Properties

Label 690.2.q.a.11.9
Level $690$
Weight $2$
Character 690.11
Analytic conductor $5.510$
Analytic rank $0$
Dimension $160$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.q (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(16\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 11.9
Character \(\chi\) \(=\) 690.11
Dual form 690.2.q.a.251.9

$q$-expansion

\(f(q)\) \(=\) \(q+(0.540641 + 0.841254i) q^{2} +(-1.62851 - 0.589888i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.959493 + 0.281733i) q^{5} +(-0.384191 - 1.68890i) q^{6} +(1.12640 - 0.976034i) q^{7} +(-0.989821 + 0.142315i) q^{8} +(2.30406 + 1.92127i) q^{9} +O(q^{10})\) \(q+(0.540641 + 0.841254i) q^{2} +(-1.62851 - 0.589888i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.959493 + 0.281733i) q^{5} +(-0.384191 - 1.68890i) q^{6} +(1.12640 - 0.976034i) q^{7} +(-0.989821 + 0.142315i) q^{8} +(2.30406 + 1.92127i) q^{9} +(-0.755750 - 0.654861i) q^{10} +(-2.69175 - 1.72988i) q^{11} +(1.21309 - 1.23629i) q^{12} +(-0.301686 + 0.348165i) q^{13} +(1.43007 + 0.419907i) q^{14} +(1.72873 + 0.107190i) q^{15} +(-0.654861 - 0.755750i) q^{16} +(-0.993222 - 2.17485i) q^{17} +(-0.370607 + 2.97702i) q^{18} +(-2.25092 - 1.02796i) q^{19} +(0.142315 - 0.989821i) q^{20} +(-2.41011 + 0.925025i) q^{21} -3.19969i q^{22} +(1.51739 - 4.54945i) q^{23} +(1.69588 + 0.352123i) q^{24} +(0.841254 - 0.540641i) q^{25} +(-0.455999 - 0.0655627i) q^{26} +(-2.61885 - 4.48794i) q^{27} +(0.419907 + 1.43007i) q^{28} +(4.48945 - 2.05026i) q^{29} +(0.844448 + 1.51225i) q^{30} +(-0.946047 - 6.57990i) q^{31} +(0.281733 - 0.959493i) q^{32} +(3.36310 + 4.40496i) q^{33} +(1.29263 - 2.01137i) q^{34} +(-0.805795 + 1.25384i) q^{35} +(-2.70479 + 1.29772i) q^{36} +(3.37397 - 11.4907i) q^{37} +(-0.352164 - 2.44935i) q^{38} +(0.696676 - 0.389027i) q^{39} +(0.909632 - 0.415415i) q^{40} +(0.984332 + 3.35233i) q^{41} +(-2.08118 - 1.52740i) q^{42} +(3.53652 + 0.508475i) q^{43} +(2.69175 - 1.72988i) q^{44} +(-2.75202 - 1.19432i) q^{45} +(4.64761 - 1.18311i) q^{46} -2.26918i q^{47} +(0.620637 + 1.61704i) q^{48} +(-0.680062 + 4.72993i) q^{49} +(0.909632 + 0.415415i) q^{50} +(0.334548 + 4.12765i) q^{51} +(-0.191377 - 0.419056i) q^{52} +(-4.51643 - 5.21223i) q^{53} +(2.35964 - 4.62948i) q^{54} +(3.07008 + 0.901458i) q^{55} +(-0.976034 + 1.12640i) q^{56} +(3.05926 + 3.00183i) q^{57} +(4.15197 + 2.66831i) q^{58} +(-4.54854 - 3.94133i) q^{59} +(-0.815645 + 1.52798i) q^{60} +(-6.06637 + 0.872212i) q^{61} +(5.02389 - 4.35323i) q^{62} +(4.47053 - 0.0847166i) q^{63} +(0.959493 - 0.281733i) q^{64} +(0.191377 - 0.419056i) q^{65} +(-1.88746 + 5.21072i) q^{66} +(-3.93607 - 6.12464i) q^{67} +2.39092 q^{68} +(-5.15475 + 6.51372i) q^{69} -1.49044 q^{70} +(3.37290 + 5.24833i) q^{71} +(-2.55404 - 1.57381i) q^{72} +(-0.392136 + 0.858657i) q^{73} +(11.4907 - 3.37397i) q^{74} +(-1.68890 + 0.384191i) q^{75} +(1.87013 - 1.62048i) q^{76} +(-4.72043 + 0.678695i) q^{77} +(0.703922 + 0.375757i) q^{78} +(-6.33721 - 5.49123i) q^{79} +(0.841254 + 0.540641i) q^{80} +(1.61742 + 8.85347i) q^{81} +(-2.28799 + 2.64048i) q^{82} +(7.60990 + 2.23447i) q^{83} +(0.159761 - 2.57658i) q^{84} +(1.56572 + 1.80693i) q^{85} +(1.48423 + 3.25001i) q^{86} +(-8.52052 + 0.690592i) q^{87} +(2.91054 + 1.32920i) q^{88} +(-1.46103 + 10.1617i) q^{89} +(-0.483129 - 2.96084i) q^{90} +0.686630i q^{91} +(3.50798 + 3.27018i) q^{92} +(-2.34076 + 11.2735i) q^{93} +(1.90895 - 1.22681i) q^{94} +(2.44935 + 0.352164i) q^{95} +(-1.02480 + 1.39635i) q^{96} +(0.334672 + 1.13979i) q^{97} +(-4.34674 + 1.98509i) q^{98} +(-2.87839 - 9.15736i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} + O(q^{10}) \) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} - 12q^{11} - 12q^{14} - 16q^{16} - 8q^{18} + 16q^{20} + 62q^{21} + 4q^{23} + 2q^{24} - 16q^{25} + 42q^{27} - 2q^{30} - 4q^{31} + 16q^{33} + 2q^{36} + 72q^{38} - 124q^{39} + 44q^{41} + 44q^{43} + 12q^{44} - 2q^{45} + 4q^{46} + 70q^{49} - 2q^{51} - 52q^{53} + 92q^{54} + 10q^{55} - 54q^{56} - 38q^{57} - 36q^{58} - 44q^{61} - 220q^{63} + 16q^{64} - 34q^{66} - 44q^{67} + 22q^{69} - 12q^{70} - 36q^{72} - 28q^{73} - 24q^{74} - 88q^{77} - 54q^{78} - 44q^{79} - 16q^{80} - 66q^{81} - 28q^{82} + 4q^{83} - 18q^{84} + 158q^{86} - 64q^{87} + 80q^{89} - 8q^{90} - 4q^{92} + 4q^{93} + 24q^{94} - 2q^{96} - 88q^{98} + 190q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{9}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.540641 + 0.841254i 0.382291 + 0.594856i
