Newspace parameters
Level: | \( N \) | \(=\) | \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 690.r (of order \(22\), degree \(10\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.50967773947\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | −0.989821 | + | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | −2.05037 | − | 0.892171i | 0.959493 | + | 0.281733i | −0.0262635 | − | 0.0408667i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | 2.15647 | + | 0.591291i |
49.2 | −0.989821 | + | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | −1.41393 | + | 1.73228i | 0.959493 | + | 0.281733i | −0.692568 | − | 1.07766i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | 1.15301 | − | 1.91587i |
49.3 | −0.989821 | + | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | −0.967142 | − | 2.01609i | 0.959493 | + | 0.281733i | 0.684801 | + | 1.06557i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | 1.24422 | + | 1.85793i |
49.4 | −0.989821 | + | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | 1.14908 | − | 1.91823i | 0.959493 | + | 0.281733i | −1.79620 | − | 2.79494i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | −0.864395 | + | 2.06224i |
49.5 | −0.989821 | + | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | 1.87948 | − | 1.21142i | 0.959493 | + | 0.281733i | 2.74068 | + | 4.26458i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | −1.68795 | + | 1.46657i |
49.6 | −0.989821 | + | 0.142315i | −0.909632 | − | 0.415415i | 0.959493 | − | 0.281733i | 1.93207 | + | 1.12565i | 0.959493 | + | 0.281733i | 0.0169454 | + | 0.0263676i | −0.909632 | + | 0.415415i | 0.654861 | + | 0.755750i | −2.07260 | − | 0.839235i |
49.7 | 0.989821 | − | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | −1.51343 | + | 1.64607i | 0.959493 | + | 0.281733i | 0.692568 | + | 1.07766i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | −1.26376 | + | 1.84470i |
49.8 | 0.989821 | − | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | −1.38916 | − | 1.75221i | 0.959493 | + | 0.281733i | −0.0169454 | − | 0.0263676i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | −1.62439 | − | 1.53668i |
49.9 | 0.989821 | − | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | 0.931614 | − | 2.03276i | 0.959493 | + | 0.281733i | −2.74068 | − | 4.26458i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | 0.632841 | − | 2.14465i |
49.10 | 0.989821 | − | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | 1.17489 | + | 1.90253i | 0.959493 | + | 0.281733i | 0.0262635 | + | 0.0408667i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | 1.43369 | + | 1.71597i |
49.11 | 0.989821 | − | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | 1.73517 | − | 1.41038i | 0.959493 | + | 0.281733i | 1.79620 | + | 2.79494i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | 1.51679 | − | 1.64297i |
49.12 | 0.989821 | − | 0.142315i | 0.909632 | + | 0.415415i | 0.959493 | − | 0.281733i | 2.13321 | + | 0.670378i | 0.959493 | + | 0.281733i | −0.684801 | − | 1.06557i | 0.909632 | − | 0.415415i | 0.654861 | + | 0.755750i | 2.20690 | + | 0.359967i |
169.1 | −0.989821 | − | 0.142315i | −0.909632 | + | 0.415415i | 0.959493 | + | 0.281733i | −2.05037 | + | 0.892171i | 0.959493 | − | 0.281733i | −0.0262635 | + | 0.0408667i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | 2.15647 | − | 0.591291i |
169.2 | −0.989821 | − | 0.142315i | −0.909632 | + | 0.415415i | 0.959493 | + | 0.281733i | −1.41393 | − | 1.73228i | 0.959493 | − | 0.281733i | −0.692568 | + | 1.07766i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | 1.15301 | + | 1.91587i |
169.3 | −0.989821 | − | 0.142315i | −0.909632 | + | 0.415415i | 0.959493 | + | 0.281733i | −0.967142 | + | 2.01609i | 0.959493 | − | 0.281733i | 0.684801 | − | 1.06557i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | 1.24422 | − | 1.85793i |
