Newspace parameters
Level: | \( N \) | \(=\) | \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 690.r (of order \(22\), degree \(10\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.50967773947\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | −0.989821 | + | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | −2.09099 | − | 0.792321i | −0.959493 | − | 0.281733i | −0.378014 | − | 0.588202i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | 2.18246 | + | 0.486678i |
49.2 | −0.989821 | + | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | −1.21290 | + | 1.87853i | −0.959493 | − | 0.281733i | 0.707520 | + | 1.10092i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | 0.933214 | − | 2.03202i |
49.3 | −0.989821 | + | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | −0.0689747 | − | 2.23500i | −0.959493 | − | 0.281733i | −1.33127 | − | 2.07150i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | 0.386347 | + | 2.20244i |
49.4 | −0.989821 | + | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | 0.934585 | + | 2.03139i | −0.959493 | − | 0.281733i | −2.47408 | − | 3.84974i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | −1.21417 | − | 1.87771i |
49.5 | −0.989821 | + | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | 0.981376 | + | 2.00920i | −0.959493 | − | 0.281733i | 2.34067 | + | 3.64216i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | −1.25733 | − | 1.84909i |
49.6 | −0.989821 | + | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | 2.01587 | − | 0.967617i | −0.959493 | − | 0.281733i | −0.0999940 | − | 0.155594i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | −1.85764 | + | 1.24466i |
49.7 | 0.989821 | − | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | −2.14372 | − | 0.635975i | −0.959493 | − | 0.281733i | 2.47408 | + | 3.84974i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | −2.21241 | − | 0.324418i |
49.8 | 0.989821 | − | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | −2.12842 | − | 0.685448i | −0.959493 | − | 0.281733i | −2.34067 | − | 3.64216i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | −2.20430 | − | 0.375565i |
49.9 | 0.989821 | − | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | −1.68679 | + | 1.46790i | −0.959493 | − | 0.281733i | −0.707520 | − | 1.10092i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | −1.46072 | + | 1.69301i |
49.10 | 0.989821 | − | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | 0.670880 | − | 2.13305i | −0.959493 | − | 0.281733i | 0.0999940 | + | 0.155594i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | 0.360487 | − | 2.20682i |
49.11 | 0.989821 | − | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | 1.08184 | + | 1.95694i | −0.959493 | − | 0.281733i | 0.378014 | + | 0.588202i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | 1.34933 | + | 1.78306i |
49.12 | 0.989821 | − | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | 2.22207 | − | 0.249802i | −0.959493 | − | 0.281733i | 1.33127 | + | 2.07150i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | 2.16390 | − | 0.563493i |
169.1 | −0.989821 | − | 0.142315i | 0.909632 | − | 0.415415i | 0.959493 | + | 0.281733i | −2.09099 | + | 0.792321i | −0.959493 | + | 0.281733i | −0.378014 | + | 0.588202i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | 2.18246 | − | 0.486678i |
169.2 | −0.989821 | − | 0.142315i | 0.909632 | − | 0.415415i | 0.959493 | + | 0.281733i | −1.21290 | − | 1.87853i | −0.959493 | + | 0.281733i | 0.707520 | − | 1.10092i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | 0.933214 | + | 2.03202i |
169.3 | −0.989821 | − | 0.142315i | 0.909632 | − | 0.415415i | 0.959493 | + | 0.281733i | −0.0689747 | + | 2.23500i | −0.959493 | + | 0.281733i | −1.33127 | + | 2.07150i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | 0.386347 | − | 2.20244i |