\(3\) −1.62851 0.589888i −0.940218 0.340572i
\(4\) −0.415415 + 0.909632i −0.207708 + 0.454816i
\(5\) −0.959493 + 0.281733i −0.429098 + 0.125995i
\(6\) −0.384191 1.68890i −0.156845 0.689492i
\(7\) 1.12640 0.976034i 0.425740 0.368906i −0.415477 0.909604i \(-0.636385\pi\)
0.841217 + 0.540698i \(0.181840\pi\)
\(8\) −0.989821 + 0.142315i −0.349955 + 0.0503159i
\(9\) 2.30406 + 1.92127i 0.768021 + 0.640424i
\(10\) −0.755750 0.654861i −0.238989 0.207085i
\(11\) −2.69175 1.72988i −0.811594 0.521580i 0.0677862 0.997700i \(-0.478406\pi\)
−0.879380 + 0.476120i \(0.842043\pi\)
\(12\) 1.21309 1.23629i 0.350188 0.356887i
\(13\) −0.301686 + 0.348165i −0.0836727 + 0.0965635i −0.796042 0.605241i \(-0.793077\pi\)
0.712369 + 0.701805i \(0.247622\pi\)
\(14\) 1.43007 + 0.419907i 0.382203 + 0.112225i
\(15\) 1.72873 + 0.107190i 0.446356 + 0.0276764i
\(16\) −0.654861 0.755750i −0.163715 0.188937i
\(17\) −0.993222 2.17485i −0.240892 0.527479i 0.750112 0.661310i \(-0.229999\pi\)
−0.991004 + 0.133831i \(0.957272\pi\)
\(18\) −0.370607 + 2.97702i −0.0873528 + 0.701690i
\(19\) −2.25092 1.02796i −0.516397 0.235831i 0.140130 0.990133i \(-0.455248\pi\)
−0.656527 + 0.754303i \(0.727975\pi\)
\(20\) 0.142315 0.989821i 0.0318226 0.221331i
\(21\) −2.41011 + 0.925025i −0.525928 + 0.201857i
\(22\) 3.19969i 0.682177i
\(23\) 1.51739 4.54945i 0.316398 0.948626i
\(24\) 1.69588 + 0.352123i 0.346170 + 0.0718769i
\(25\) 0.841254 0.540641i 0.168251 0.108128i
\(26\) −0.455999 0.0655627i −0.0894287 0.0128579i
\(27\) −2.61885 4.48794i −0.503997 0.863705i
\(28\) 0.419907 + 1.43007i 0.0793549 + 0.270258i
\(29\) 4.48945 2.05026i 0.833670 0.380724i 0.0476034 0.998866i \(-0.484842\pi\)
0.786066 + 0.618142i \(0.212114\pi\)
\(30\) 0.844448 + 1.51225i 0.154174 + 0.276098i
\(31\) −0.946047 6.57990i −0.169915 1.18179i −0.879056 0.476718i \(-0.841826\pi\)
0.709141 0.705067i \(-0.249083\pi\)
\(32\) 0.281733 0.959493i 0.0498038 0.169616i
\(33\) 3.36310 + 4.40496i 0.585440 + 0.766805i
\(34\) 1.29263 2.01137i 0.221684 0.344947i
\(35\) −0.805795 + 1.25384i −0.136204 + 0.211938i
\(36\) −2.70479 + 1.29772i −0.450799 + 0.216287i
\(37\) 3.37397 11.4907i 0.554677 1.88906i 0.108539 0.994092i \(-0.465383\pi\)
0.446138 0.894964i \(-0.352799\pi\)
\(38\) −0.352164 2.44935i −0.0571285 0.397338i
\(39\) 0.696676 0.389027i 0.111557 0.0622942i
\(40\) 0.909632 0.415415i 0.143825 0.0656829i
\(41\) 0.984332 + 3.35233i 0.153727 + 0.523545i 0.999957 0.00927203i \(-0.00295142\pi\)
−0.846230 + 0.532817i \(0.821133\pi\)
\(42\) −2.08118 1.52740i −0.321133 0.235683i
\(43\) 3.53652 + 0.508475i 0.539314 + 0.0775417i 0.406589 0.913611i \(-0.366718\pi\)
0.132725 + 0.991153i \(0.457627\pi\)
\(44\) 2.69175 1.72988i 0.405797 0.260790i
\(45\) −2.75202 1.19432i −0.410247 0.178038i
\(46\) 4.64761 1.18311i 0.685252 0.174440i
\(47\) 2.26918i 0.330993i −0.986210 0.165497i \(-0.947077\pi\)
0.986210 0.165497i \(-0.0529227\pi\)
\(48\) 0.620637 + 1.61704i 0.0895812 + 0.233399i
\(49\) −0.680062 + 4.72993i −0.0971517 + 0.675705i
\(50\) 0.909632 + 0.415415i 0.128641 + 0.0587486i
\(51\) 0.334548 + 4.12765i 0.0468461 + 0.577987i
\(52\) −0.191377 0.419056i −0.0265392 0.0581127i
\(53\) −4.51643 5.21223i −0.620379 0.715956i 0.355400 0.934714i \(-0.384345\pi\)
−0.975779 + 0.218759i \(0.929799\pi\)
\(54\) 2.35964 4.62948i 0.321107 0.629992i
\(55\) 3.07008 + 0.901458i 0.413970 + 0.121553i
\(56\) −0.976034 + 1.12640i −0.130428 + 0.150522i
\(57\) 3.05926 + 3.00183i 0.405208 + 0.397603i
\(58\) 4.15197 + 2.66831i 0.545180 + 0.350366i
\(59\) −4.54854 3.94133i −0.592169 0.513118i 0.306427 0.951894i \(-0.400866\pi\)
−0.898596 + 0.438777i \(0.855412\pi\)
\(60\) −0.815645 + 1.52798i −0.105299 + 0.197261i
\(61\) −6.06637 + 0.872212i −0.776718 + 0.111675i −0.519263 0.854615i \(-0.673793\pi\)
−0.257456 + 0.966290i \(0.582884\pi\)
\(62\) 5.02389 4.35323i 0.638035 0.552861i
\(63\) 4.47053 0.0847166i 0.563234 0.0106733i
\(64\) 0.959493 0.281733i 0.119937 0.0352166i