169.4 | −0.989821 | − | 0.142315i | −0.909632 | + | 0.415415i | 0.959493 | + | 0.281733i | 1.14908 | + | 1.91823i | 0.959493 | − | 0.281733i | −1.79620 | + | 2.79494i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | −0.864395 | − | 2.06224i |
169.5 | −0.989821 | − | 0.142315i | −0.909632 | + | 0.415415i | 0.959493 | + | 0.281733i | 1.87948 | + | 1.21142i | 0.959493 | − | 0.281733i | 2.74068 | − | 4.26458i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | −1.68795 | − | 1.46657i |
169.6 | −0.989821 | − | 0.142315i | −0.909632 | + | 0.415415i | 0.959493 | + | 0.281733i | 1.93207 | − | 1.12565i | 0.959493 | − | 0.281733i | 0.0169454 | − | 0.0263676i | −0.909632 | − | 0.415415i | 0.654861 | − | 0.755750i | −2.07260 | + | 0.839235i |
169.7 | 0.989821 | + | 0.142315i | 0.909632 | − | 0.415415i | 0.959493 | + | 0.281733i | −1.51343 | − | 1.64607i | 0.959493 | − | 0.281733i | 0.692568 | − | 1.07766i | 0.909632 | + | 0.415415i | 0.654861 | − | 0.755750i | −1.26376 | − | 1.84470i |
169.8 | 0.989821 | + | 0.142315i | 0.909632 | − | 0.415415i | 0.959493 | + | 0.281733i | −1.38916 | + | 1.75221i | 0.959493 | − | 0.281733i | −0.0169454 | + | 0.0263676i | 0.909632 | + | 0.415415i | 0.654861 | − | 0.755750i | −1.62439 | + | 1.53668i |
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
23.c | even | 11 | 1 | inner |
115.j | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 690.2.r.a | ✓ | 120 |
5.b | even | 2 | 1 | inner | 690.2.r.a | ✓ | 120 |
23.c | even | 11 | 1 | inner | 690.2.r.a | ✓ | 120 |
115.j | even | 22 | 1 | inner | 690.2.r.a | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
690.2.r.a | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
690.2.r.a | ✓ | 120 | 5.b | even | 2 | 1 | inner |
690.2.r.a | ✓ | 120 | 23.c | even | 11 | 1 | inner |
690.2.r.a | ✓ | 120 | 115.j | even | 22 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(18\!\cdots\!66\)\( T_{7}^{102} + \)\(37\!\cdots\!00\)\( T_{7}^{100} - \)\(62\!\cdots\!10\)\( T_{7}^{98} + \)\(89\!\cdots\!47\)\( T_{7}^{96} - \)\(11\!\cdots\!68\)\( T_{7}^{94} + \)\(14\!\cdots\!11\)\( T_{7}^{92} - \)\(21\!\cdots\!32\)\( T_{7}^{90} + \)\(32\!\cdots\!18\)\( T_{7}^{88} - \)\(44\!\cdots\!31\)\( T_{7}^{86} + \)\(53\!\cdots\!29\)\( T_{7}^{84} - \)\(57\!\cdots\!69\)\( T_{7}^{82} + \)\(55\!\cdots\!99\)\( T_{7}^{80} - \)\(46\!\cdots\!32\)\( T_{7}^{78} + \)\(32\!\cdots\!26\)\( T_{7}^{76} - \)\(20\!\cdots\!32\)\( T_{7}^{74} + \)\(15\!\cdots\!11\)\( T_{7}^{72} - \)\(14\!\cdots\!54\)\( T_{7}^{70} + \)\(13\!\cdots\!19\)\( T_{7}^{68} - \)\(84\!\cdots\!27\)\( T_{7}^{66} + \)\(35\!\cdots\!83\)\( T_{7}^{64} - \)\(93\!\cdots\!96\)\( T_{7}^{62} + \)\(16\!\cdots\!94\)\( T_{7}^{60} - \)\(30\!\cdots\!82\)\( T_{7}^{58} + \)\(10\!\cdots\!78\)\( T_{7}^{56} - \)\(30\!\cdots\!30\)\( T_{7}^{54} + \)\(68\!\cdots\!49\)\( T_{7}^{52} - \)\(13\!\cdots\!21\)\( T_{7}^{50} + \)\(28\!\cdots\!29\)\( T_{7}^{48} - \)\(47\!\cdots\!62\)\( T_{7}^{46} + \)\(83\!\cdots\!16\)\( T_{7}^{44} - \)\(10\!\cdots\!19\)\( T_{7}^{42} + \)\(20\!\cdots\!27\)\( T_{7}^{40} - \)\(26\!\cdots\!22\)\( T_{7}^{38} + \)\(50\!\cdots\!75\)\( T_{7}^{36} - \)\(60\!\cdots\!16\)\( T_{7}^{34} + \)\(80\!\cdots\!90\)\( T_{7}^{32} - \)\(90\!\cdots\!51\)\( T_{7}^{30} + \)\(10\!\cdots\!68\)\( T_{7}^{28} - \)\(52\!\cdots\!95\)\( T_{7}^{26} - \)\(32\!\cdots\!27\)\( T_{7}^{24} + \)\(85\!\cdots\!06\)\( T_{7}^{22} + \)\(32\!\cdots\!05\)\( T_{7}^{20} - \)\(52\!\cdots\!44\)\( T_{7}^{18} + \)\(19\!\cdots\!60\)\( T_{7}^{16} - \)\(18\!\cdots\!92\)\( T_{7}^{14} + \)\(16\!\cdots\!24\)\( T_{7}^{12} - \)\(88\!\cdots\!96\)\( T_{7}^{10} + \)\(16\!\cdots\!52\)\( T_{7}^{8} + \)\(44\!\cdots\!72\)\( T_{7}^{6} + \)\(14\!\cdots\!48\)\( T_{7}^{4} + \)\(11\!\cdots\!96\)\( T_{7}^{2} + \)\(10\!\cdots\!16\)\( \)">\(T_{7}^{120} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(690, [\chi])\).