524\) −18.5586 + 2.66832i −0.810735 + 0.116566i
\(525\) 3.67682 + 0.982639i 0.160470 + 0.0428859i
\(526\) −17.1447 + 14.8560i −0.747546 + 0.647752i
\(527\) 4.27358 7.82647i 0.186160 0.340926i
\(528\) −2.70553 2.70553i −0.117743 0.117743i
\(529\) −8.77230 + 21.2614i −0.381405 + 0.924408i
\(530\) −3.16550 + 1.22496i −0.137501 + 0.0532088i
\(531\) 7.67683 2.25412i 0.333146 0.0978205i
\(532\) −0.0259537 + 0.362880i −0.00112523 + 0.0157328i
\(533\) −1.94676 + 8.94913i −0.0843237 + 0.387630i
\(534\) 0.211350 + 1.46997i 0.00914602 + 0.0636119i
\(535\) 9.07571 + 13.7496i 0.392377 + 0.594445i
\(536\) 7.47030 + 3.41157i 0.322668 + 0.147357i
\(537\) 14.6435 1.04733i 0.631914 0.0451954i
\(538\) −7.08113 9.45928i −0.305289 0.407818i
\(539\) 10.2053 + 22.3465i 0.439574 + 0.962532i
\(540\) −1.70768 1.44355i −0.0734869 0.0621203i
\(541\) −20.9839 6.16143i −0.902169 0.264901i −0.202428 0.979297i \(-0.564883\pi\)
−0.699741 + 0.714396i \(0.746701\pi\)
\(542\) −10.1618 + 27.2448i −0.436487 + 1.17027i
\(543\) −12.1440 + 9.09089i −0.521149 + 0.390127i
\(544\) 2.41052 2.78189i 0.103350 0.119272i
\(545\) −8.06493 0.477799i −0.345464 0.0204666i
\(546\) −0.878119 + 1.36638i −0.0375800 + 0.0584757i
\(547\) 14.0290 18.7405i 0.599836 0.801287i −0.393156 0.919472i \(-0.628617\pi\)
0.992992 + 0.118185i \(0.0377076\pi\)
\(548\) −7.95914 1.73140i −0.339998 0.0739619i
\(549\) −3.18305 3.67344i −0.135849 0.156779i
\(550\) 4.52238 + 18.5888i 0.192835 + 0.792627i
\(551\) 1.15302i 0.0491203i
\(552\) −3.98574 + 2.66718i −0.169645 + 0.113523i
\(553\) −2.77811 + 2.77811i −0.118137 + 0.118137i
\(554\) −0.390920 1.33135i −0.0166086 0.0565636i
\(555\) −7.65218 4.05776i −0.324817 0.172242i
\(556\) 9.83443 6.32020i 0.417073 0.268036i
\(557\) −4.99287 3.73761i −0.211555 0.158368i 0.488246 0.872706i \(-0.337637\pi\)
−0.699801 + 0.714338i \(0.746728\pi\)
\(558\) −2.36716 + 0.514945i −0.100210 + 0.0217994i
\(559\) 2.44918 5.36295i 0.103589 0.226829i
\(560\) 1.53946 0.725924i 0.0650542 0.0306759i
\(561\) 2.00437 13.9407i 0.0846248 0.588578i
\(562\) −1.07984 0.402759i −0.0455502 0.0169894i
\(563\) −16.3483 29.9397i −0.689000 1.26181i −0.954647 0.297740i \(-0.903767\pi\)
0.265647 0.964070i \(-0.414415\pi\)
\(564\) 1.27561 4.34431i 0.0537127 0.182929i
\(565\) 30.4575 0.372362i 1.28136 0.0156654i
\(566\) 22.1519 + 3.18497i 0.931115 + 0.133874i
\(567\) 0.0543014 + 0.759233i 0.00228044 + 0.0318848i
\(568\) 1.27100 + 3.40768i 0.0533299 + 0.142983i