\(65\) 0.191377 0.419056i 0.0237373 0.0519775i
\(66\) −1.88746 + 5.21072i −0.232330 + 0.641395i
\(67\) −3.93607 6.12464i −0.480867 0.748244i 0.513052 0.858358i \(-0.328515\pi\)
−0.993919 + 0.110113i \(0.964879\pi\)
\(68\) 2.39092 0.289941
\(69\) −5.15475 + 6.51372i −0.620559 + 0.784160i
\(70\) −1.49044 −0.178142
\(71\) 3.37290 + 5.24833i 0.400289 + 0.622863i 0.981629 0.190798i \(-0.0611077\pi\)
−0.581340 + 0.813661i \(0.697471\pi\)
\(72\) −2.55404 1.57381i −0.300996 0.185476i
\(73\) −0.392136 + 0.858657i −0.0458960 + 0.100498i −0.931191 0.364532i \(-0.881229\pi\)
0.885295 + 0.465030i \(0.153956\pi\)
\(74\) 11.4907 3.37397i 1.33576 0.392216i
\(75\) −1.68890 + 0.384191i −0.195018 + 0.0443626i
\(76\) 1.87013 1.62048i 0.214519 0.185882i
\(77\) −4.72043 + 0.678695i −0.537942 + 0.0773444i
\(78\) 0.703922 + 0.375757i 0.0797035 + 0.0425462i
\(79\) −6.33721 5.49123i −0.712992 0.617811i 0.220929 0.975290i \(-0.429091\pi\)
−0.933921 + 0.357479i \(0.883637\pi\)
\(80\) 0.841254 + 0.540641i 0.0940550 + 0.0604455i
\(81\) 1.61742 + 8.85347i 0.179713 + 0.983719i
\(82\) −2.28799 + 2.64048i −0.252666 + 0.291592i
\(83\) 7.60990 + 2.23447i 0.835296 + 0.245265i 0.671290 0.741195i \(-0.265740\pi\)
0.164005 + 0.986459i \(0.447559\pi\)
\(84\) 0.159761 2.57658i 0.0174314 0.281128i
\(85\) 1.56572 + 1.80693i 0.169826 + 0.195989i
\(86\) 1.48423 + 3.25001i 0.160049 + 0.350458i
\(87\) −8.52052 + 0.690592i −0.913496 + 0.0740393i
\(88\) 2.91054 + 1.32920i 0.310265 + 0.141693i
\(89\) −1.46103 + 10.1617i −0.154869 + 1.07714i 0.753042 + 0.657972i \(0.228586\pi\)
−0.907911 + 0.419163i \(0.862324\pi\)
\(90\) −0.483129 2.96084i −0.0509263 0.312100i
\(91\) 0.686630i 0.0719783i
\(92\) 3.50798 + 3.27018i 0.365732 + 0.340940i
\(93\) −2.34076 + 11.2735i −0.242726 + 1.16900i
\(94\) 1.90895 1.22681i 0.196893 0.126536i
\(95\) 2.44935 + 0.352164i 0.251298 + 0.0361313i
\(96\) −1.02480 + 1.39635i −0.104593 + 0.142514i
\(97\) 0.334672 + 1.13979i 0.0339808 + 0.115728i 0.974737 0.223356i \(-0.0717012\pi\)
−0.940756 + 0.339084i \(0.889883\pi\)
\(98\) −4.34674 + 1.98509i −0.439087 + 0.200525i
\(99\) −2.87839 9.15736i −0.289289 0.920349i
\(100\) 0.142315 + 0.989821i 0.0142315 + 0.0989821i
\(101\) −3.16884 + 10.7921i −0.315311 + 1.07385i 0.637541 + 0.770416i \(0.279952\pi\)
−0.952852 + 0.303435i \(0.901867\pi\)
\(102\) −3.29153 + 2.51302i −0.325910 + 0.248826i
\(103\) −8.49723 + 13.2219i −0.837257 + 1.30280i 0.113713 + 0.993514i \(0.463726\pi\)
−0.950970 + 0.309283i \(0.899911\pi\)
\(104\) 0.249067 0.387555i 0.0244230 0.0380029i
\(105\) 2.05187 1.56656i 0.200242 0.152881i
\(106\) 1.94305 6.61741i 0.188725 0.642739i
\(107\) −2.59085 18.0197i −0.250467 1.74203i −0.595421 0.803414i \(-0.703015\pi\)
0.344954 0.938619i \(-0.387894\pi\)
\(108\) 5.17029 0.517826i 0.497511 0.0498279i
\(109\) −14.2659 + 6.51502i −1.36643 + 0.624025i −0.957471 0.288530i \(-0.906834\pi\)
−0.408954 + 0.912555i \(0.634106\pi\)
\(110\) 0.901458 + 3.07008i 0.0859506 + 0.292721i
\(111\) −12.2727 + 16.7224i −1.16488 + 1.58722i
\(112\) −1.47527 0.212112i −0.139400 0.0200427i
\(113\) 6.60972 4.24781i 0.621790 0.399600i −0.191472 0.981498i \(-0.561326\pi\)
0.813262 + 0.581898i \(0.197690\pi\)
\(114\) −0.871344 + 4.19652i −0.0816088 + 0.393041i
\(115\) −0.174199 + 4.79267i −0.0162441 + 0.446918i
\(116\) 4.93546i 0.458246i
\(117\) −1.36402 + 0.222572i −0.126104 + 0.0205768i
\(118\) 0.856533 5.95732i 0.0788503 0.548416i
\(119\) −3.24150 1.48034i −0.297148 0.135703i
\(120\) −1.72639 + 0.139925i −0.157597 + 0.0127733i
\(121\) −0.316531 0.693107i −0.0287756 0.0630097i
\(122\) −4.01348 4.63180i −0.363363 0.419343i
\(123\) 0.374507 6.03993i 0.0337682 0.544602i
\(124\) 6.37829 + 1.87283i 0.572787 + 0.168186i
\(125\) −0.654861 + 0.755750i −0.0585725 + 0.0675963i
\(126\) 2.48822 + 3.71505i 0.221668 + 0.330963i
\(127\) 10.5887 + 6.80493i 0.939593 + 0.603840i 0.918279 0.395933i \(-0.129579\pi\)
0.0213139 + 0.999773i \(0.493215\pi\)
\(128\) 0.755750 + 0.654861i 0.0667995 + 0.0578821i
\(129\) −5.45930 2.91420i −0.480664 0.256581i
\(130\) 0.455999 0.0655627i 0.0399937 0.00575023i
\(131\) 2.50812 2.17330i 0.219135 0.189882i −0.538374 0.842706i \(-0.680961\pi\)
