Properties

Label 690.2.q.a.191.4
Level $690$
Weight $2$
Character 690.191
Analytic conductor $5.510$
Analytic rank $0$
Dimension $160$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.q (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(16\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 191.4
Character \(\chi\) \(=\) 690.191
Dual form 690.2.q.a.401.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.755750 - 0.654861i) q^{2} +(0.359391 - 1.69435i) q^{3} +(0.142315 + 0.989821i) q^{4} +(0.415415 + 0.909632i) q^{5} +(-1.38118 + 1.04516i) q^{6} +(0.816450 + 2.78057i) q^{7} +(0.540641 - 0.841254i) q^{8} +(-2.74168 - 1.21787i) q^{9} +O(q^{10})\) \(q+(-0.755750 - 0.654861i) q^{2} +(0.359391 - 1.69435i) q^{3} +(0.142315 + 0.989821i) q^{4} +(0.415415 + 0.909632i) q^{5} +(-1.38118 + 1.04516i) q^{6} +(0.816450 + 2.78057i) q^{7} +(0.540641 - 0.841254i) q^{8} +(-2.74168 - 1.21787i) q^{9} +(0.281733 - 0.959493i) q^{10} +(0.260973 + 0.301179i) q^{11} +(1.72826 + 0.114601i) q^{12} +(2.27633 + 0.668389i) q^{13} +(1.20386 - 2.63608i) q^{14} +(1.69054 - 0.376947i) q^{15} +(-0.959493 + 0.281733i) q^{16} +(-0.489750 + 3.40629i) q^{17} +(1.27448 + 2.71582i) q^{18} +(-0.0720347 + 0.0103570i) q^{19} +(-0.841254 + 0.540641i) q^{20} +(5.00470 - 0.384043i) q^{21} -0.398517i q^{22} +(4.78873 - 0.260982i) q^{23} +(-1.23108 - 1.21838i) q^{24} +(-0.654861 + 0.755750i) q^{25} +(-1.28263 - 1.99581i) q^{26} +(-3.04884 + 4.20768i) q^{27} +(-2.63608 + 1.20386i) q^{28} +(8.24777 + 1.18585i) q^{29} +(-1.52447 - 0.822188i) q^{30} +(7.97523 + 5.12537i) q^{31} +(0.909632 + 0.415415i) q^{32} +(0.604096 - 0.333940i) q^{33} +(2.60077 - 2.25358i) q^{34} +(-2.19013 + 1.89776i) q^{35} +(0.815294 - 2.88709i) q^{36} +(-0.619026 - 0.282700i) q^{37} +(0.0612226 + 0.0393454i) q^{38} +(1.95058 - 3.61669i) q^{39} +(0.989821 + 0.142315i) q^{40} +(-3.91584 + 1.78831i) q^{41} +(-4.03379 - 2.98714i) q^{42} +(-2.36906 - 3.68633i) q^{43} +(-0.260973 + 0.301179i) q^{44} +(-0.0311182 - 2.99984i) q^{45} +(-3.78998 - 2.93871i) q^{46} -1.09098i q^{47} +(0.132522 + 1.72697i) q^{48} +(-1.17622 + 0.755909i) q^{49} +(0.989821 - 0.142315i) q^{50} +(5.59544 + 2.05400i) q^{51} +(-0.337631 + 2.34828i) q^{52} +(-7.85864 + 2.30751i) q^{53} +(5.05960 - 1.18339i) q^{54} +(-0.165550 + 0.362504i) q^{55} +(2.78057 + 0.816450i) q^{56} +(-0.00834014 + 0.125774i) q^{57} +(-5.45668 - 6.29734i) q^{58} +(2.89296 - 9.85253i) q^{59} +(0.613698 + 1.61968i) q^{60} +(5.38365 - 8.37713i) q^{61} +(-2.67087 - 9.09616i) q^{62} +(1.14794 - 8.61776i) q^{63} +(-0.415415 - 0.909632i) q^{64} +(0.337631 + 2.34828i) q^{65} +(-0.675230 - 0.143224i) q^{66} +(-6.25421 - 5.41931i) q^{67} -3.44131 q^{68} +(1.27883 - 8.20759i) q^{69} +2.89796 q^{70} +(10.8997 + 9.44463i) q^{71} +(-2.50680 + 1.64801i) q^{72} +(-1.74133 - 12.1112i) q^{73} +(0.282700 + 0.619026i) q^{74} +(1.04516 + 1.38118i) q^{75} +(-0.0205032 - 0.0698275i) q^{76} +(-0.624379 + 0.971553i) q^{77} +(-3.84258 + 1.45595i) q^{78} +(-0.274710 + 0.935576i) q^{79} +(-0.654861 - 0.755750i) q^{80} +(6.03358 + 6.67802i) q^{81} +(4.13049 + 1.21282i) q^{82} +(-7.05627 + 15.4511i) q^{83} +(1.09238 + 4.89911i) q^{84} +(-3.30192 + 0.969530i) q^{85} +(-0.623616 + 4.33734i) q^{86} +(4.97342 - 13.5485i) q^{87} +(0.394461 - 0.0567149i) q^{88} +(1.35490 - 0.870744i) q^{89} +(-1.94096 + 2.28750i) q^{90} +6.87519i q^{91} +(0.939832 + 4.70284i) q^{92} +(11.5504 - 11.6709i) q^{93} +(-0.714442 + 0.824510i) q^{94} +(-0.0393454 - 0.0612226i) q^{95} +(1.03077 - 1.39194i) q^{96} +(-1.94916 + 0.890152i) q^{97} +(1.38394 + 0.198981i) q^{98} +(-0.348707 - 1.14357i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} + O(q^{10}) \) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} - 12q^{11} - 12q^{14} - 16q^{16} - 8q^{18} + 16q^{20} + 62q^{21} + 4q^{23} + 2q^{24} - 16q^{25} + 42q^{27} - 2q^{30} - 4q^{31} + 16q^{33} + 2q^{36} + 72q^{38} - 124q^{39} + 44q^{41} + 44q^{43} + 12q^{44} - 2q^{45} + 4q^{46} + 70q^{49} - 2q^{51} - 52q^{53} + 92q^{54} + 10q^{55} - 54q^{56} - 38q^{57} - 36q^{58} - 44q^{61} - 220q^{63} + 16q^{64} - 34q^{66} - 44q^{67} + 22q^{69} - 12q^{70} - 36q^{72} - 28q^{73} - 24q^{74} - 88q^{77} - 54q^{78} - 44q^{79} - 16q^{80} - 66q^{81} - 28q^{82} + 4q^{83} - 18q^{84} + 158q^{86} - 64q^{87} + 80q^{89} - 8q^{90} - 4q^{92} + 4q^{93} + 24q^{94} - 2q^{96} - 88q^{98} + 190q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{19}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.755750 0.654861i −0.534396 0.463056i
\(3\) 0.359391 1.69435i 0.207495 0.978236i
\(4\) 0.142315 + 0.989821i 0.0711574 + 0.494911i
\(5\) 0.415415 + 0.909632i 0.185779 + 0.406800i
\(6\) −1.38118 + 1.04516i −0.563863 + 0.426683i
\(7\) 0.816450 + 2.78057i 0.308589 + 1.05096i 0.957101 + 0.289753i \(0.0935733\pi\)
−0.648512 + 0.761204i \(0.724609\pi\)
\(8\) 0.540641 0.841254i 0.191145 0.297428i
\(9\) −2.74168 1.21787i −0.913892 0.405957i
\(10\) 0.281733 0.959493i 0.0890917 0.303418i
\(11\) 0.260973 + 0.301179i 0.0786864 + 0.0908090i 0.793728 0.608273i \(-0.208138\pi\)
−0.715041 + 0.699082i \(0.753592\pi\)
\(12\) 1.72826 + 0.114601i 0.498904 + 0.0330825i
\(13\) 2.27633 + 0.668389i 0.631339 + 0.185378i 0.581718 0.813390i \(-0.302381\pi\)
0.0496206 + 0.998768i \(0.484199\pi\)
\(14\) 1.20386 2.63608i 0.321744 0.704521i
\(15\) 1.69054 0.376947i 0.436494 0.0973273i
\(16\) −0.959493 + 0.281733i −0.239873 + 0.0704331i
\(17\) −0.489750 + 3.40629i −0.118782 + 0.826146i 0.840119 + 0.542403i \(0.182485\pi\)
−0.958900 + 0.283743i \(0.908424\pi\)
\(18\) 1.27448 + 2.71582i 0.300399 + 0.640125i
\(19\) −0.0720347 + 0.0103570i −0.0165259 + 0.00237606i −0.150573 0.988599i \(-0.548112\pi\)
0.134047 + 0.990975i \(0.457203\pi\)
\(20\) −0.841254 + 0.540641i −0.188110 + 0.120891i
\(21\) 5.00470 0.384043i 1.09212 0.0838050i
\(22\) 0.398517i 0.0849642i
\(23\) 4.78873 0.260982i 0.998518 0.0544185i
\(24\) −1.23108 1.21838i −0.251293 0.248700i
\(25\) −0.654861 + 0.755750i −0.130972 + 0.151150i
\(26\) −1.28263 1.99581i −0.251544 0.391411i
\(27\) −3.04884 + 4.20768i −0.586750 + 0.809768i
\(28\) −2.63608 + 1.20386i −0.498172 + 0.227507i
\(29\) 8.24777 + 1.18585i 1.53157 + 0.220207i 0.855957 0.517048i \(-0.172969\pi\)
0.675615 + 0.737254i \(0.263878\pi\)
\(30\) −1.52447 0.822188i −0.278329 0.150110i
\(31\) 7.97523 + 5.12537i 1.43239 + 0.920543i 0.999821 + 0.0189442i \(0.00603050\pi\)