\(569\) −15.9159 10.2285i −0.667227 0.428801i 0.162698 0.986676i \(-0.447980\pi\)
−0.829925 + 0.557875i \(0.811617\pi\)
\(570\) −0.931681 + 0.523622i −0.0390238 + 0.0219321i
\(571\) 8.32925 + 12.9606i 0.348568 + 0.542382i 0.970627 0.240588i \(-0.0773401\pi\)
−0.622059 + 0.782970i \(0.713704\pi\)
\(572\) −8.14368 0.582448i −0.340504 0.0243534i
\(573\) 20.4647 + 11.1746i 0.854927 + 0.466825i
\(574\) −3.26694 −0.136360
\(575\) 23.9570 1.03059i 0.999076 0.0429787i
\(576\) −1.00000 −0.0416667
\(577\) −3.92949 2.14566i −0.163587 0.0893252i 0.395370 0.918522i \(-0.370616\pi\)
−0.558957 + 0.829197i \(0.688798\pi\)
\(578\) −3.44170 0.246155i −0.143156 0.0102387i
\(579\) −11.4233 17.7750i −0.474736 0.738704i
\(580\) −4.70250 + 2.64289i −0.195261 + 0.109740i
\(581\) 0.452305 + 0.290679i 0.0187648 + 0.0120594i
\(582\) 3.59059 + 9.62674i 0.148835 + 0.399041i
\(583\) 0.414337 + 5.79319i 0.0171601 + 0.239930i
\(584\) 6.57444 + 0.945262i 0.272052 + 0.0391152i
\(585\) −4.77105 + 0.0583292i −0.197259 + 0.00241161i
\(586\) 9.25691 31.5261i 0.382399 1.30233i
\(587\) −8.57797 15.7094i −0.354051 0.648395i 0.638583 0.769553i \(-0.279521\pi\)
−0.992633 + 0.121158i \(0.961339\pi\)
\(588\) 6.01580 + 2.24378i 0.248087 + 0.0925318i
\(589\) −0.164781 + 1.14607i −0.00678967 + 0.0472232i
\(590\) −16.1818 + 7.63042i −0.666194 + 0.314139i
\(591\) −0.0837893 + 0.183473i −0.00344663 + 0.00754707i
\(592\) −3.78501 + 0.823378i −0.155563 + 0.0338406i
\(593\) 6.72039 + 5.03082i 0.275973 + 0.206591i 0.728295 0.685264i \(-0.240313\pi\)
−0.452322 + 0.891855i \(0.649404\pi\)
\(594\) −3.21880 + 2.06860i −0.132069 + 0.0848755i
\(595\) 5.53506 + 2.93511i 0.226915 + 0.120328i
\(596\) 3.02936 + 10.3170i 0.124087 + 0.422602i
\(597\) 5.99773 5.99773i 0.245471 0.245471i
\(598\) −2.70057 + 9.87077i −0.110435 + 0.403646i
\(599\) 37.6820i 1.53965i 0.638258 + 0.769823i \(0.279655\pi\)
−0.638258 + 0.769823i \(0.720345\pi\)
\(600\) 4.27110 + 2.59956i 0.174367 + 0.106127i
\(601\) −23.7827 27.4467i −0.970117 1.11957i −0.992794 0.119832i \(-0.961765\pi\)
0.0226774 0.999743i \(-0.492781\pi\)
\(602\) 2.05503 + 0.447045i 0.0837570 + 0.0182202i
\(603\) 4.92153 6.57440i 0.200420 0.267730i
\(604\) −5.15915 + 8.02780i −0.209923 + 0.326647i
\(605\) 8.12450 + 0.481328i 0.330308 + 0.0195688i
\(606\) 9.02611 10.4167i 0.366661 0.423149i
\(607\) −7.53884 + 5.64351i −0.305992 + 0.229063i −0.741228 0.671254i \(-0.765756\pi\)
0.435235 + 0.900317i \(0.356665\pi\)