0.757510 + 0.652824i \(0.226416\pi\)
\(132\) −5.40397 + 1.22929i −0.470356 + 0.106996i
\(133\) −3.53877 + 1.03908i −0.306850 + 0.0900994i
\(134\) 3.02438 6.62246i 0.261266 0.572094i
\(135\) 3.77716 + 3.56834i 0.325087 + 0.307114i
\(136\) 1.29263 + 2.01137i 0.110842 + 0.172473i
\(137\) 3.06689 0.262022 0.131011 0.991381i \(-0.458178\pi\)
0.131011 + 0.991381i \(0.458178\pi\)
\(138\) −8.26656 0.814870i −0.703696 0.0693664i
\(139\) −3.86632 −0.327937 −0.163969 0.986466i \(-0.552430\pi\)
−0.163969 + 0.986466i \(0.552430\pi\)
\(140\) −0.805795 1.25384i −0.0681021 0.105969i
\(141\) −1.33856 + 3.69537i −0.112727 + 0.311206i
\(142\) −2.59165 + 5.67493i −0.217487 + 0.476229i
\(143\) 1.41435 0.415291i 0.118274 0.0347283i
\(144\) −0.0568398 2.99946i −0.00473665 0.249955i
\(145\) −3.72997 + 3.23204i −0.309757 + 0.268406i
\(146\) −0.934353 + 0.134340i −0.0773276 + 0.0111180i
\(147\) 3.89762 7.30157i 0.321470 0.602223i
\(148\) 9.05069 + 7.84247i 0.743962 + 0.644647i
\(149\) 6.52444 + 4.19300i 0.534503 + 0.343504i 0.779886 0.625922i \(-0.215277\pi\)
−0.245383 + 0.969426i \(0.578914\pi\)
\(150\) −1.23629 1.21309i −0.100943 0.0990481i
\(151\) 7.57909 8.74674i 0.616778 0.711800i −0.358314 0.933601i \(-0.616648\pi\)
0.975092 + 0.221802i \(0.0711937\pi\)
\(152\) 2.37430 + 0.697159i 0.192582 + 0.0565470i
\(153\) 1.89004 6.91925i 0.152801 0.559388i
\(154\) −3.12301 3.60414i −0.251659 0.290430i
\(155\) 2.76150 + 6.04684i 0.221809 + 0.485694i
\(156\) 0.0644616 + 0.795327i 0.00516106 + 0.0636771i
\(157\) 2.86966 + 1.31053i 0.229024 + 0.104592i 0.526622 0.850100i \(-0.323458\pi\)
−0.297598 + 0.954691i \(0.596186\pi\)
\(158\) 1.19336 8.29999i 0.0949384 0.660311i
\(159\) 4.28039 + 11.1523i 0.339457 + 0.884438i
\(160\) 1.00000i 0.0790569i
\(161\) −2.73122 6.60554i −0.215251 0.520590i
\(162\) −6.57357 + 6.14721i −0.516468 + 0.482970i
\(163\) −17.9461 + 11.5333i −1.40565 + 0.903356i −0.999943 0.0106483i \(-0.996610\pi\)
−0.405705 + 0.914004i \(0.632974\pi\)
\(164\) −3.45829 0.497227i −0.270047 0.0388269i
\(165\) −4.46789 3.27903i −0.347825 0.255273i
\(166\) 2.23447 + 7.60990i 0.173428 + 0.590643i
\(167\) 22.4942 10.2727i 1.74065 0.794929i 0.749530 0.661971i \(-0.230280\pi\)
0.991122 0.132958i \(-0.0424477\pi\)
\(168\) 2.25393 1.25860i 0.173894 0.0971034i
\(169\) 1.81989 + 12.6576i 0.139991 + 0.973662i
\(170\) −0.673599 + 2.29407i −0.0516627 + 0.175947i
\(171\) −3.21127 6.69312i −0.245572 0.511836i
\(172\) −1.93165 + 3.00570i −0.147287 + 0.229183i
\(173\) 4.21538 6.55927i 0.320490 0.498692i −0.643207 0.765693i \(-0.722396\pi\)
0.963696 + 0.267001i \(0.0860327\pi\)
\(174\) −5.18750 6.79456i −0.393264 0.515094i
\(175\) 0.419907 1.43007i 0.0317420 0.108103i
\(176\) 0.455364 + 3.16712i 0.0343243 + 0.238731i
\(177\) 5.08238 + 9.10161i 0.382015 + 0.684119i
\(178\) −9.33844 + 4.26472i −0.699945 + 0.319654i
\(179\) −0.471157 1.60461i −0.0352159 0.119934i 0.940009 0.341149i \(-0.110816\pi\)
−0.975225 + 0.221215i \(0.928998\pi\)
\(180\) 2.22962 2.00719i 0.166186 0.149607i
\(181\) −5.01373 0.720865i −0.372667 0.0535815i −0.0465633 0.998915i \(-0.514827\pi\)
−0.326104 + 0.945334i \(0.605736\pi\)
\(182\) −0.577630 + 0.371220i −0.0428168 + 0.0275167i
\(183\) 10.3936 + 2.15808i 0.768318 + 0.159530i
\(184\) −0.854493 + 4.71909i −0.0629941 + 0.347896i
\(185\) 11.9758i 0.880477i
\(186\) −10.7494 + 4.12572i −0.788181 + 0.302513i
\(187\) −1.08874 + 7.57233i −0.0796163 + 0.553744i
\(188\) 2.06411 + 0.942650i 0.150541 + 0.0687498i
\(189\) −7.33026 2.49915i −0.533198 0.181787i
\(190\) 1.02796 + 2.25092i 0.0745762 + 0.163299i
\(191\) 1.59327 + 1.83873i 0.115285 + 0.133046i 0.810459 0.585796i \(-0.199218\pi\)
−0.695174 + 0.718842i \(0.744673\pi\)
\(192\) −1.72873 0.107190i −0.124760 0.00773580i
\(193\) 10.8065 + 3.17308i 0.777870 + 0.228403i 0.646484 0.762928i \(-0.276239\pi\)
0.131387 + 0.991331i \(0.458057\pi\)
\(194\) −0.777914 + 0.897760i −0.0558510 + 0.0644554i
\(195\) −0.558854 + 0.569545i −0.0400204 + 0.0407860i
\(196\) −4.01999 2.58349i −0.287142 0.184535i
\(197\) −15.4010 13.3450i −1.09728 0.950795i −0.0982606 0.995161i \(-0.531328\pi\)
−0.999015 + 0.0443657i \(0.985873\pi\)
\(198\) 6.14748 7.37230i 0.436883 0.523926i