0.432573 + 0.901599i \(0.357606\pi\)
\(32\) 0.909632 + 0.415415i 0.160802 + 0.0734357i
\(33\) 0.604096 0.333940i 0.105160 0.0581315i
\(34\) 2.60077 2.25358i 0.446029 0.386486i
\(35\) −2.19013 + 1.89776i −0.370200 + 0.320780i
\(36\) 0.815294 2.88709i 0.135882 0.481182i
\(37\) −0.619026 0.282700i −0.101767 0.0464755i 0.363881 0.931445i \(-0.381451\pi\)
−0.465648 + 0.884970i \(0.654179\pi\)
\(38\) 0.0612226 + 0.0393454i 0.00993161 + 0.00638266i
\(39\) 1.95058 3.61669i 0.312343 0.579134i
\(40\) 0.989821 + 0.142315i 0.156505 + 0.0225020i
\(41\) −3.91584 + 1.78831i −0.611552 + 0.279286i −0.697017 0.717055i \(-0.745490\pi\)
0.0854649 + 0.996341i \(0.472762\pi\)
\(42\) −4.03379 2.98714i −0.622428 0.460926i
\(43\) −2.36906 3.68633i −0.361278 0.562160i 0.612268 0.790650i \(-0.290257\pi\)
−0.973546 + 0.228491i \(0.926621\pi\)
\(44\) −0.260973 + 0.301179i −0.0393432 + 0.0454045i
\(45\) −0.0311182 2.99984i −0.00463883 0.447190i
\(46\) −3.78998 2.93871i −0.558803 0.433289i
\(47\) 1.09098i 0.159136i −0.996829 0.0795682i \(-0.974646\pi\)
0.996829 0.0795682i \(-0.0253541\pi\)
\(48\) 0.132522 + 1.72697i 0.0191279 + 0.249267i
\(49\) −1.17622 + 0.755909i −0.168031 + 0.107987i
\(50\) 0.989821 0.142315i 0.139982 0.0201264i
\(51\) 5.59544 + 2.05400i 0.783519 + 0.287617i
\(52\) −0.337631 + 2.34828i −0.0468210 + 0.325647i
\(53\) −7.85864 + 2.30751i −1.07947 + 0.316960i −0.772666 0.634813i \(-0.781077\pi\)
−0.306802 + 0.951773i \(0.599259\pi\)
\(54\) 5.05960 1.18339i 0.688525 0.161038i
\(55\) −0.165550 + 0.362504i −0.0223228 + 0.0488800i
\(56\) 2.78057 + 0.816450i 0.371570 + 0.109103i
\(57\) −0.00834014 + 0.125774i −0.00110468 + 0.0166592i
\(58\) −5.45668 6.29734i −0.716497 0.826882i
\(59\) 2.89296 9.85253i 0.376632 1.28269i −0.525339 0.850893i \(-0.676061\pi\)
0.901971 0.431797i \(-0.142120\pi\)
\(60\) 0.613698 + 1.61968i 0.0792281 + 0.209100i
\(61\) 5.38365 8.37713i 0.689306 1.07258i −0.303498 0.952832i \(-0.598155\pi\)
0.992804 0.119749i \(-0.0382090\pi\)
\(62\) −2.67087 9.09616i −0.339201 1.15521i
\(63\) 1.14794 8.61776i 0.144627 1.08574i
\(64\) −0.415415 0.909632i −0.0519269 0.113704i
\(65\) 0.337631 + 2.34828i 0.0418780 + 0.291268i
\(66\) −0.675230 0.143224i −0.0831150 0.0176296i
\(67\) −6.25421 5.41931i −0.764074 0.662074i 0.182992 0.983114i \(-0.441422\pi\)
−0.947065 + 0.321041i \(0.895967\pi\)
\(68\) −3.44131 −0.417321
\(69\) 1.27883 8.20759i 0.153953 0.988078i
\(70\) 2.89796 0.346372
\(71\) 10.8997 + 9.44463i 1.29355 + 1.12087i 0.985531 + 0.169493i \(0.0542130\pi\)
0.308023 + 0.951379i \(0.400333\pi\)
\(72\) −2.50680 + 1.64801i −0.295429 + 0.194220i
\(73\) −1.74133 12.1112i −0.203807 1.41751i −0.792855 0.609411i \(-0.791406\pi\)
0.589048 0.808098i \(-0.299503\pi\)
\(74\) 0.282700 + 0.619026i 0.0328632 + 0.0719603i
\(75\) 1.04516 + 1.38118i 0.120684 + 0.159484i
\(76\) −0.0205032 0.0698275i −0.00235188 0.00800976i
\(77\) −0.624379 + 0.971553i −0.0711546 + 0.110719i
\(78\) −3.84258 + 1.45595i −0.435086 + 0.164854i
\(79\) −0.274710 + 0.935576i −0.0309073 + 0.105260i −0.973502 0.228678i \(-0.926560\pi\)
0.942595 + 0.333939i \(0.108378\pi\)
\(80\) −0.654861 0.755750i −0.0732157 0.0844954i
\(81\) 6.03358 + 6.67802i 0.670397 + 0.742002i
\(82\) 4.13049 + 1.21282i 0.456136 + 0.133934i
\(83\) −7.05627 + 15.4511i −0.774526 + 1.69598i −0.0581018 + 0.998311i \(0.518505\pi\)
−0.716424 + 0.697665i \(0.754222\pi\)
\(84\) 1.09238 + 4.89911i 0.119188 + 0.534536i
\(85\) −3.30192 + 0.969530i −0.358143 + 0.105160i
\(86\) −0.623616 + 4.33734i −0.0672462 + 0.467708i
\(87\) 4.97342 13.5485i 0.533207 1.45255i
\(88\) 0.394461 0.0567149i 0.0420497 0.00604583i
\(89\) 1.35490 0.870744i 0.143620 0.0922987i −0.466858 0.884332i \(-0.654614\pi\)
0.610477 + 0.792034i \(0.290978\pi\)
\(90\) −1.94096 + 2.28750i −0.204595 + 0.241124i
\(91\) 6.87519i 0.720716i
\(92\) 0.939832 + 4.70284i 0.0979843 + 0.490305i
\(93\) 11.5504 11.6709i 1.19772 1.21021i
\(94\) −0.714442 + 0.824510i −0.0736891 + 0.0850418i
\(95\) −0.0393454 0.0612226i −0.00403675 0.00628130i
\(96\) 1.03077 1.39194i 0.105203 0.142065i
\(97\) −1.94916 + 0.890152i −0.197907 + 0.0903813i −0.511903 0.859043i \(-0.671059\pi\)
0.313996 + 0.949424i \(0.398332\pi\)
\(98\) 1.38394 + 0.198981i 0.139799 + 0.0201001i
\(99\) −0.348707 1.14357i −0.0350463 0.114933i
\(100\) −0.841254 0.540641i −0.0841254 0.0540641i
\(101\) 1.29925 + 0.593348i 0.129280 + 0.0590403i 0.479005 0.877812i \(-0.340998\pi\)
−0.349725 + 0.936853i \(0.613725\pi\)
\(102\) −2.88367 5.21655i −0.285526 0.516515i
\(103\) −10.9267 + 9.46807i −1.07664 + 0.932916i −0.997951 0.0639828i \(-0.979620\pi\)
−0.0786917 + 0.996899i \(0.525074\pi\)
\(104\) 1.79296 1.55361i 0.175814 0.152344i
\(105\) 2.42837 + 4.39290i 0.236984 + 0.428703i
\(106\) 7.45026 + 3.40242i 0.723633 + 0.330472i
\(107\) 9.56528 + 6.14723i 0.924710 + 0.594275i 0.914021 0.405668i \(-0.132961\pi\)
0.0106896 + 0.999943i \(0.496597\pi\)
\(108\) −4.59875 2.41899i −0.442515 0.232768i
\(109\) −8.51945 1.22491i −0.816015 0.117325i −0.278346 0.960481i \(-0.589786\pi\)
−0.537669 + 0.843156i \(0.680695\pi\)
\(110\) 0.362504 0.165550i 0.0345634 0.0157846i
\(111\) −0.701466 + 0.947249i −0.0665802 + 0.0899089i
\(112\) −1.56676 2.43792i −0.148044 0.230362i
\(113\) −1.66529 + 1.92184i −0.156657 + 0.180792i −0.828652 0.559763i \(-0.810892\pi\)
0.671995 + 0.740555i \(0.265437\pi\)
\(114\) 0.0886678 0.0895924i 0.00830450 0.00839109i
\(115\) 2.22671 + 4.24756i 0.207641 + 0.396087i
\(116\) 8.33258i 0.773661i
\(117\) −5.42693 4.60478i −0.501720 0.425712i
\(118\) −8.63839 + 5.55156i −0.795228 + 0.511062i
\(119\) −9.87128 + 1.41928i −0.904899 + 0.130105i
\(120\) 0.596865 1.62596i 0.0544861 0.148429i
\(121\) 1.54286 10.7308i 0.140260 0.975531i
\(122\) −9.55455 + 2.80547i −0.865028 + 0.253995i
\(123\) 1.62271 + 7.27753i 0.146314 + 0.656193i
\(124\) −3.93821 + 8.62347i −0.353661 + 0.774410i
\(125\) −0.959493 0.281733i −0.0858197 0.0251989i
\(126\) −6.51099 + 5.76113i −0.580045 + 0.513242i
\(127\) 6.52183 + 7.52659i 0.578719 + 0.667877i 0.967329 0.253525i \(-0.0815901\pi\)
−0.388610 + 0.921402i \(0.627045\pi\)
\(128\) −0.281733 + 0.959493i −0.0249019 + 0.0848080i
\(129\) −7.09736 + 2.68919i −0.624888 + 0.236770i
\(130\) 1.28263 1.99581i 0.112494 0.175044i
\(131\) −1.18727 4.04347i −0.103732 0.353279i 0.891227 0.453557i \(-0.149845\pi\)
−0.994960 + 0.100277i \(0.968027\pi\)
\(132\) 0.416513 + 0.550423i 0.0362528 + 0.0479081i