\(608\) −0.167028 + 0.447821i −0.00677390 + 0.0181615i
\(609\) 1.76187 + 0.517332i 0.0713946 + 0.0209633i
\(610\) 8.30045 + 7.01658i 0.336076 + 0.284093i
\(611\) −4.01350 8.78834i −0.162369 0.355538i
\(612\) −2.20592 2.94677i −0.0891691 0.119116i
\(613\) 6.75048 0.482804i 0.272649 0.0195003i 0.0656548 0.997842i \(-0.479086\pi\)
0.206994 + 0.978342i \(0.433632\pi\)
\(614\) −18.0114 8.22551i −0.726879 0.331955i
\(615\) −5.28694 8.00963i −0.213190 0.322980i
\(616\) −0.414477 2.88275i −0.0166997 0.116149i
\(617\) 4.24715 19.5238i 0.170984 0.786000i −0.809141 0.587615i \(-0.800067\pi\)
0.980124 0.198384i \(-0.0635695\pi\)
\(618\) 0.713036 9.96954i 0.0286825 0.401034i
\(619\) 13.9948 4.10924i 0.562498 0.165164i 0.0118916 0.999929i \(-0.496215\pi\)
0.550606 + 0.834765i \(0.314397\pi\)
\(620\) 5.05187 1.95493i 0.202888 0.0785118i
\(621\) 1.75900 + 4.46161i 0.0705861 + 0.179038i
\(622\) 18.4058 + 18.4058i 0.738004 + 0.738004i
\(623\) −0.541747 + 0.992135i −0.0217046 + 0.0397491i
\(624\) −1.61265 + 1.39737i −0.0645576 + 0.0559395i
\(625\) −11.4845 22.2060i −0.459382 0.888239i
\(626\) −30.2815 + 4.35382i −1.21029 + 0.174014i
\(627\) 0.388729 + 1.78696i 0.0155243 + 0.0713643i
\(628\) 6.51354 2.42942i 0.259919 0.0969446i
\(629\) −10.7757 9.33723i −0.429657 0.372300i
\(630\) −0.382097 1.65859i −0.0152231 0.0660797i
\(631\) −9.80635 + 4.47841i −0.390385 + 0.178283i −0.600931 0.799301i \(-0.705203\pi\)
0.210546 + 0.977584i \(0.432476\pi\)
\(632\) −4.53021 + 2.47368i −0.180202 + 0.0983977i
\(633\) 2.21140 1.20751i 0.0878951 0.0479944i
\(634\) −28.2584 + 12.9052i −1.12229 + 0.512531i
\(635\) −21.0685 13.1788i −0.836078 0.522984i
\(636\) 1.14719 + 0.994049i 0.0454892 + 0.0394166i
\(637\) 12.8367 4.78786i 0.508610 0.189702i
\(638\) 1.96204 + 9.01936i 0.0776780 + 0.357080i
\(639\) 3.59997 0.517598i 0.142413 0.0204759i
\(640\) 2.20925 0.345259i 0.0873284 0.0136476i
\(641\) 32.1155 27.8283i 1.26849 1.09915i 0.278139 0.960541i \(-0.410282\pi\)
0.990347 0.138609i \(-0.0442632\pi\)
\(642\) 3.53099 6.46652i 0.139357 0.255213i
\(643\) 0.644128 + 0.644128i 0.0254019 + 0.0254019i 0.719694 0.694292i \(-0.244282\pi\)
−0.694292 + 0.719694i \(0.744282\pi\)
\(644\) −3.64535 0.192866i −0.143647 0.00759997i
\(645\) 2.22966 + 5.76183i 0.0877928 + 0.226872i
\(646\) −1.68807 + 0.495663i −0.0664164 + 0.0195016i
\(647\) 3.38172 47.2826i 0.132949 1.85887i −0.295549 0.955328i \(-0.595503\pi\)