\(199\) 1.63691 0.235352i 0.116037 0.0166836i −0.0840515 0.996461i \(-0.526786\pi\)
0.200089 + 0.979778i \(0.435877\pi\)
\(200\) −0.755750 + 0.654861i −0.0534396 + 0.0463056i
\(201\) 2.79706 + 12.2959i 0.197289 + 0.867283i
\(202\) −10.7921 + 3.16884i −0.759327 + 0.222959i
\(203\) 3.05580 6.69128i 0.214475 0.469636i
\(204\) −3.89362 1.41037i −0.272608 0.0987459i
\(205\) −1.88892 2.93922i −0.131928 0.205284i
\(206\) −15.7170 −1.09505
\(207\) 12.2369 7.56690i 0.850524 0.525936i
\(208\) 0.460688 0.0319429
\(209\) 4.28067 + 6.66085i 0.296100 + 0.460741i
\(210\) 2.42720 + 0.879196i 0.167493 + 0.0606703i
\(211\) 1.39424 3.05296i 0.0959833 0.210174i −0.855550 0.517721i \(-0.826781\pi\)
0.951533 + 0.307546i \(0.0995080\pi\)
\(212\) 6.61741 1.94305i 0.454485 0.133449i
\(213\) −2.39686 10.5366i −0.164230 0.721954i
\(214\) 13.7584 11.9218i 0.940508 0.814955i
\(215\) −3.53652 + 0.508475i −0.241189 + 0.0346777i
\(216\) 3.23089 + 4.06956i 0.219834 + 0.276899i
\(217\) −7.48784 6.48825i −0.508307 0.440451i
\(218\) −13.1935 8.47895i −0.893577 0.574267i
\(219\) 1.14511 1.16701i 0.0773792 0.0788594i
\(220\) −2.09535 + 2.41817i −0.141269 + 0.163033i
\(221\) 1.05685 + 0.310319i 0.0710913 + 0.0208743i
\(222\) −20.7029 1.28369i −1.38949 0.0861556i
\(223\) −8.85527 10.2195i −0.592992 0.684350i 0.377354 0.926069i \(-0.376834\pi\)
−0.970346 + 0.241719i \(0.922289\pi\)
\(224\) −0.619153 1.35576i −0.0413689 0.0905853i
\(225\) 2.97702 + 0.370607i 0.198468 + 0.0247071i
\(226\) 7.14697 + 3.26391i 0.475410 + 0.217112i
\(227\) 1.94294 13.5134i 0.128957 0.896917i −0.817922 0.575328i \(-0.804874\pi\)
0.946880 0.321588i \(-0.104217\pi\)
\(228\) −4.00142 + 1.53579i −0.265001 + 0.101710i
\(229\) 1.73080i 0.114375i −0.998363 0.0571873i \(-0.981787\pi\)
0.998363 0.0571873i \(-0.0182132\pi\)
\(230\) −4.12603 + 2.44457i −0.272062 + 0.161190i
\(231\) 8.08759 + 1.67926i 0.532125 + 0.110487i
\(232\) −4.15197 + 2.66831i −0.272590 + 0.175183i
\(233\) −14.8144 2.12999i −0.970525 0.139540i −0.361224 0.932479i \(-0.617641\pi\)
−0.609302 + 0.792939i \(0.708550\pi\)
\(234\) −0.924686 1.02716i −0.0604486 0.0671474i
\(235\) 0.639301 + 2.17726i 0.0417034 + 0.142029i
\(236\) 5.47469 2.50021i 0.356372 0.162750i
\(237\) 7.08098 + 12.6807i 0.459959 + 0.823703i
\(238\) −0.507143 3.52726i −0.0328732 0.228638i
\(239\) 7.10618 24.2014i 0.459661 1.56546i −0.325111 0.945676i \(-0.605402\pi\)
0.784772 0.619785i \(-0.212780\pi\)
\(240\) −1.05107 1.37668i −0.0678462 0.0888645i
\(241\) −0.659232 + 1.02579i −0.0424649 + 0.0660766i −0.861837 0.507185i \(-0.830686\pi\)
0.819372 + 0.573262i \(0.194322\pi\)
\(242\) 0.411949 0.641005i 0.0264811 0.0412054i
\(243\) 2.58858 15.3720i 0.166057 0.986116i
\(244\) 1.72667 5.88049i 0.110539 0.376460i
\(245\) −0.680062 4.72993i −0.0434476 0.302184i
\(246\) 5.28359 2.95038i 0.336869 0.188109i
\(247\) 1.03697 0.473569i 0.0659809 0.0301325i
\(248\) 1.87283 + 6.37829i 0.118925 + 0.405022i
\(249\) −11.0747 8.12784i −0.701830 0.515081i
\(250\) −0.989821 0.142315i −0.0626018 0.00900078i
\(251\) −5.36013 + 3.44475i −0.338328 + 0.217430i −0.698762 0.715355i \(-0.746265\pi\)
0.360433 + 0.932785i \(0.382629\pi\)
\(252\) −1.78007 + 4.10173i −0.112134 + 0.258385i
\(253\) −11.9545 + 9.62109i −0.751571 + 0.604873i
\(254\) 12.5868i 0.789765i
\(255\) −1.48389 3.86620i −0.0929248 0.242111i
\(256\) −0.142315 + 0.989821i −0.00889468 + 0.0618638i
\(257\) 6.14023 + 2.80415i 0.383017 + 0.174918i 0.597613 0.801785i \(-0.296116\pi\)
−0.214596 + 0.976703i \(0.568843\pi\)
\(258\) −0.499935 6.16819i −0.0311246 0.384015i
\(259\) −7.41485 16.2362i −0.460736 1.00887i
\(260\) 0.301686 + 0.348165i 0.0187098 + 0.0215922i
\(261\) 14.2831 + 3.90152i 0.884101 + 0.241498i
\(262\) 3.18429 + 0.934991i 0.196726 + 0.0577639i
\(263\) −4.85550 + 5.60355i −0.299403 + 0.345530i −0.885439 0.464755i \(-0.846142\pi\)
0.586036 + 0.810285i \(0.300688\pi\)
\(264\) −3.95576 3.88151i −0.243460 0.238890i
\(265\) 5.80194 + 3.72868i 0.356410 + 0.229051i
\(266\) −2.78733 2.41524i −0.170902 0.148088i
\(267\) 8.37355 15.6865i 0.512453 0.959999i
\(268\) 7.20627 1.03611i 0.440193 0.0632902i
\(269\) −19.5675 + 16.9553i −1.19305 + 1.03379i −0.194450 + 0.980912i \(0.562292\pi\)
−0.998601 + 0.0528727i \(0.983162\pi\)