\(133\) −0.0876111 0.191842i −0.00759685 0.0166348i
\(134\) 1.17773 + 8.19128i 0.101740 + 0.707618i
\(135\) −5.09397 1.02539i −0.438420 0.0882515i
\(136\) 2.60077 + 2.25358i 0.223014 + 0.193243i
\(137\) 2.84078 0.242704 0.121352 0.992610i \(-0.461277\pi\)
0.121352 + 0.992610i \(0.461277\pi\)
\(138\) −6.34131 + 5.36543i −0.539808 + 0.456736i
\(139\) 0.628670 0.0533231 0.0266615 0.999645i \(-0.491512\pi\)
0.0266615 + 0.999645i \(0.491512\pi\)
\(140\) −2.19013 1.89776i −0.185100 0.160390i
\(141\) −1.84851 0.392090i −0.155673 0.0330199i
\(142\) −2.05251 14.2756i −0.172243 1.19798i
\(143\) 0.392755 + 0.860014i 0.0328438 + 0.0719180i
\(144\) 2.97373 + 0.396120i 0.247811 + 0.0330100i
\(145\) 2.34756 + 7.99505i 0.194954 + 0.663953i
\(146\) −6.61514 + 10.2934i −0.547473 + 0.851885i
\(147\) 0.858056 + 2.26460i 0.0707713 + 0.186781i
\(148\) 0.191726 0.652957i 0.0157597 0.0536728i
\(149\) −7.46190 8.61149i −0.611303 0.705481i 0.362728 0.931895i \(-0.381845\pi\)
−0.974031 + 0.226414i \(0.927300\pi\)
\(150\) 0.114601 1.72826i 0.00935714 0.141111i
\(151\) 22.4886 + 6.60326i 1.83010 + 0.537365i 0.999801 0.0199545i \(-0.00635212\pi\)
0.830298 + 0.557320i \(0.188170\pi\)
\(152\) −0.0302320 + 0.0661988i −0.00245214 + 0.00536943i
\(153\) 5.49116 8.74248i 0.443934 0.706788i
\(154\) 1.10811 0.325369i 0.0892938 0.0262190i
\(155\) −1.34917 + 9.38368i −0.108368 + 0.753715i
\(156\) 3.85747 + 1.41602i 0.308845 + 0.113372i
\(157\) −20.3150 + 2.92085i −1.62131 + 0.233109i −0.892316 0.451411i \(-0.850921\pi\)
−0.728994 + 0.684520i \(0.760012\pi\)
\(158\) 0.820284 0.527164i 0.0652583 0.0419389i
\(159\) 1.08541 + 14.1446i 0.0860784 + 1.12174i
\(160\) 1.00000i 0.0790569i
\(161\) 4.63543 + 13.1023i 0.365323 + 1.03261i
\(162\) −0.186699 8.99806i −0.0146685 0.706955i
\(163\) 1.83493 2.11763i 0.143723 0.165865i −0.679324 0.733839i \(-0.737727\pi\)
0.823047 + 0.567973i \(0.192272\pi\)
\(164\) −2.32739 3.62148i −0.181738 0.282790i
\(165\) 0.554713 + 0.410781i 0.0431844 + 0.0319793i
\(166\) 15.4511 7.05627i 1.19924 0.547673i
\(167\) −3.00840 0.432543i −0.232797 0.0334712i 0.0249287 0.999689i \(-0.492064\pi\)
−0.257726 + 0.966218i \(0.582973\pi\)
\(168\) 2.38267 4.41785i 0.183827 0.340845i
\(169\) −6.20138 3.98539i −0.477030 0.306568i
\(170\) 3.13033 + 1.42957i 0.240085 + 0.109643i
\(171\) 0.210109 + 0.0593334i 0.0160675 + 0.00453734i
\(172\) 3.31165 2.86956i 0.252511 0.218802i
\(173\) 2.41361 2.09141i 0.183504 0.159007i −0.558265 0.829663i \(-0.688533\pi\)
0.741769 + 0.670656i \(0.233987\pi\)
\(174\) −12.6310 + 6.98234i −0.957555 + 0.529330i
\(175\) −2.63608 1.20386i −0.199269 0.0910030i
\(176\) −0.335254 0.215455i −0.0252707 0.0162405i
\(177\) −15.6540 8.44262i −1.17663 0.634586i
\(178\) −1.59418 0.229209i −0.119489 0.0171799i
\(179\) 0.698748 0.319108i 0.0522269 0.0238512i −0.389130 0.921183i \(-0.627224\pi\)
0.441357 + 0.897331i \(0.354497\pi\)
\(180\) 2.96488 0.457723i 0.220989 0.0341167i
\(181\) −8.16696 12.7080i −0.607045 0.944581i −0.999690 0.0248905i \(-0.992076\pi\)
0.392645 0.919690i \(-0.371560\pi\)
\(182\) 4.50229 5.19592i 0.333732 0.385148i
\(183\) −12.2590 12.1325i −0.906211 0.896859i
\(184\) 2.36943 4.16963i 0.174677 0.307389i
\(185\) 0.680523i 0.0500331i
\(186\) −16.3720 + 1.25633i −1.20045 + 0.0921185i
\(187\) −1.15371 + 0.741447i −0.0843680 + 0.0542200i
\(188\) 1.07988 0.155263i 0.0787583 0.0113237i
\(189\) −14.1890 5.04216i −1.03210 0.366763i
\(190\) −0.0103570 + 0.0720347i −0.000751377 + 0.00522594i
\(191\) −19.2267 + 5.64547i −1.39120 + 0.408492i −0.889651 0.456640i \(-0.849053\pi\)
−0.501544 + 0.865132i \(0.667234\pi\)
\(192\) −1.69054 + 0.376947i −0.122004 + 0.0272038i
\(193\) −7.35552 + 16.1063i −0.529462 + 1.15936i 0.436270 + 0.899816i \(0.356299\pi\)
−0.965731 + 0.259543i \(0.916428\pi\)
\(194\) 2.05600 + 0.603697i 0.147612 + 0.0433429i
\(195\) 4.10016 + 0.271883i 0.293618 + 0.0194699i
\(196\) −0.915608 1.05667i −0.0654006 0.0754763i
\(197\) 2.39108 8.14327i 0.170357 0.580184i −0.829410 0.558640i \(-0.811323\pi\)
0.999768 0.0215445i \(-0.00685837\pi\)
\(198\) −0.485343 + 1.09261i −0.0344918 + 0.0776481i
\(199\) −3.08514 + 4.80058i −0.218700 + 0.340304i −0.933216 0.359315i \(-0.883010\pi\)
0.714516 + 0.699619i \(0.246647\pi\)
\(200\) 0.281733 + 0.959493i 0.0199215 + 0.0678464i
\(201\) −11.4299 + 8.64920i −0.806205 + 0.610068i
\(202\) −0.593348 1.29925i −0.0417478 0.0914150i
\(203\) 3.43655 + 23.9017i 0.241198 + 1.67757i
\(204\) −1.23678 + 5.83081i −0.0865917 + 0.408238i
\(205\) −3.25340 2.81909i −0.227227 0.196894i
\(206\) 14.4581 1.00735
\(207\) −13.4470 5.11653i −0.934629 0.355623i
\(208\) −2.37242 −0.164498
\(209\) −0.0219184 0.0189924i −0.00151613 0.00131373i
\(210\) 1.04150 4.91017i 0.0718704 0.338834i
\(211\) 2.32174 + 16.1480i 0.159835 + 1.11168i 0.898936 + 0.438081i \(0.144342\pi\)
−0.739101 + 0.673595i \(0.764749\pi\)
\(212\) −3.40242 7.45026i −0.233679 0.511686i
\(213\) 19.9198 15.0736i 1.36488 1.03283i
\(214\) −3.20337 10.9097i −0.218978 0.745771i
\(215\) 2.36906 3.68633i 0.161568 0.251405i
\(216\) 1.89140 + 4.83969i 0.128693 + 0.329299i
\(217\) −7.74008 + 26.3603i −0.525431 + 1.78945i
\(218\) 5.63642 + 6.50478i 0.381747 + 0.440559i
\(219\) −21.1465 1.40223i −1.42895 0.0947540i
\(220\) −0.382375 0.112275i −0.0257797 0.00756960i
\(221\) −3.39156 + 7.42647i −0.228141 + 0.499558i
\(222\) 1.15045 0.256521i 0.0772131 0.0172166i
\(223\) −11.1066 + 3.26120i −0.743754 + 0.218386i −0.631589 0.775304i \(-0.717597\pi\)
−0.112165 + 0.993690i \(0.535779\pi\)
\(224\) −0.412423 + 2.86846i −0.0275562 + 0.191657i
\(225\) 2.71582 1.27448i 0.181055 0.0849656i
\(226\) 2.51708 0.361901i 0.167434 0.0240733i
\(227\) 16.5844 10.6581i 1.10074 0.707405i 0.141487 0.989940i \(-0.454812\pi\)
0.959257 + 0.282535i \(0.0911754\pi\)
\(228\) −0.125681 + 0.00964432i −0.00832344 + 0.000638711i
\(229\) 12.4569i 0.823176i −0.911370 0.411588i \(-0.864974\pi\)
0.911370 0.411588i \(-0.135026\pi\)
\(230\) 1.09873 4.66828i 0.0724481 0.307817i
\(231\) 1.42176 + 1.40709i 0.0935449 + 0.0925796i
\(232\) 5.45668 6.29734i 0.358249 0.413441i
\(233\) −3.62652 5.64298i −0.237581 0.369684i 0.701905 0.712271i \(-0.252333\pi\)
−0.939486 + 0.342587i \(0.888697\pi\)
\(234\) 1.08591 + 7.03395i 0.0709884 + 0.459823i
\(235\) 0.992394 0.453211i 0.0647366 0.0295642i
\(236\) 10.1640 + 1.46136i 0.661617 + 0.0951262i