0.428498 0.903543i \(-0.359043\pi\)
\(648\) −0.212565 + 0.977147i −0.00835035 + 0.0383860i
\(649\) 4.35670 + 30.3015i 0.171015 + 1.18944i
\(650\) 10.5203 1.77611i 0.412641 0.0696649i
\(651\) −1.67732 0.766008i −0.0657395 0.0300222i
\(652\) 21.0775 1.50749i 0.825458 0.0590379i
\(653\) −14.4590 19.3149i −0.565824 0.755852i 0.422806 0.906220i \(-0.361045\pi\)
−0.988630 + 0.150368i \(0.951954\pi\)
\(654\) 1.50092 + 3.28657i 0.0586908 + 0.128515i
\(655\) −3.50189 41.7785i −0.136830 1.63242i
\(656\) −4.11814 1.20919i −0.160786 0.0472111i
\(657\) 2.32116 6.22326i 0.0905570 0.242793i
\(658\) 2.75896 2.06533i 0.107556 0.0805151i
\(659\) −2.14135 + 2.47125i −0.0834153 + 0.0962664i −0.795923 0.605398i \(-0.793014\pi\)
0.712508 + 0.701664i \(0.247559\pi\)
\(660\) 6.39694 5.68137i 0.249000 0.221147i
\(661\) 9.01685 14.0305i 0.350715 0.545723i −0.620415 0.784273i \(-0.713036\pi\)
0.971130 + 0.238551i \(0.0766723\pi\)
\(662\) −1.08112 + 1.44421i −0.0420190 + 0.0561308i
\(663\) −7.67509 1.66961i −0.298076 0.0648424i
\(664\) 0.462563 + 0.533826i 0.0179509 + 0.0207165i
\(665\) −0.806571 0.105920i −0.0312775 0.00410742i
\(666\) 3.87353i 0.150096i
\(667\) 11.5675 0.214507i 0.447894 0.00830575i
\(668\) −5.67486 + 5.67486i −0.219567 + 0.219567i
\(669\) −0.597965 2.03648i −0.0231187 0.0787350i
\(670\) −8.60304 + 16.2237i −0.332364 + 0.626777i
\(671\) 15.6455 10.0547i 0.603987 0.388159i
\(672\) −0.609350 0.456153i −0.0235062 0.0175965i
\(673\) 38.2149 8.31315i 1.47308 0.320448i 0.596852 0.802351i \(-0.296418\pi\)
0.876225 + 0.481903i \(0.160054\pi\)
\(674\) −0.139471 + 0.305400i −0.00537223 + 0.0117636i
\(675\) 3.44804 3.62091i 0.132715 0.139369i
\(676\) 1.20209 8.36075i 0.0462344 0.321567i
\(677\) 32.5375 + 12.1359i 1.25052 + 0.466419i 0.885525 0.464591i \(-0.153799\pi\)
0.364993 + 0.931010i \(0.381071\pi\)
\(678\) −6.52834 11.9558i −0.250719 0.459158i
\(679\) −2.20335 + 7.50391i −0.0845567 + 0.287974i
\(680\) 5.89083 + 5.74853i 0.225903 + 0.220446i
\(681\) −16.6174 2.38923i −0.636782 0.0915554i
\(682\) −0.661247 9.24544i −0.0253204 0.354026i
\(683\) −5.70749 15.3024i −0.218391 0.585529i 0.780840 0.624731i \(-0.214791\pi\)
−0.999231 + 0.0392015i \(0.987519\pi\)
\(684\) 0.402082 + 0.258402i 0.0153740 + 0.00988026i
\(685\) 4.91729 17.5371i 0.187880 0.670057i
\(686\) 5.52286 + 8.59374i 0.210864 + 0.328111i
\(687\) 24.3974 + 1.74494i 0.930818 + 0.0665734i
\(688\) 2.42500 + 1.32415i 0.0924523 + 0.0504828i
\(689\) 3.23907 0.123399