\(270\) −0.959787 + 5.10674i −0.0584108 + 0.310786i
\(271\) −5.34510 + 1.56946i −0.324691 + 0.0953380i −0.440016 0.897990i \(-0.645027\pi\)
0.115325 + 0.993328i \(0.463209\pi\)
\(272\) −0.993222 + 2.17485i −0.0602230 + 0.131870i
\(273\) 0.405035 1.11818i 0.0245138 0.0676754i
\(274\) 1.65809 + 2.58003i 0.100169 + 0.155865i
\(275\) −3.19969 −0.192949
\(276\) −3.78373 7.39482i −0.227754 0.445116i
\(277\) 17.1356 1.02958 0.514790 0.857316i \(-0.327870\pi\)
0.514790 + 0.857316i \(0.327870\pi\)
\(278\) −2.09029 3.25256i −0.125367 0.195076i
\(279\) 10.4620 16.9781i 0.626345 1.01645i
\(280\) 0.619153 1.35576i 0.0370015 0.0810219i
\(281\) 7.96339 2.33826i 0.475056 0.139489i −0.0354351 0.999372i \(-0.511282\pi\)
0.510491 + 0.859883i \(0.329464\pi\)
\(282\) −3.83242 + 0.871798i −0.228217 + 0.0519148i
\(283\) −17.0131 + 14.7419i −1.01132 + 0.876317i −0.992344 0.123503i \(-0.960587\pi\)
−0.0189799 + 0.999820i \(0.506042\pi\)
\(284\) −6.17520 + 0.887860i −0.366431 + 0.0526848i
\(285\) −3.78105 2.01835i −0.223970 0.119556i
\(286\) 1.11402 + 0.965304i 0.0658734 + 0.0570796i
\(287\) 4.38074 + 2.81533i 0.258587 + 0.166184i
\(288\) 2.49258 1.66945i 0.146877 0.0983732i
\(289\) 7.38913 8.52752i 0.434655 0.501619i
\(290\) −4.73554 1.39048i −0.278080 0.0816517i
\(291\) 0.127332 2.05357i 0.00746435 0.120383i
\(292\) −0.618163 0.713398i −0.0361753 0.0417485i
\(293\) 12.6712 + 27.7461i 0.740261 + 1.62095i 0.783125 + 0.621865i \(0.213625\pi\)
−0.0428636 + 0.999081i \(0.513648\pi\)
\(294\) 8.24968 0.668641i 0.481131 0.0389959i
\(295\) 5.47469 + 2.50021i 0.318749 + 0.145568i
\(296\) −1.70433 + 11.8539i −0.0990623 + 0.688993i
\(297\) −0.714340 + 16.6107i −0.0414502 + 0.963853i
\(298\) 7.75562i 0.449271i
\(299\) 1.12618 + 1.90081i 0.0651288 + 0.109927i
\(300\) 0.352123 1.69588i 0.0203299 0.0979117i
\(301\) 4.47983 2.87901i 0.258213 0.165944i
\(302\) 11.4558 + 1.64709i 0.659207 + 0.0947796i
\(303\) 11.5266 15.7057i 0.662185 0.902268i
\(304\) 0.697159 + 2.37430i 0.0399848 + 0.136176i
\(305\) 5.57490 2.54597i 0.319218 0.145782i
\(306\) 6.84268 2.15083i 0.391170 0.122955i
\(307\) 0.215682 + 1.50010i 0.0123096 + 0.0856151i 0.995050 0.0993741i \(-0.0316841\pi\)
−0.982741 + 0.184989i \(0.940775\pi\)
\(308\) 1.34357 4.57579i 0.0765572 0.260730i
\(309\) 21.6373 16.5196i 1.23090 0.939767i
\(310\) −3.59394 + 5.59229i −0.204122 + 0.317620i
\(311\) 0.504859 0.785576i 0.0286279 0.0445459i −0.826645 0.562724i \(-0.809753\pi\)
0.855273 + 0.518178i \(0.173390\pi\)
\(312\) −0.634221 + 0.484215i −0.0359057 + 0.0274132i
\(313\) 7.96321 27.1202i 0.450107 1.53292i −0.352148 0.935944i \(-0.614549\pi\)
0.802256 0.596981i \(-0.203633\pi\)
\(314\) 0.448967 + 3.12263i 0.0253367 + 0.176220i
\(315\) −4.26558 + 1.34078i −0.240338 + 0.0755444i
\(316\) 7.62757 3.48339i 0.429084 0.195956i
\(317\) 8.12969 + 27.6872i 0.456609 + 1.55507i 0.790504 + 0.612457i \(0.209819\pi\)
−0.333895 + 0.942610i \(0.608363\pi\)
\(318\) −7.06779 + 9.63031i −0.396342 + 0.540041i
\(319\) −15.6312 2.24743i −0.875180 0.125832i
\(320\) −0.841254 + 0.540641i −0.0470275 + 0.0302227i
\(321\) −6.41042 + 30.8736i −0.357795 + 1.72319i
\(322\) 4.08033 5.86888i 0.227388 0.327060i
\(323\) 5.91642i 0.329198i
\(324\) −8.72530 2.20661i −0.484739 0.122589i
\(325\) −0.0655627 + 0.455999i −0.00363676 + 0.0252943i
\(326\) −19.4048 8.86188i −1.07473 0.490814i
\(327\) 27.0752 2.19446i 1.49726 0.121354i
\(328\) −1.45140 3.17812i −0.0801401 0.175482i
\(329\) −2.21479 2.55601i −0.122105 0.140917i
\(330\) 0.342976 5.53141i 0.0188802 0.304494i
\(331\) 26.6680 + 7.83042i 1.46580 + 0.430399i 0.914733 0.404059i \(-0.132401\pi\)
0.551071 + 0.834458i \(0.314219\pi\)
\(332\) −5.19381 + 5.99398i −0.285048 + 0.328962i
\(333\) 29.8506 19.9929i 1.63580 1.09561i
\(334\) 20.8033 + 13.3694i 1.13830 + 0.731543i
\(335\) 5.50214 + 4.76763i 0.300614 + 0.260484i
\(336\) 2.27737 + 1.21567i 0.124241 + 0.0663204i
\(337\) 27.1460 3.90301i 1.47874 0.212610i 0.644750 0.764393i \(-0.276961\pi\)
0.833988 + 0.551783i \(0.186052\pi\)
\(338\) −9.66435 + 8.37421i −0.525671 + 0.455497i
\(339\) −13.2697 + 3.01859i −0.720712 + 0.163947i
\(340\) −2.29407 + 0.673599i −0.124413 + 0.0365310i
\(341\) −8.83594 + 19.3480i −0.478493 + 1.04775i