\(237\) 1.48647 + 0.801693i 0.0965565 + 0.0520756i
\(238\) 8.38964 + 5.39170i 0.543820 + 0.349492i
\(239\) −19.1664 8.75299i −1.23977 0.566184i −0.315864 0.948805i \(-0.602294\pi\)
−0.923905 + 0.382621i \(0.875021\pi\)
\(240\) −1.51586 + 0.837957i −0.0978483 + 0.0540899i
\(241\) 14.5992 12.6503i 0.940419 0.814878i −0.0424657 0.999098i \(-0.513521\pi\)
0.982885 + 0.184220i \(0.0589759\pi\)
\(242\) −8.19322 + 7.09947i −0.526680 + 0.456371i
\(243\) 13.4833 7.82300i 0.864957 0.501846i
\(244\) 9.05803 + 4.13667i 0.579881 + 0.264823i
\(245\) −1.17622 0.755909i −0.0751458 0.0482933i
\(246\) 3.53941 6.56263i 0.225664 0.418418i
\(247\) −0.170897 0.0245713i −0.0108739 0.00156343i
\(248\) 8.62347 3.93821i 0.547591 0.250076i
\(249\) 23.6436 + 17.5088i 1.49835 + 1.10958i
\(250\) 0.540641 + 0.841254i 0.0341931 + 0.0532055i
\(251\) −10.8428 + 12.5133i −0.684394 + 0.789832i −0.986556 0.163424i \(-0.947746\pi\)
0.302162 + 0.953256i \(0.402292\pi\)
\(252\) 8.69341 0.0901794i 0.547634 0.00568077i
\(253\) 1.32833 + 1.37416i 0.0835115 + 0.0863924i
\(254\) 9.95911i 0.624890i
\(255\) 0.456049 + 5.94306i 0.0285589 + 0.372169i
\(256\) 0.841254 0.540641i 0.0525783 0.0337901i
\(257\) 11.9710 1.72117i 0.746730 0.107364i 0.241563 0.970385i \(-0.422340\pi\)
0.505167 + 0.863022i \(0.331431\pi\)
\(258\) 7.12488 + 2.61543i 0.443575 + 0.162830i
\(259\) 0.280663 1.95206i 0.0174396 0.121295i
\(260\) −2.27633 + 0.668389i −0.141172 + 0.0414517i
\(261\) −21.1685 13.2959i −1.31030 0.822998i
\(262\) −1.75063 + 3.83335i −0.108154 + 0.236825i
\(263\) −7.89391 2.31786i −0.486759 0.142925i 0.0291389 0.999575i \(-0.490723\pi\)
−0.515898 + 0.856650i \(0.672542\pi\)
\(264\) 0.0456705 0.688740i 0.00281083 0.0423890i
\(265\) −5.36358 6.18990i −0.329482 0.380242i
\(266\) −0.0594175 + 0.202357i −0.00364312 + 0.0124073i
\(267\) −0.988409 2.60863i −0.0604896 0.159645i
\(268\) 4.47408 6.96180i 0.273298 0.425260i
\(269\) −1.83023 6.23320i −0.111591 0.380045i 0.884693 0.466175i \(-0.154368\pi\)
−0.996284 + 0.0861299i \(0.972550\pi\)
\(270\) 3.17828 + 4.11078i 0.193424 + 0.250174i
\(271\) 2.77349 + 6.07310i 0.168478 + 0.368915i 0.974972 0.222327i \(-0.0713652\pi\)
−0.806494 + 0.591242i \(0.798638\pi\)
\(272\) −0.489750 3.40629i −0.0296955 0.206536i
\(273\) 11.6490 + 2.47088i 0.705031 + 0.149545i
\(274\) −2.14692 1.86031i −0.129700 0.112386i
\(275\) −0.398517 −0.0240315
\(276\) 8.30605 + 0.0977500i 0.499965 + 0.00588386i
\(277\) 8.31559 0.499635 0.249818 0.968293i \(-0.419629\pi\)
0.249818 + 0.968293i \(0.419629\pi\)
\(278\) −0.475117 0.411691i −0.0284956 0.0246916i
\(279\) −15.6235 23.7649i −0.935352 1.42277i
\(280\) 0.412423 + 2.86846i 0.0246470 + 0.171423i
\(281\) −4.51109 9.87791i −0.269109 0.589267i 0.726039 0.687653i \(-0.241359\pi\)
−0.995148 + 0.0983866i \(0.968632\pi\)
\(282\) 1.14025 + 1.50684i 0.0679008 + 0.0897310i
\(283\) −1.17168 3.99036i −0.0696489 0.237202i 0.917310 0.398173i \(-0.130356\pi\)
−0.986959 + 0.160971i \(0.948537\pi\)
\(284\) −7.79731 + 12.1329i −0.462685 + 0.719952i
\(285\) −0.117873 + 0.0446621i −0.00698220 + 0.00264556i
\(286\) 0.266365 0.907155i 0.0157505 0.0536412i
\(287\) −8.16960 9.42822i −0.482236 0.556530i
\(288\) −1.98799 2.24675i −0.117144 0.132391i
\(289\) 4.94845 + 1.45300i 0.291086 + 0.0854704i
\(290\) 3.46148 7.57958i 0.203265 0.445088i
\(291\) 0.807722 + 3.62248i 0.0473495 + 0.212354i
\(292\) 11.7401 3.44721i 0.687038 0.201733i
\(293\) 3.41836 23.7752i 0.199703 1.38896i −0.605444 0.795888i \(-0.707004\pi\)
0.805147 0.593075i \(-0.202086\pi\)
\(294\) 0.834520 2.27338i 0.0486702 0.132586i
\(295\) 10.1640 1.46136i 0.591769 0.0850835i
\(296\) −0.572493 + 0.367919i −0.0332755 + 0.0213848i
\(297\) −2.06293 + 0.179845i −0.119703 + 0.0104356i
\(298\) 11.3946i 0.660074i
\(299\) 11.0751 + 2.60665i 0.640491 + 0.150747i
\(300\) −1.21838 + 1.23108i −0.0703430 + 0.0710765i
\(301\) 8.31588 9.59704i 0.479320 0.553164i
\(302\) −12.6716 19.7173i −0.729166 1.13460i
\(303\) 1.47228 1.98815i 0.0845804 0.114216i
\(304\) 0.0661988 0.0302320i 0.00379676 0.00173392i
\(305\) 9.85655 + 1.41716i 0.564385 + 0.0811463i
\(306\) −9.87504 + 3.01118i −0.564519 + 0.172138i
\(307\) −4.63429 2.97828i −0.264493 0.169979i 0.401672 0.915783i \(-0.368429\pi\)
−0.666165 + 0.745804i \(0.732065\pi\)
\(308\) −1.05052 0.479758i −0.0598591 0.0273367i
\(309\) 12.1153 + 21.9165i 0.689215 + 1.24679i
\(310\) 7.16464 6.20819i 0.406924 0.352602i
\(311\) −0.184214 + 0.159622i −0.0104458 + 0.00905134i −0.660068 0.751206i \(-0.729473\pi\)
0.649622 + 0.760257i \(0.274927\pi\)
\(312\) −1.98799 3.59626i −0.112548 0.203598i
\(313\) 10.3063 + 4.70673i 0.582547 + 0.266040i 0.684815 0.728717i \(-0.259883\pi\)
−0.102268 + 0.994757i \(0.532610\pi\)
\(314\) 17.2658 + 11.0960i 0.974364 + 0.626186i
\(315\) 8.31586 2.53574i 0.468546 0.142873i
\(316\) −0.965148 0.138767i −0.0542938 0.00780627i
\(317\) 24.9179 11.3796i 1.39953 0.639142i 0.434351 0.900744i \(-0.356978\pi\)
0.965176 + 0.261601i \(0.0842506\pi\)
\(318\) 8.44246 11.4006i 0.473430 0.639313i
\(319\) 1.79529 + 2.79353i 0.100517 + 0.156408i
\(320\) 0.654861 0.755750i 0.0366078 0.0422477i
\(321\) 13.8533 13.9977i 0.773214 0.781276i
\(322\) 5.07697 12.9376i 0.282928 0.720986i
\(323\) 0.250443i 0.0139350i
\(324\) −5.75138 + 6.92254i −0.319521 + 0.384586i
\(325\) −1.99581 + 1.28263i −0.110708 + 0.0711475i
\(326\) −2.77350 + 0.398769i −0.153610 + 0.0220858i
\(327\) −5.13725 + 13.9947i −0.284090 + 0.773911i
\(328\) −0.612646 + 4.26105i −0.0338277 + 0.235277i
\(329\) 3.03356 0.890733i 0.167246 0.0491077i
\(330\) −0.150220 0.673708i −0.00826933 0.0370864i
\(331\) 1.72585 3.77908i 0.0948613 0.207717i −0.856253 0.516557i \(-0.827213\pi\)
0.951114 + 0.308840i \(0.0999407\pi\)
\(332\) −16.2980 4.78553i −0.894470 0.262640i
\(333\) 1.35288 + 1.52896i 0.0741372 + 0.0837867i
\(334\) 1.99034 + 2.29698i 0.108907 + 0.125685i
\(335\) 2.33148 7.94029i 0.127382 0.433824i
\(336\) −4.69378 + 1.77847i −0.256067 + 0.0970237i
\(337\) −2.67315 + 4.15950i −0.145616 + 0.226582i −0.906398 0.422425i \(-0.861179\pi\)
0.760782 + 0.649007i \(0.224815\pi\)
\(338\) 2.07682 + 7.07300i 0.112964 + 0.384720i
\(339\) 2.65780 + 3.51228i 0.144352 + 0.190761i
\(340\) −1.42957 3.13033i −0.0775295 0.169766i
\(341\) 0.537667 + 3.73956i 0.0291163 + 0.202508i
\(342\) −0.119935 0.182433i −0.00648533 0.00986487i
\(343\) 12.2687 + 10.6309i 0.662450 + 0.574016i