\(690\) −5.42647 9.24951i −0.206582 0.352123i
\(691\) −22.7265 −0.864556 −0.432278 0.901740i \(-0.642290\pi\)
−0.432278 + 0.901740i \(0.642290\pi\)
\(692\) −11.4585 6.25684i −0.435588 0.237849i
\(693\) −2.90497 0.207768i −0.110351 0.00789244i
\(694\) −4.73890 7.37387i −0.179886 0.279908i
\(695\) 12.8071 + 22.7878i 0.485803 + 0.864389i
\(696\) 2.02944 + 1.30424i 0.0769257 + 0.0494371i
\(697\) −5.52107 14.8026i −0.209126 0.560687i
\(698\) −1.69058 23.6374i −0.0639894 0.894689i
\(699\) −12.0605 1.73403i −0.456168 0.0655871i
\(700\) 1.41679 + 3.53232i 0.0535497 + 0.133509i
\(701\) 9.73523 33.1552i 0.367695 1.25225i −0.543196 0.839606i \(-0.682786\pi\)
0.910891 0.412647i \(-0.135396\pi\)
\(702\) 1.02264 + 1.87283i 0.0385971 + 0.0706853i
\(703\) 1.73465 + 0.646990i 0.0654235 + 0.0244017i
\(704\) 0.544524 3.78725i 0.0205225 0.142737i
\(705\) 9.52849 + 3.42185i 0.358864 + 0.128874i
\(706\) 12.3118 26.9591i 0.463361 1.01462i
\(707\) 10.2517 2.23011i 0.385553 0.0838720i
\(708\) 6.40507 + 4.79478i 0.240717 + 0.180199i
\(709\) −22.3380 + 14.3557i −0.838920 + 0.539141i −0.888101 0.459649i \(-0.847975\pi\)
0.0491810 + 0.998790i \(0.484339\pi\)
\(710\) −7.77454 + 2.38643i −0.291773 + 0.0895610i
\(711\) 1.45418 + 4.95250i 0.0545362 + 0.185733i
\(712\) −1.05012 + 1.05012i −0.0393548 + 0.0393548i
\(713\) −11.5285 1.43992i −0.431744 0.0539254i
\(714\) 2.80185i 0.104857i
\(715\) 2.37705 18.1009i 0.0888965 0.676936i
\(716\) 9.61396 + 11.0951i 0.359291 + 0.414643i
\(717\) 27.6848 + 6.02246i 1.03391 + 0.224913i
\(718\) −4.86571 + 6.49982i −0.181587 + 0.242571i
\(719\) 23.4030 36.4158i 0.872786 1.35808i −0.0602071 0.998186i \(-0.519176\pi\)
0.932993 0.359895i \(-0.117188\pi\)
\(720\) 0.132242 2.23215i 0.00492836 0.0831875i
\(721\) 4.98213 5.74968i 0.185544 0.214129i
\(722\) −15.0274 + 11.2494i −0.559262 + 0.418658i
\(723\) −3.99860 + 10.7207i −0.148709 + 0.398706i
\(724\) −14.5553 4.27381i −0.540942 0.158835i
\(725\) −5.27747 10.8462i −0.196000 0.402818i
\(726\) −1.51201 3.31084i −0.0561160 0.122877i
\(727\) −16.9034 22.5802i −0.626911 0.837455i 0.368845 0.929491i \(-0.379753\pi\)
−0.995756 + 0.0920361i \(0.970662\pi\)
\(728\) −1.62008 + 0.115870i −0.0600442 + 0.00429445i
\(729\) 0.909632 + 0.415415i 0.0336901 + 0.0153857i
\(730\) −2.97938 + 14.5502i −0.110272 + 0.538526i
\(731\) 1.44740 + 10.0669i 0.0535340 + 0.372337i
\(732\) 1.03321 4.74957i 0.0381884 0.175549i