\(342\) 3.89447 6.32007i 0.210589 0.341750i
\(343\) 9.49112 + 14.7685i 0.512472 + 0.797423i
\(344\) −3.57289 −0.192637
\(345\) 3.11082 7.70213i 0.167481 0.414669i
\(346\) 7.79701 0.419170
\(347\) −6.63793 10.3288i −0.356343 0.554480i 0.616086 0.787679i \(-0.288717\pi\)
−0.972429 + 0.233198i \(0.925081\pi\)
\(348\) 2.91137 8.03742i 0.156066 0.430851i
\(349\) 5.44380 11.9203i 0.291400 0.638076i −0.706148 0.708064i \(-0.749569\pi\)
0.997548 + 0.0699878i \(0.0222960\pi\)
\(350\) 1.43007 0.419907i 0.0764405 0.0224450i
\(351\) 2.35261 + 0.442162i 0.125573 + 0.0236009i
\(352\) −2.41817 + 2.09535i −0.128889 + 0.111683i
\(353\) −22.5811 + 3.24668i −1.20187 + 0.172803i −0.714022 0.700124i \(-0.753128\pi\)
−0.487851 + 0.872927i \(0.662219\pi\)
\(354\) −4.90902 + 9.19627i −0.260912 + 0.488776i
\(355\) −4.71490 4.08548i −0.250241 0.216835i
\(356\) −8.63645 5.55031i −0.457731 0.294166i
\(357\) 4.40556 + 4.32287i 0.233167 + 0.228791i
\(358\) 1.09516 1.26388i 0.0578810 0.0667982i
\(359\) 17.0544 + 5.00762i 0.900096 + 0.264292i 0.698867 0.715252i \(-0.253688\pi\)
0.201230 + 0.979544i \(0.435506\pi\)
\(360\) 2.89398 + 0.790509i 0.152526 + 0.0416635i
\(361\) −8.43241 9.73152i −0.443811 0.512185i
\(362\) −2.10419 4.60754i −0.110594 0.242167i
\(363\) 0.106618 + 1.31545i 0.00559597 + 0.0690431i
\(364\) −0.624580 0.285236i −0.0327369 0.0149504i
\(365\) 0.134340 0.934353i 0.00703166 0.0489063i
\(366\) 3.80373 + 9.91041i 0.198824 + 0.518026i
\(367\) 20.4214i 1.06599i −0.846119 0.532994i \(-0.821067\pi\)
0.846119 0.532994i \(-0.178933\pi\)
\(368\) −4.43193 + 1.83249i −0.231030 + 0.0955251i
\(369\) −4.17277 + 9.61514i −0.217226 + 0.500544i
\(370\) −10.0747 + 6.47460i −0.523757 + 0.336598i
\(371\) −10.1746 1.46289i −0.528241 0.0759496i
\(372\) −9.28232 6.81240i −0.481266 0.353207i
\(373\) −7.45040 25.3737i −0.385767 1.31380i −0.892246 0.451549i \(-0.850871\pi\)
0.506479 0.862252i \(-0.330947\pi\)
\(374\) −6.95886 + 3.17801i −0.359834 + 0.164331i
\(375\) 1.51225 0.844448i 0.0780924 0.0436071i
\(376\) 0.322937 + 2.24608i 0.0166542 + 0.115833i
\(377\) −0.640576 + 2.18160i −0.0329914 + 0.112358i
\(378\) −1.86062 7.51775i −0.0956999 0.386671i
\(379\) −1.53770 + 2.39271i −0.0789864 + 0.122905i −0.878499 0.477744i \(-0.841455\pi\)
0.799513 + 0.600649i \(0.205091\pi\)
\(380\) −1.33784 + 2.08172i −0.0686296 + 0.106790i
\(381\) −13.2296 17.3280i −0.677772 0.887741i
\(382\) −0.685453 + 2.33444i −0.0350708 + 0.119440i
\(383\) −2.60995 18.1526i −0.133362 0.927556i −0.941128 0.338051i \(-0.890232\pi\)
0.807765 0.589504i \(-0.200677\pi\)
\(384\) −0.844448 1.51225i −0.0430931 0.0771718i
\(385\) 4.33800 1.98110i 0.221085 0.100966i
\(386\) 3.17308 + 10.8065i 0.161506 + 0.550037i
\(387\) 7.17145 + 7.96618i 0.364545 + 0.404943i
\(388\) −1.17582 0.169057i −0.0596930 0.00858256i
\(389\) 5.15795 3.31482i 0.261519 0.168068i −0.403311 0.915063i \(-0.632141\pi\)
0.664829 + 0.746995i \(0.268504\pi\)
\(390\) −0.781271 0.162219i −0.0395612 0.00821427i
\(391\) −11.4015 + 1.21851i −0.576599 + 0.0616228i
\(392\) 4.77857i 0.241354i
\(393\) −5.36649 + 2.05972i −0.270704 + 0.103899i
\(394\) 2.90016 20.1710i 0.146108 1.01620i
\(395\) 7.62757 + 3.48339i 0.383785 + 0.175269i
\(396\) 9.52555 + 1.18583i 0.478677 + 0.0595901i
\(397\) 4.31403 + 9.44640i 0.216515 + 0.474101i 0.986459 0.164011i \(-0.0524431\pi\)
−0.769944 + 0.638112i \(0.779716\pi\)
\(398\) 1.08297 + 1.24981i 0.0542843 + 0.0626474i
\(399\) 6.37585 + 0.395336i 0.319192 + 0.0197916i
\(400\) −0.959493 0.281733i −0.0479746 0.0140866i
\(401\) 10.4864 12.1020i 0.523668 0.604345i −0.430878 0.902410i \(-0.641796\pi\)
0.954545 + 0.298066i \(0.0963414\pi\)
\(402\) −8.83173 + 9.00068i −0.440487 + 0.448913i
\(403\) 2.57630 + 1.65569i 0.128335 + 0.0824756i
\(404\) −8.50043 7.36566i −0.422912 0.366455i
\(405\) −4.04622 8.03916i −0.201058 0.399469i
\(406\) 7.28115 1.04687i 0.361358 0.0519554i
\(407\) −28.9594 + 25.0935i −1.43547 + 1.24384i
\(408\) −0.918569 4.03803i −0.0454760 0.199912i
\(409\) 22.0048 6.46120i 1.08807 0.319486i 0.311967 0.950093i \(-0.399012\pi\)
0.776102 + 0.630607i \(0.217194\pi\)
\(410\) 1.45140 3.17812i 0.0716795 0.156956i
\(411\) −4.99445 1.80912i −0.246358 0.0892374i