\(344\) −4.38195 −0.236259
\(345\) 7.99713 2.24629i 0.430551 0.120936i
\(346\) −3.19367 −0.171693
\(347\) −11.9780 10.3790i −0.643011 0.557172i 0.271143 0.962539i \(-0.412598\pi\)
−0.914154 + 0.405367i \(0.867144\pi\)
\(348\) 14.1183 + 2.99465i 0.756823 + 0.160530i
\(349\) 4.89244 + 34.0277i 0.261886 + 1.82146i 0.518651 + 0.854986i \(0.326434\pi\)
−0.256765 + 0.966474i \(0.582657\pi\)
\(350\) 1.20386 + 2.63608i 0.0643488 + 0.140904i
\(351\) −9.75252 + 7.54023i −0.520551 + 0.402468i
\(352\) 0.112275 + 0.382375i 0.00598429 + 0.0203806i
\(353\) 6.02018 9.36758i 0.320422 0.498586i −0.643257 0.765650i \(-0.722417\pi\)
0.963679 + 0.267065i \(0.0860537\pi\)
\(354\) 6.30175 + 16.6317i 0.334934 + 0.883964i
\(355\) −4.06325 + 13.8381i −0.215655 + 0.734453i
\(356\) 1.05470 + 1.21719i 0.0558992 + 0.0645111i
\(357\) −1.14289 + 17.2355i −0.0604883 + 0.912201i
\(358\) −0.737050 0.216417i −0.0389543 0.0114380i
\(359\) 10.2022 22.3398i 0.538454 1.17905i −0.423515 0.905889i \(-0.639204\pi\)
0.961969 0.273160i \(-0.0880689\pi\)
\(360\) −2.54045 1.59566i −0.133893 0.0840985i
\(361\) −18.2253 + 5.35143i −0.959226 + 0.281654i
\(362\) −2.14982 + 14.9523i −0.112992 + 0.785876i
\(363\) −17.6274 6.47072i −0.925196 0.339625i
\(364\) −6.80521 + 0.978442i −0.356690 + 0.0512843i
\(365\) 10.2934 6.61514i 0.538779 0.346252i
\(366\) 1.31964 + 17.1970i 0.0689787 + 0.898904i
\(367\) 7.86407i 0.410501i 0.978709 + 0.205251i \(0.0658009\pi\)
−0.978709 + 0.205251i \(0.934199\pi\)
\(368\) −4.52122 + 1.59955i −0.235685 + 0.0833823i
\(369\) 12.9139 0.133960i 0.672271 0.00697367i
\(370\) −0.445648 + 0.514305i −0.0231681 + 0.0267375i
\(371\) −12.8324 19.9676i −0.666223 1.03666i
\(372\) 13.1959 + 9.77191i 0.684173 + 0.506650i
\(373\) −7.75848 + 3.54318i −0.401719 + 0.183459i −0.606020 0.795449i \(-0.707235\pi\)
0.204301 + 0.978908i \(0.434508\pi\)
\(374\) 1.35746 + 0.195174i 0.0701928 + 0.0100922i
\(375\) −0.822188 + 1.52447i −0.0424576 + 0.0787233i
\(376\) −0.917794 0.589830i −0.0473316 0.0304182i
\(377\) 17.9820 + 8.21210i 0.926120 + 0.422945i
\(378\) 7.42140 + 13.1024i 0.381716 + 0.673916i
\(379\) 13.8543 12.0048i 0.711646 0.616645i −0.221914 0.975066i \(-0.571230\pi\)
0.933560 + 0.358422i \(0.116685\pi\)
\(380\) 0.0550000 0.0476578i 0.00282144 0.00244479i
\(381\) 15.0966 8.34530i 0.773422 0.427543i
\(382\) 18.2276 + 8.32425i 0.932604 + 0.425906i
\(383\) −29.9809 19.2675i −1.53195 0.984525i −0.989515 0.144428i \(-0.953866\pi\)
−0.542436 0.840097i \(-0.682498\pi\)
\(384\) 1.52447 + 0.822188i 0.0777953 + 0.0419571i
\(385\) −1.14313 0.164358i −0.0582594 0.00837644i
\(386\) 16.1063 7.35552i 0.819791 0.374386i
\(387\) 2.00572 + 12.9919i 0.101956 + 0.660417i
\(388\) −1.15849 1.80264i −0.0588132 0.0915152i
\(389\) 13.6299 15.7298i 0.691066 0.797532i −0.296451 0.955048i \(-0.595803\pi\)
0.987516 + 0.157516i \(0.0503485\pi\)
\(390\) −2.92065 2.89051i −0.147893 0.146366i
\(391\) −1.45630 + 16.4396i −0.0736482 + 0.831385i
\(392\) 1.39817i 0.0706184i
\(393\) −7.27776 + 0.558469i −0.367115 + 0.0281710i
\(394\) −7.13977 + 4.58845i −0.359696 + 0.231163i
\(395\) −0.965148 + 0.138767i −0.0485619 + 0.00698214i
\(396\) 1.08230 0.507904i 0.0543877 0.0255231i
\(397\) 0.504598 3.50956i 0.0253250 0.176140i −0.973233 0.229820i \(-0.926186\pi\)
0.998558 + 0.0536806i \(0.0170953\pi\)
\(398\) 5.47531 1.60769i 0.274452 0.0805865i
\(399\) −0.356534 + 0.0794982i −0.0178490 + 0.00397989i
\(400\) 0.415415 0.909632i 0.0207708 0.0454816i
\(401\) −18.0117 5.28872i −0.899462 0.264106i −0.200863 0.979619i \(-0.564375\pi\)
−0.698599 + 0.715513i \(0.746193\pi\)
\(402\) 14.3022 + 0.948383i 0.713328 + 0.0473010i
\(403\) 14.7285 + 16.9976i 0.733677 + 0.846709i
\(404\) −0.402406 + 1.37047i −0.0200204 + 0.0681834i
\(405\) −3.56810 + 8.26248i −0.177300 + 0.410566i
\(406\) 13.0551 20.3142i 0.647915 1.00817i
\(407\) −0.0764060 0.260215i −0.00378730 0.0128984i
\(408\) 4.75306 3.59671i 0.235312 0.178064i
\(409\) −10.4737 22.9342i −0.517890 1.13402i −0.970232 0.242177i \(-0.922139\pi\)
0.452342 0.891845i \(-0.350589\pi\)
\(410\) 0.612646 + 4.26105i 0.0302564 + 0.210438i
\(411\) 1.02095 4.81328i 0.0503597 0.237422i
\(412\) −10.9267 9.46807i −0.538321 0.466458i
\(413\) 29.7576 1.46428
\(414\) 6.81193 + 12.6727i 0.334788 + 0.622830i
\(415\) −16.9861 −0.833813
\(416\) 1.79296 + 1.55361i 0.0879071 + 0.0761719i
\(417\) 0.225938 1.06519i 0.0110642 0.0521626i
\(418\) 0.00412745 + 0.0287071i 0.000201880 + 0.00140411i
\(419\) 5.75720 + 12.6065i 0.281258 + 0.615869i 0.996553 0.0829534i \(-0.0264353\pi\)
−0.715296 + 0.698822i \(0.753708\pi\)
\(420\) −4.00259 + 3.02882i −0.195307 + 0.147791i
\(421\) −2.05202 6.98853i −0.100009 0.340600i 0.894254 0.447560i \(-0.147707\pi\)
−0.994263 + 0.106959i \(0.965889\pi\)
\(422\) 8.82006 13.7243i 0.429354 0.668087i
\(423\) −1.32868 + 2.99112i −0.0646025 + 0.145433i
\(424\) −2.30751 + 7.85864i −0.112062 + 0.381649i
\(425\) −2.25358 2.60077i −0.109315 0.126156i
\(426\) −24.9255 1.65282i −1.20764 0.0800793i
\(427\) 27.6887 + 8.13013i 1.33995 + 0.393445i
\(428\) −4.72338 + 10.3428i −0.228313 + 0.499936i
\(429\) 1.59832 0.356385i 0.0771677 0.0172064i
\(430\) −4.20445 + 1.23454i −0.202756 + 0.0595347i
\(431\) 4.56291 31.7357i 0.219788 1.52866i −0.519033 0.854754i \(-0.673708\pi\)
0.738820 0.673902i \(-0.235383\pi\)
\(432\) 1.73990 4.89620i 0.0837110 0.235568i
\(433\) −35.9787 + 5.17295i −1.72903 + 0.248596i −0.933820 0.357743i \(-0.883546\pi\)
−0.795206 + 0.606340i \(0.792637\pi\)
\(434\) 23.1119 14.8531i 1.10941 0.712972i
\(435\) 14.3901 1.10425i 0.689955 0.0529446i
\(436\) 8.60705i 0.412203i
\(437\) −0.342251 + 0.0683967i −0.0163721 + 0.00327186i
\(438\) 15.0632 + 14.9077i 0.719747 + 0.712320i
\(439\) 16.8545 19.4512i 0.804423 0.928354i −0.194192 0.980964i \(-0.562208\pi\)
0.998615 + 0.0526097i \(0.0167539\pi\)
\(440\) 0.215455 + 0.335254i 0.0102714 + 0.0159826i
\(441\) 4.14541 0.639976i 0.197400 0.0304750i
\(442\) 7.42647 3.39156i 0.353241 0.161320i
\(443\) 5.32405 + 0.765483i 0.252953 + 0.0363692i 0.267625 0.963523i \(-0.413761\pi\)
−0.0146717 + 0.999892i \(0.504670\pi\)
\(444\) −1.03744 0.559518i −0.0492346 0.0265536i
\(445\) 1.35490 + 0.870744i 0.0642286 + 0.0412772i
\(446\) 10.5294 + 4.80864i 0.498584 + 0.227696i
\(447\) −17.2727 + 9.54821i −0.816969 + 0.451615i
\(448\) 2.19013 1.89776i 0.103474 0.0896607i
\(449\) −12.6228 + 10.9377i −0.595708 + 0.516184i −0.899710 0.436487i \(-0.856222\pi\)