169.4 | −0.989821 | − | 0.142315i | 0.909632 | − | 0.415415i | 0.959493 | + | 0.281733i | 0.934585 | − | 2.03139i | −0.959493 | + | 0.281733i | −2.47408 | + | 3.84974i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | −1.21417 | + | 1.87771i |
169.5 | −0.989821 | − | 0.142315i | 0.909632 | − | 0.415415i | 0.959493 | + | 0.281733i | 0.981376 | − | 2.00920i | −0.959493 | + | 0.281733i | 2.34067 | − | 3.64216i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | −1.25733 | + | 1.84909i |
169.6 | −0.989821 | − | 0.142315i | 0.909632 | − | 0.415415i | 0.959493 | + | 0.281733i | 2.01587 | + | 0.967617i | −0.959493 | + | 0.281733i | −0.0999940 | + | 0.155594i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | −1.85764 | − | 1.24466i |
169.7 | 0.989821 | + | 0.142315i | −0.909632 | + | 0.415415i | 0.959493 | + | 0.281733i | −2.14372 | + | 0.635975i | −0.959493 | + | 0.281733i | 2.47408 | − | 3.84974i | 0.909632 | + | 0.415415i | 0.654861 | − | 0.755750i | −2.21241 | + | 0.324418i |
169.8 | 0.989821 | + | 0.142315i | −0.909632 | + | 0.415415i | 0.959493 | + | 0.281733i | −2.12842 | + | 0.685448i | −0.959493 | + | 0.281733i | −2.34067 | + | 3.64216i | 0.909632 | + | 0.415415i | 0.654861 | − | 0.755750i | −2.20430 | + | 0.375565i |
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
23.c | even | 11 | 1 | inner |
115.j | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 690.2.r.b | ✓ | 120 |
5.b | even | 2 | 1 | inner | 690.2.r.b | ✓ | 120 |
23.c | even | 11 | 1 | inner | 690.2.r.b | ✓ | 120 |
115.j | even | 22 | 1 | inner | 690.2.r.b | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
690.2.r.b | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
690.2.r.b | ✓ | 120 | 5.b | even | 2 | 1 | inner |
690.2.r.b | ✓ | 120 | 23.c | even | 11 | 1 | inner |
690.2.r.b | ✓ | 120 | 115.j | even | 22 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(16\!\cdots\!82\)\( T_{7}^{102} + \)\(39\!\cdots\!24\)\( T_{7}^{100} - \)\(81\!\cdots\!82\)\( T_{7}^{98} + \)\(15\!\cdots\!91\)\( T_{7}^{96} - \)\(28\!\cdots\!48\)\( T_{7}^{94} + \)\(51\!\cdots\!95\)\( T_{7}^{92} - \)\(88\!\cdots\!40\)\( T_{7}^{90} + \)\(14\!\cdots\!90\)\( T_{7}^{88} - \)\(24\!\cdots\!99\)\( T_{7}^{86} + \)\(39\!\cdots\!13\)\( T_{7}^{84} - \)\(57\!\cdots\!37\)\( T_{7}^{82} + \)\(75\!\cdots\!79\)\( T_{7}^{80} - \)\(84\!\cdots\!20\)\( T_{7}^{78} + \)\(80\!\cdots\!42\)\( T_{7}^{76} - \)\(64\!\cdots\!88\)\( T_{7}^{74} + \)\(44\!\cdots\!15\)\( T_{7}^{72} - \)\(26\!\cdots\!38\)\( T_{7}^{70} + \)\(15\!\cdots\!83\)\( T_{7}^{68} - \)\(83\!\cdots\!27\)\( T_{7}^{66} + \)\(43\!\cdots\!19\)\( T_{7}^{64} - \)\(22\!\cdots\!96\)\( T_{7}^{62} + \)\(12\!\cdots\!06\)\( T_{7}^{60} - \)\(65\!\cdots\!26\)\( T_{7}^{58} + \)\(29\!\cdots\!22\)\( T_{7}^{56} - \)\(11\!\cdots\!98\)\( T_{7}^{54} + \)\(32\!\cdots\!97\)\( T_{7}^{52} - \)\(62\!\cdots\!25\)\( T_{7}^{50} + \)\(10\!\cdots\!49\)\( T_{7}^{48} - \)\(22\!\cdots\!10\)\( T_{7}^{46} + \)\(38\!\cdots\!24\)\( T_{7}^{44} - \)\(77\!\cdots\!27\)\( T_{7}^{42} + \)\(16\!\cdots\!51\)\( T_{7}^{40} - \)\(22\!\cdots\!86\)\( T_{7}^{38} + \)\(46\!\cdots\!19\)\( T_{7}^{36} - \)\(57\!\cdots\!28\)\( T_{7}^{34} + \)\(63\!\cdots\!66\)\( T_{7}^{32} - \)\(43\!\cdots\!31\)\( T_{7}^{30} + \)\(25\!\cdots\!80\)\( T_{7}^{28} - \)\(17\!\cdots\!75\)\( T_{7}^{26} + \)\(28\!\cdots\!33\)\( T_{7}^{24} - \)\(36\!\cdots\!82\)\( T_{7}^{22} + \)\(24\!\cdots\!21\)\( T_{7}^{20} - \)\(10\!\cdots\!44\)\( T_{7}^{18} + \)\(50\!\cdots\!96\)\( T_{7}^{16} - \)\(21\!\cdots\!48\)\( T_{7}^{14} + \)\(67\!\cdots\!76\)\( T_{7}^{12} + \)\(76\!\cdots\!08\)\( T_{7}^{10} + \)\(25\!\cdots\!80\)\( T_{7}^{8} - \)\(42\!\cdots\!24\)\( T_{7}^{6} + \)\(16\!\cdots\!08\)\( T_{7}^{4} + \)\(43\!\cdots\!08\)\( T_{7}^{2} + \)\(23\!\cdots\!16\)\( \)">\(T_{7}^{120} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(690, [\chi])\).