\(733\) 1.79218 25.0579i 0.0661955 0.925534i −0.850507 0.525964i \(-0.823705\pi\)
0.916703 0.399570i \(-0.130841\pi\)
\(734\) −20.7755 + 6.10024i −0.766838 + 0.225164i
\(735\) −5.80399 + 13.1315i −0.214083 + 0.484361i
\(736\) −4.52375 1.59237i −0.166748 0.0586956i
\(737\) 22.2190 + 22.2190i 0.818447 + 0.818447i
\(738\) −2.05693 + 3.76699i −0.0757168 + 0.138665i
\(739\) −29.2258 + 25.3243i −1.07509 + 0.931571i −0.997856 0.0654421i \(-0.979154\pi\)
−0.0772338 + 0.997013i \(0.524609\pi\)
\(740\) −1.33737 8.55761i −0.0491628 0.314584i
\(741\) 1.00950 0.145144i 0.0370849 0.00533201i
\(742\) 0.245603 + 1.12902i 0.00901638 + 0.0414476i
\(743\) 33.4810 12.4878i 1.22830 0.458131i 0.350228 0.936664i \(-0.386104\pi\)
0.878069 + 0.478533i \(0.158831\pi\)
\(744\) −1.83082 1.58642i −0.0671212 0.0581609i
\(745\) −23.4298 + 5.39765i −0.858402 + 0.197754i
\(746\) −30.7282 + 14.0331i −1.12504 + 0.513788i
\(747\) 0.619952 0.338519i 0.0226828 0.0123858i
\(748\) 12.3613 6.74979i 0.451974 0.246797i
\(749\) 5.10133 2.32970i 0.186399 0.0851254i
\(750\) −6.36744 + 9.18998i −0.232506 + 0.335571i
\(751\) −25.5026 22.0981i −0.930603 0.806372i 0.0507251 0.998713i \(-0.483847\pi\)
−0.981328 + 0.192340i \(0.938392\pi\)
\(752\) 4.24224 1.58228i 0.154699 0.0576997i
\(753\) −1.91329 8.79527i −0.0697243 0.320517i
\(754\) 5.09528 0.732590i 0.185559 0.0266794i
\(755\) −17.2370 12.5776i −0.627320 0.457747i
\(756\) −0.575255 + 0.498462i −0.0209218 + 0.0181289i
\(757\) 13.8870 25.4322i 0.504732 0.924348i −0.493767 0.869594i \(-0.664381\pi\)
0.998500 0.0547545i \(-0.0174376\pi\)
\(758\) −9.33509 9.33509i −0.339066 0.339066i
\(759\) −17.8550 + 4.23230i −0.648097 + 0.153623i
\(760\) −0.977516 0.432054i −0.0354582 0.0156722i
\(761\) −17.8673 + 5.24631i −0.647688 + 0.190178i −0.589045 0.808101i \(-0.700496\pi\)
−0.0586437 + 0.998279i \(0.518678\pi\)
\(762\) −0.792837 + 11.0853i −0.0287214 + 0.401578i
\(763\) −0.584591 + 2.68732i −0.0211636 + 0.0972875i
\(764\) 3.31834 + 23.0796i 0.120053 + 0.834989i
\(765\) 6.86935 4.53427i 0.248362 0.163937i
\(766\) 13.3972 + 6.11830i 0.484061 + 0.221063i
\(767\) 17.0292 1.21795i 0.614888 0.0439777i
\(768\) −0.599278 0.800541i −0.0216246 0.0288870i
\(769\) −19.7746 43.3004i −0.713092 1.56145i −0.823340 0.567549i \(-0.807892\pi\)
0.110248 0.993904i \(-0.464835\pi\)
\(770\) 6.48955 0.543956i 0.233867 0.0196028i
\(771\) −18.3859 5.39859i −0.662153 0.194426i
\(772\) 7.38390 19.7970i 0.265752 0.712509i
\(773\) 16.4241 12.2950i 0.590735