0.304002 + 0.952671i \(0.401677\pi\)
\(450\) −2.88709 0.815294i −0.136099 0.0384333i
\(451\) −1.56053 0.712671i −0.0734825 0.0335584i
\(452\) −2.13928 1.37483i −0.100623 0.0646666i
\(453\) 19.2705 35.7306i 0.905406 1.67877i
\(454\) −19.5132 2.80558i −0.915801 0.131672i
\(455\) −6.25390 + 2.85606i −0.293187 + 0.133894i
\(456\) 0.101299 + 0.0750150i 0.00474377 + 0.00351290i
\(457\) −17.3640 27.0190i −0.812256 1.26390i −0.961421 0.275083i \(-0.911295\pi\)
0.149165 0.988812i \(-0.452342\pi\)
\(458\) −8.15755 + 9.41431i −0.381177 + 0.439902i
\(459\) −12.8394 12.4459i −0.599291 0.580926i
\(460\) −3.88743 + 2.80853i −0.181253 + 0.130948i
\(461\) 11.1460i 0.519119i 0.965727 + 0.259559i \(0.0835774\pi\)
−0.965727 + 0.259559i \(0.916423\pi\)
\(462\) −0.153048 1.99446i −0.00712042 0.0927907i
\(463\) −30.9917 + 19.9172i −1.44031 + 0.925629i −0.440699 + 0.897655i \(0.645269\pi\)
−0.999609 + 0.0279745i \(0.991094\pi\)
\(464\) −8.24777 + 1.18585i −0.382893 + 0.0550517i
\(465\) 15.4144 + 5.65838i 0.714826 + 0.262401i
\(466\) −0.954623 + 6.63955i −0.0442221 + 0.307571i
\(467\) −6.57804 + 1.93149i −0.304395 + 0.0893785i −0.430363 0.902656i \(-0.641615\pi\)
0.125968 + 0.992034i \(0.459796\pi\)
\(468\) 3.78558 6.02702i 0.174988 0.278599i
\(469\) 9.96252 21.8149i 0.460026 1.00732i
\(470\) −1.04679 0.307366i −0.0482849 0.0141777i
\(471\) −2.35206 + 35.4705i −0.108377 + 1.63439i
\(472\) −6.72442 7.76040i −0.309517 0.357201i
\(473\) 0.491984 1.67554i 0.0226215 0.0770416i
\(474\) −0.598401 1.57931i −0.0274855 0.0725401i
\(475\) 0.0393454 0.0612226i 0.00180529 0.00280908i
\(476\) −2.80966 9.56882i −0.128781 0.438586i
\(477\) 24.3561 + 3.24439i 1.11519 + 0.148550i
\(478\) 8.75299 + 19.1664i 0.400352 + 0.876649i
\(479\) −0.0539474 0.375212i −0.00246492 0.0171439i 0.988552 0.150881i \(-0.0482112\pi\)
−0.991017 + 0.133738i \(0.957302\pi\)
\(480\) 1.69435 + 0.359391i 0.0773364 + 0.0164039i
\(481\) −1.22015 1.05727i −0.0556341 0.0482072i
\(482\) −19.3176 −0.879891
\(483\) 23.8659 3.14521i 1.08594 0.143112i
\(484\) 10.8412 0.492781
\(485\) −1.61942 1.40324i −0.0735342 0.0637177i
\(486\) −15.3130 2.91749i −0.694612 0.132340i
\(487\) −3.46330 24.0878i −0.156937 1.09152i −0.904236 0.427033i \(-0.859559\pi\)
0.747299 0.664488i \(-0.231350\pi\)
\(488\) −4.13667 9.05803i −0.187258 0.410038i
\(489\) −2.92855 3.87008i −0.132434 0.175011i
\(490\) 0.393911 + 1.34154i 0.0177951 + 0.0606044i
\(491\) 7.70396 11.9876i 0.347675 0.540993i −0.622742 0.782427i \(-0.713981\pi\)
0.970417 + 0.241434i \(0.0776178\pi\)
\(492\) −6.97252 + 2.64189i −0.314345 + 0.119106i
\(493\) −8.07869 + 27.5135i −0.363846 + 1.23914i
\(494\) 0.113064 + 0.130483i 0.00508701 + 0.00587072i
\(495\) 0.895368 0.792250i 0.0402438 0.0356090i
\(496\) −9.09616 2.67087i −0.408430 0.119926i
\(497\) −17.3624 + 38.0184i −0.778812 + 1.70536i
\(498\) −6.40284 28.7156i −0.286918 1.28677i
\(499\) 3.38386 0.993592i 0.151483 0.0444793i −0.205112 0.978738i \(-0.565756\pi\)
0.356595 + 0.934259i \(0.383938\pi\)
\(500\) 0.142315 0.989821i 0.00636451 0.0442662i
\(501\) −1.81408 + 4.94185i −0.0810469 + 0.220786i
\(502\) 16.3889 2.35637i 0.731474 0.105170i
\(503\) 16.1327 10.3678i 0.719321 0.462279i −0.129080 0.991634i \(-0.541202\pi\)
0.848401 + 0.529355i \(0.177566\pi\)
\(504\) −6.62910 5.62482i −0.295283 0.250549i
\(505\) 1.42833i 0.0635597i
\(506\) −0.104006 1.90839i −0.00462362 0.0848383i
\(507\) −8.98138 + 9.07503i −0.398877 + 0.403036i
\(508\) −6.52183 + 7.52659i −0.289359 + 0.333938i
\(509\) −17.0881 26.5896i −0.757416 1.17856i −0.979087 0.203440i \(-0.934788\pi\)
0.221672 0.975121i \(-0.428849\pi\)
\(510\) 3.54722 4.79011i 0.157073 0.212110i
\(511\) 32.2544 14.7301i 1.42685 0.651620i
\(512\) −0.989821 0.142315i −0.0437443 0.00628949i
\(513\) 0.176043 0.334676i 0.00777250 0.0147763i
\(514\) −10.1742 6.53856i −0.448765 0.288404i
\(515\) −13.1516 6.00613i −0.579528 0.264662i
\(516\) −3.67188 6.64241i −0.161646 0.292416i
\(517\) 0.328582 0.284718i 0.0144510 0.0125219i
\(518\) −1.49044 + 1.29147i −0.0654860 + 0.0567439i
\(519\) −2.67616 4.84115i −0.117470 0.212503i
\(520\) 2.15803 + 0.985541i 0.0946360 + 0.0432188i
\(521\) 25.9419 + 16.6718i 1.13653 + 0.730406i 0.966914 0.255104i \(-0.0821097\pi\)
0.169620 + 0.985510i \(0.445746\pi\)
\(522\) 7.29109 + 23.9108i 0.319122 + 1.04655i
\(523\) −13.9455 2.00506i −0.609793 0.0876749i −0.169501 0.985530i \(-0.554216\pi\)
−0.440291 + 0.897855i \(0.645125\pi\)
\(524\) 3.83335 1.75063i 0.167460 0.0764766i
\(525\) −2.98714 + 4.03379i −0.130370 + 0.176049i
\(526\) 4.44794 + 6.92113i 0.193939 + 0.301776i
\(527\) −21.3643 + 24.6558i −0.930645 + 1.07402i
\(528\) −0.485544 + 0.490607i −0.0211306 + 0.0213509i
\(529\) 22.8638 2.49954i 0.994077 0.108676i
\(530\) 8.19041i 0.355769i
\(531\) −19.9307 + 23.4892i −0.864918 + 1.01934i
\(532\) 0.177421 0.114021i 0.00769216 0.00494345i
\(533\) −10.1090 + 1.45346i −0.437870 + 0.0629562i
\(534\) −0.961297 + 2.61874i −0.0415994 + 0.113324i
\(535\) −1.61816 + 11.2545i −0.0699591 + 0.486576i
\(536\) −7.94029 + 2.33148i −0.342968 + 0.100705i
\(537\) −0.289558 1.29861i −0.0124953 0.0560392i
\(538\) −2.69868 + 5.90928i −0.116348 + 0.254767i
\(539\) −0.534626 0.156980i −0.0230280 0.00676162i
\(540\) 0.290005 5.18805i 0.0124798 0.223258i
\(541\) −25.0730 28.9358i −1.07797 1.24405i −0.968223 0.250088i \(-0.919541\pi\)
−0.109750 0.993959i \(-0.535005\pi\)
\(542\) 1.88097 6.40600i 0.0807946 0.275161i
\(543\) −24.4670 + 9.27057i −1.04998 + 0.397838i
\(544\) −1.86051 + 2.89502i −0.0797689 + 0.124123i
\(545\) −2.42489 8.25841i −0.103871 0.353751i
\(546\) −7.18565 9.49585i −0.307518 0.406385i
\(547\) −15.8710 34.7527i −0.678597 1.48592i −0.864123 0.503281i \(-0.832126\pi\)
0.185526 0.982639i \(-0.440601\pi\)
\(548\) 0.404285 + 2.81186i 0.0172702 + 0.120117i
\(549\) −24.9625 + 16.4108i −1.06537 + 0.700395i
\(550\) 0.301179 + 0.260973i 0.0128423 + 0.0111279i
\(551\) −0.606407 −0.0258338
\(552\) −6.21328 5.51318i −0.264455 0.234657i
\(553\) −2.82572 −0.120162
\(554\) −6.28450 5.44555i −0.267003 0.231359i
\(555\) −1.15305 0.244574i −0.0489442 0.0103816i
\(556\) 0.0894690 + 0.622271i 0.00379433 + 0.0263902i
\(557\) −0.811133 1.77613i −0.0343688 0.0752572i 0.891669 0.452688i \(-0.149535\pi\)
−0.926038 + 0.377431i \(0.876808\pi\)
\(558\) −3.75529 + 28.1915i −0.158974 + 1.19344i
\(559\) −2.92885 9.97473i −0.123877 0.421886i
\(560\) 1.56676 2.43792i 0.0662075 0.103021i
\(561\) 0.841640 + 2.22127i 0.0355341 + 0.0937821i
\(562\) −3.05940 + 10.4194i −0.129053 + 0.439514i
\(563\) −16.2425 18.7448i −0.684539 0.790001i 0.302038 0.953296i \(-0.402333\pi\)
−0.986577 + 0.163295i \(0.947788\pi\)
\(564\) 0.125028 1.88550i 0.00526463 0.0793938i
\(565\) −2.43996 0.716436i −0.102650 0.0301407i
\(566\) −1.72764 + 3.78300i −0.0726180 + 0.159011i
\(567\) −13.6426 + 22.2291i −0.572936 + 0.933533i
\(568\) 13.8381 4.06325i 0.580636 0.170490i
\(569\) 3.71564 25.8429i 0.155768 1.08339i −0.750556 0.660807i \(-0.770214\pi\)
0.906324 0.422583i \(-0.138877\pi\)
\(570\) 0.118330 + 0.0434371i 0.00495630 + 0.00181938i
\(571\) 37.8829 5.44674i 1.58535 0.227939i 0.707443 0.706771i \(-0.249849\pi\)
0.877907 + 0.478832i \(0.158940\pi\)
\(572\) −0.795365 + 0.511150i −0.0332559 + 0.0213723i
\(573\) 2.65552 + 34.6058i 0.110936 + 1.44568i
\(574\) 12.4753i 0.520710i
\(575\) −2.93871 + 3.78998i −0.122553 + 0.158053i
\(576\) 0.0311182 + 2.99984i 0.00129659 + 0.124993i
\(577\) 19.2325 22.1955i 0.800659 0.924010i −0.197758 0.980251i \(-0.563366\pi\)
0.998417 + 0.0562408i \(0.0179114\pi\)
\(578\) −2.78828 4.33865i −0.115977 0.180464i
\(579\) 24.6463 + 18.2513i 1.02427 + 0.758499i
\(580\) −7.57958 + 3.46148i −0.314725 + 0.143730i
\(581\) −48.7239 7.00544i −2.02141 0.290635i
\(582\) 1.76179 3.26664i 0.0730284 0.135406i
\(583\) −2.74587 1.76466i −0.113722 0.0730849i
\(584\) −11.1300 5.08291i −0.460564 0.210332i
\(585\) 1.93422 6.84941i 0.0799704 0.283188i
\(586\) −18.1529 + 15.7296i −0.749889 + 0.649782i
\(587\) −9.65596 + 8.36694i −0.398544 + 0.345341i −0.830958 0.556335i \(-0.812207\pi\)
0.432414 + 0.901675i \(0.357662\pi\)
\(588\) −2.11943 + 1.17161i −0.0874039 + 0.0483163i
\(589\) −0.627576 0.286605i −0.0258588 0.0118093i
\(590\) −8.63839 5.55156i −0.355637 0.228554i
\(591\) −12.9383 6.97796i −0.532209 0.287035i
\(592\) 0.673597 + 0.0968486i 0.0276846 + 0.00398045i
\(593\) −0.150557 + 0.0687573i −0.00618265 + 0.00282352i −0.418504 0.908215i \(-0.637445\pi\)
0.412321 + 0.911039i \(0.364718\pi\)
\(594\) 1.67683 + 1.21502i 0.0688013 + 0.0498527i
\(595\) −5.39170 8.38964i −0.221038 0.343942i
\(596\) 7.46190 8.61149i 0.305651 0.352741i
\(597\) 7.02511 + 6.95261i 0.287519 + 0.284552i
\(598\) −6.66303 9.22265i −0.272472 0.377142i
\(599\) 31.1799i 1.27398i 0.770874 + 0.636988i \(0.219820\pi\)
−0.770874 + 0.636988i \(0.780180\pi\)
\(600\) 1.72697 0.132522i 0.0705034 0.00541018i
\(601\) −34.2880 + 22.0355i −1.39863 + 0.898848i −0.999835 0.0181899i \(-0.994210\pi\)
−0.398800 + 0.917038i \(0.630573\pi\)
\(602\) −12.5694 + 1.80721i −0.512293 + 0.0736565i
\(603\) 10.5470 + 22.4748i 0.429507 + 0.915245i
\(604\) −3.33558 + 23.1995i −0.135723 + 0.943973i
\(605\) 10.4020 3.05431i 0.422903 0.124176i
\(606\) −2.41464 + 0.538403i −0.0980879 + 0.0218711i
\(607\) −18.8225 + 41.2156i −0.763983 + 1.67289i −0.0245131 + 0.999700i \(0.507804\pi\)
−0.739470 + 0.673190i \(0.764924\pi\)
\(608\) −0.0698275 0.0205032i −0.00283188 0.000831515i
\(609\) 41.7330 + 2.76733i 1.69111 + 0.112138i
\(610\) −6.52104 7.52569i −0.264029 0.304706i
\(611\) 0.729202 2.48343i 0.0295003 0.100469i
\(612\) 9.43497 + 4.19108i 0.381386 + 0.169414i
\(613\) 14.2953 22.2440i 0.577383 0.898425i −0.422586 0.906323i \(-0.638878\pi\)
0.999969 + 0.00789781i \(0.00251398\pi\)
\(614\) 1.55201 + 5.28565i 0.0626339 + 0.213311i
\(615\) −5.94578 + 4.49926i −0.239757 + 0.181428i
\(616\) 0.479758 + 1.05052i 0.0193300 + 0.0423268i
\(617\) 4.63337 + 32.2258i 0.186532 + 1.29736i 0.840902 + 0.541187i \(0.182025\pi\)
−0.654370 + 0.756175i \(0.727066\pi\)
\(618\) 5.19612 24.4972i 0.209019 0.985422i
\(619\) 18.6664 + 16.1745i 0.750264 + 0.650108i 0.943624 0.331020i \(-0.107393\pi\)
−0.193359 + 0.981128i \(0.561938\pi\)
\(620\) −9.48017 −0.380733
\(621\) −13.5019 + 20.9451i −0.541814 + 0.840498i
\(622\) 0.243750 0.00977347
\(623\) 3.52738 + 3.05649i 0.141321 + 0.122456i
\(624\) −0.852628 + 4.01973i −0.0341324 + 0.160918i
\(625\) −0.142315 0.989821i −0.00569259 0.0395929i
\(626\) −4.70673 10.3063i −0.188119 0.411923i
\(627\) −0.0400572 + 0.0303119i −0.00159973 + 0.00121054i
\(628\) −5.78224 19.6925i −0.230736 0.785816i
\(629\) 1.26612 1.97013i 0.0504836 0.0785541i
\(630\) −7.94527 3.52934i −0.316547 0.140612i
\(631\) −1.48402 + 5.05412i −0.0590781 + 0.201201i −0.983744 0.179579i \(-0.942526\pi\)
0.924665 + 0.380780i \(0.124345\pi\)
\(632\) 0.638537 + 0.736911i 0.0253996 + 0.0293127i
\(633\) 28.1949 + 1.86961i 1.12065 + 0.0743104i
\(634\) −26.2837 7.71760i −1.04386 0.306505i
\(635\) −4.13716 + 9.05912i −0.164178 + 0.359500i
\(636\) −13.8462 + 3.08735i −0.549037 + 0.122421i
\(637\) −3.18270 + 0.934524i −0.126103 + 0.0370272i
\(638\) 0.472582 3.28688i 0.0187097 0.130129i
\(639\) −18.3811 39.1685i −0.727143 1.54948i
\(640\) −0.989821 + 0.142315i −0.0391261 + 0.00562549i
\(641\) 7.23157 4.64745i 0.285630 0.183563i −0.389978 0.920824i \(-0.627517\pi\)
0.675608 + 0.737261i \(0.263881\pi\)
\(642\) −19.6361 + 1.50681i −0.774977 + 0.0594689i
\(643\) 29.1270i 1.14866i −0.818624 0.574329i \(-0.805263\pi\)
0.818624 0.574329i \(-0.194737\pi\)
\(644\) −12.3093 + 6.45290i −0.485053 + 0.254280i
\(645\) −5.39453 5.33886i −0.212409 0.210217i
\(646\) −0.164005 + 0.189272i −0.00645270 + 0.00744681i
\(647\) 25.9096 + 40.3161i 1.01861 + 1.58499i 0.791546 + 0.611110i \(0.209277\pi\)
0.227065 + 0.973880i \(0.427087\pi\)
\(648\) 8.87991 1.46536i 0.348836 0.0575647i
\(649\) 3.72237 1.69995i 0.146116 0.0667288i
\(650\) 2.34828 + 0.337631i 0.0921070 + 0.0132430i
\(651\) 41.8820 + 22.5881i 1.64148 + 0.885298i
\(652\) 2.35721 + 1.51489i 0.0923155 + 0.0593276i
\(653\) −12.4039 5.66468i −0.485402 0.221676i 0.157654 0.987494i \(-0.449607\pi\)
−0.643057 + 0.765818i \(0.722334\pi\)
\(654\) 13.0471 7.21234i 0.510181 0.282025i
\(655\) 3.18486 2.75970i 0.124443 0.107830i
\(656\) 3.25340 2.81909i 0.127024 0.110067i
\(657\) −9.97574 + 35.3257i −0.389191 + 1.37819i
\(658\) −2.87592 1.31339i −0.112115 0.0512012i
\(659\) 30.5843 + 19.6553i 1.19140 + 0.765664i 0.977447 0.211181i \(-0.0677311\pi\)
0.213949 + 0.976845i \(0.431367\pi\)
\(660\) −0.327656 + 0.607527i −0.0127540 + 0.0236480i
\(661\) −35.3062 5.07626i −1.37325 0.197444i −0.584120 0.811667i \(-0.698560\pi\)
−0.789132 + 0.614224i \(0.789469\pi\)
\(662\) −3.77908 + 1.72585i −0.146878 + 0.0670770i
\(663\) 11.3642 + 8.41550i 0.441348 + 0.326831i
\(664\) 9.18336 + 14.2896i 0.356384 + 0.554544i
\(665\) 0.138110 0.159388i 0.00535569 0.00618079i
\(666\) −0.0211767 2.04146i −0.000820580 0.0791050i
\(667\) 39.8058 + 3.52619i 1.54129 + 0.136535i
\(668\) 3.03934i 0.117596i
\(669\) 1.53401 + 19.9906i 0.0593081 + 0.772881i
\(670\) −6.96180 + 4.47408i −0.268958 + 0.172849i
\(671\) 3.92801 0.564762i 0.151639 0.0218024i
\(672\) 4.71197 + 1.72969i 0.181768 + 0.0667243i
\(673\) −0.608820 + 4.23444i −0.0234683 + 0.163226i −0.998185 0.0602174i \(-0.980821\pi\)
0.974717 + 0.223443i \(0.0717297\pi\)
\(674\) 4.74412 1.39300i 0.182737 0.0536563i
\(675\) −1.18339 5.05960i −0.0455486 0.194744i
\(676\) 3.06227 6.70544i 0.117780 0.257902i
\(677\) 20.9432 + 6.14948i 0.804913 + 0.236344i 0.658208 0.752836i \(-0.271315\pi\)
0.146706 + 0.989180i \(0.453133\pi\)
\(678\) 0.291426 4.39489i 0.0111922 0.168785i
\(679\) −4.06652 4.69302i −0.156059 0.180102i
\(680\) −0.969530 + 3.30192i −0.0371798 + 0.126623i
\(681\) −12.0984 31.9303i −0.463611 1.22357i
\(682\) 2.04255 3.17827i 0.0782132 0.121702i
\(683\) 7.96073 + 27.1118i 0.304609 + 1.03740i 0.959507 + 0.281685i \(0.0908934\pi\)
−0.654898 + 0.755717i \(0.727288\pi\)
\(684\) −0.0288278 + 0.216415i −0.00110226 + 0.00827482i
\(685\) 1.18010 + 2.58406i 0.0450893 + 0.0987319i
\(686\) −2.31032 16.0686i −0.0882085 0.613503i
\(687\) −21.1064 4.47690i −0.805261 0.170805i
\(688\) 3.31165 + 2.86956i 0.126256 + 0.109401i
\(689\) −19.4311 −0.740267
\(690\) −7.51484 3.53937i −0.286085 0.134742i
\(691\) 22.8914 0.870830 0.435415 0.900230i \(-0.356602\pi\)
0.435415 + 0.900230i \(0.356602\pi\)
\(692\) 2.41361 + 2.09141i 0.0917519 + 0.0795035i
\(693\) 2.89507 1.90327i 0.109975 0.0722992i
\(694\) 2.25557 + 15.6878i 0.0856201 + 0.595501i
\(695\) 0.261159 + 0.571858i 0.00990632 + 0.0216918i
\(696\) −8.70885 11.5088i −0.330108 0.436238i
\(697\) −4.17370 14.2143i −0.158090 0.538405i
\(698\) 18.5859 28.9203i 0.703488 1.09465i
\(699\) −10.8646 + 4.11658i −0.410935 + 0.155703i
\(700\) 0.816450 2.78057i 0.0308589 0.105096i
\(701\) −14.1950 16.3819i −0.536139 0.618737i 0.421459 0.906848i \(-0.361518\pi\)
−0.957597 + 0.288111i \(0.906973\pi\)
\(702\) 12.3083 + 0.688014i 0.464546 + 0.0259674i
\(703\) 0.0475192 + 0.0139529i 0.00179222 + 0.000526244i
\(704\) 0.165550 0.362504i 0.00623940 0.0136624i
\(705\) −0.411243 1.84435i −0.0154883 0.0694621i
\(706\) −10.6842 + 3.13716i −0.402105 + 0.118069i
\(707\) −0.589074 + 4.09710i −0.0221544 + 0.154087i
\(708\) 6.12889 16.6962i 0.230338 0.627480i
\(709\) −1.72653 + 0.248237i −0.0648411 + 0.00932275i −0.174659 0.984629i \(-0.555882\pi\)
0.109818 + 0.993952i \(0.464973\pi\)
\(710\) 12.1329 7.79731i 0.455338 0.292628i
\(711\) 1.89258 2.23048i 0.0709772 0.0836497i
\(712\) 1.61058i 0.0603589i
\(713\) 39.5288 + 22.4626i 1.48037 + 0.841231i
\(714\) 12.1506 12.2773i 0.454725 0.459467i
\(715\) −0.619140 + 0.714525i −0.0231545 + 0.0267217i
\(716\) 0.415302 + 0.646222i 0.0155206 + 0.0241505i
\(717\) −21.7189 + 29.3289i −0.811107 + 1.09531i
\(718\) −22.3398 + 10.2022i −0.833714 + 0.380744i
\(719\) −14.5517 2.09222i −0.542687 0.0780266i −0.134481 0.990916i \(-0.542937\pi\)
−0.408207 + 0.912890i \(0.633846\pi\)
\(720\) 0.875010 + 2.86956i 0.0326097 + 0.106942i
\(721\) −35.2478 22.6524i −1.31270 0.843618i
\(722\) 17.2782 + 7.89069i 0.643028 + 0.293661i
\(723\) −16.1873 29.2827i −0.602011 1.08903i
\(724\) 11.4164 9.89237i 0.424287 0.367647i
\(725\) −6.29734 + 5.45668i −0.233878 + 0.202656i
\(726\) 9.08444 + 16.4337i 0.337155 + 0.609912i
\(727\) 22.4093 + 10.2340i 0.831117 + 0.379558i 0.785090 0.619382i \(-0.212617\pi\)
0.0460268 + 0.998940i \(0.485344\pi\)
\(728\) 5.78378 + 3.71701i 0.214361 + 0.137762i
\(729\) −8.40914 25.6571i −0.311450 0.950263i
\(730\) −12.1112 1.74133i −0.448256 0.0644495i
\(731\) 13.7169 6.26431i 0.507339 0.231694i
\(732\) 10.2644 13.8608i 0.379381 0.512311i
\(733\) −0.482471 0.750740i −0.0178205 0.0277292i 0.832229 0.554432i \(-0.187064\pi\)
−0.850050 + 0.526703i \(0.823428\pi\)
\(734\) 5.14987 5.94327i 0.190085 0.219370i
\(735\) −1.70350 + 1.72126i −0.0628346 + 0.0634897i
\(736\) 4.46439 + 1.75191i 0.164560 + 0.0645763i
\(737\) 3.29793i 0.121481i
\(738\) −9.84740 8.35557i −0.362488 0.307573i
\(739\) −6.34819 + 4.07973i −0.233522 + 0.150075i −0.652169 0.758074i \(-0.726141\pi\)
0.418647 + 0.908149i \(0.362504\pi\)
\(740\) 0.673597 0.0968486i 0.0247619 0.00356022i
\(741\) −0.103051 + 0.280729i −0.00378568 + 0.0103128i
\(742\) −3.37791 + 23.4939i −0.124007 + 0.862488i
\(743\) −6.08347 + 1.78627i −0.223181 + 0.0655318i −0.391411 0.920216i \(-0.628013\pi\)
0.168230 + 0.985748i \(0.446195\pi\)
\(744\) −3.57352 16.0266i −0.131012 0.587563i
\(745\) 4.73350 10.3649i 0.173422 0.379742i
\(746\) 8.18376 + 2.40297i 0.299629 + 0.0879789i
\(747\) 38.1634 33.7682i 1.39633 1.23551i
\(748\) −0.898091 1.03645i −0.0328375 0.0378965i
\(749\) −9.28325 + 31.6158i −0.339203 + 1.15522i
\(750\) 1.61968 0.613698i 0.0591425 0.0224091i
\(751\) −0.288256 + 0.448535i −0.0105186 + 0.0163673i −0.846473 0.532432i \(-0.821278\pi\)
0.835954 + 0.548799i \(0.184915\pi\)
\(752\) 0.307366 + 1.04679i 0.0112085 + 0.0381725i
\(753\) 17.3051 + 22.8688i 0.630635 + 0.833384i
\(754\) −8.21210 17.9820i −0.299067 0.654865i
\(755\) 3.33558 + 23.1995i 0.121394 + 0.844315i
\(756\) 2.97154 14.7621i 0.108074 0.536894i
\(757\) 8.58371 + 7.43783i 0.311980 + 0.270333i 0.796750 0.604310i \(-0.206551\pi\)
−0.484769 + 0.874642i \(0.661096\pi\)
\(758\) −18.3318 −0.665842
\(759\) 2.80570 1.75681i 0.101840 0.0637680i
\(760\) −0.0727754 −0.00263984
\(761\) −27.3360 23.6868i −0.990928 0.858644i −0.000969211 1.00000i \(-0.500309\pi\)
−0.989959 + 0.141355i \(0.954854\pi\)
\(762\) −16.8743 3.57921i −0.611290 0.129661i
\(763\) −3.54974 24.6890i −0.128509 0.893802i
\(764\) −8.32425 18.2276i −0.301161 0.659450i
\(765\) 10.2335 + 1.36317i 0.369995 + 0.0492856i
\(766\) 10.0405 + 34.1947i 0.362777 + 1.23551i
\(767\) 13.1707 20.4939i 0.475565 0.739993i
\(768\) −0.613698 1.61968i −0.0221449 0.0584453i
\(769\) −10.5457 + 35.9153i −0.380288 + 1.29514i 0.517867 + 0.855461i \(0.326726\pi\)
−0.898155 + 0.439679i \(0.855092\pi\)
\(770\) 0.756290 + 0.872806i 0.0272548 + 0.0314537i
\(771\) 1.38600 20.9017i 0.0499155 0.752756i
\(772\) −16.9892 4.98848i −0.611454 0.179539i
\(773\) −7.24984 + 15.8749i −0.260759 + 0.570982i