\(412\) −8.49723 13.2219i −0.418628 0.651398i
\(413\) −8.97036 −0.441403
\(414\) 12.9815 + 6.20337i 0.638004 + 0.304879i
\(415\) −7.93117 −0.389326
\(416\) 0.249067 + 0.387555i 0.0122115 + 0.0190015i
\(417\) 6.29633 + 2.28070i 0.308333 + 0.111686i
\(418\) −3.28916 + 7.20226i −0.160878 + 0.352274i
\(419\) 29.0624 8.53348i 1.41979 0.416888i 0.520357 0.853949i \(-0.325799\pi\)
0.899432 + 0.437061i \(0.143981\pi\)
\(420\) 0.572616 + 2.51722i 0.0279408 + 0.122828i
\(421\) 29.3756 25.4541i 1.43168 1.24056i 0.505850 0.862621i \(-0.331179\pi\)
0.925831 0.377938i \(-0.123367\pi\)
\(422\) 3.32209 0.477645i 0.161717 0.0232514i
\(423\) 4.35971 5.22833i 0.211976 0.254210i
\(424\) 5.21223 + 4.51643i 0.253128 + 0.219337i
\(425\) −2.01137 1.29263i −0.0975656 0.0627016i
\(426\) 7.56809 7.71287i 0.366675 0.373690i
\(427\) −5.98186 + 6.90344i −0.289483 + 0.334081i
\(428\) 17.4676 + 5.12895i 0.844328 + 0.247917i
\(429\) −2.54825 0.158005i −0.123031 0.00762855i
\(430\) −2.33974 2.70021i −0.112832 0.130216i
\(431\) 14.9985 + 32.8420i 0.722450 + 1.58195i 0.810438 + 0.585824i \(0.199229\pi\)
−0.0879879 + 0.996122i \(0.528044\pi\)
\(432\) −1.67678 + 4.91817i −0.0806743 + 0.236626i
\(433\) −10.7052 4.88890i −0.514459 0.234945i 0.141230 0.989977i \(-0.454894\pi\)
−0.655689 + 0.755031i \(0.727622\pi\)
\(434\) 1.41003 9.80698i 0.0676836 0.470750i
\(435\) 7.98082 3.06313i 0.382651 0.146866i
\(436\) 15.6832i 0.751087i
\(437\) −8.09219 + 8.68064i −0.387102 + 0.415251i
\(438\) 1.60084 + 0.332391i 0.0764913 + 0.0158822i
\(439\) −15.1935 + 9.76428i −0.725147 + 0.466024i −0.850424 0.526098i \(-0.823654\pi\)
0.125277 + 0.992122i \(0.460018\pi\)
\(440\) −3.16712 0.455364i −0.150987 0.0217086i
\(441\) −10.6544 + 9.59149i −0.507352 + 0.456738i
\(442\) 0.310319 + 1.05685i 0.0147604 + 0.0502692i
\(443\) −4.43826 + 2.02689i −0.210868 + 0.0963003i −0.518049 0.855351i \(-0.673342\pi\)
0.307181 + 0.951651i \(0.400614\pi\)
\(444\) −10.1129 18.1104i −0.479938 0.859482i
\(445\) −1.46103 10.1617i −0.0692594 0.481710i
\(446\) 3.80969 12.9746i 0.180394 0.614366i
\(447\) −8.15169 10.6770i −0.385562 0.505006i
\(448\) 0.805795 1.25384i 0.0380703 0.0592385i
\(449\) −19.1070 + 29.7311i −0.901715 + 1.40310i 0.0134037 + 0.999910i \(0.495733\pi\)
−0.915118 + 0.403185i \(0.867903\pi\)
\(450\) 1.29772 + 2.70479i 0.0611753 + 0.127505i
\(451\) 3.14956 10.7264i 0.148307 0.505087i
\(452\) 1.11817 + 7.77702i 0.0525941 + 0.365800i
\(453\) −17.5022 + 9.77330i −0.822325 + 0.459190i
\(454\) 12.4186 5.67140i 0.582835 0.266172i
\(455\) −0.193446 0.658816i −0.00906889 0.0308858i
\(456\) −3.45532 2.53590i −0.161810 0.118754i
\(457\) −22.0690 3.17305i −1.03235 0.148429i −0.394741 0.918792i \(-0.629166\pi\)
−0.637605 + 0.770364i \(0.720075\pi\)
\(458\) 1.45604 0.935742i 0.0680365 0.0437244i
\(459\) −7.15953 + 10.1531i −0.334178 + 0.473908i
\(460\) −4.28720 2.14940i −0.199892 0.100216i
\(461\) 7.65706i 0.356625i −0.983974 0.178312i \(-0.942936\pi\)
0.983974 0.178312i \(-0.0570637\pi\)
\(462\) 2.95980 + 7.71160i 0.137702 + 0.358776i
\(463\) −4.90050 + 34.0837i −0.227746 + 1.58401i 0.479826 + 0.877364i \(0.340700\pi\)
−0.707572 + 0.706642i \(0.750209\pi\)
\(464\) −4.48945 2.05026i −0.208417 0.0951811i
\(465\) −0.930158 11.4763i −0.0431351 0.532200i
\(466\) −6.21742 13.6143i −0.288016 0.630668i
\(467\) −15.2617 17.6130i −0.706228 0.815030i 0.283352 0.959016i \(-0.408554\pi\)
−0.989580 + 0.143986i \(0.954008\pi\)
\(468\) 0.364178 1.33322i 0.0168341 0.0616281i
\(469\) −10.4115 3.05708i −0.480757 0.141163i
\(470\) −1.48599 + 1.71493i −0.0685438 + 0.0791038i
\(471\) −3.90019 3.82698i −0.179711 0.176338i
\(472\) 5.06315 + 3.25389i 0.233050 + 0.149772i
\(473\) −8.63983 7.48646i −0.397260 0.344228i
\(474\) −6.83945 + 12.8126i −0.314147 + 0.588504i
\(475\) −2.44935 + 0.352164i −0.112384 + 0.0161584i
\(476\) 2.69314 2.33361i 0.123440 0.106961i
\(477\) −0.392011 20.6866i −0.0179490 0.947175i
\(478\) 24.2014 7.10618i 1.10695 0.325029i
\(479\) −2.83658 + 6.21125i −0.129607 + 0.283799i −0.963299 0.268430i \(-0.913495\pi\)
0.833692 + 0.552229i \(0.186223\pi\)
\(480\) 0.589888 1.62851i 0.0269246 0.0743308i
\(481\) 2.98277 + 4.64128i 0.136003 + 0.211624i
\(482\) −1.21935 −0.0555400
\(483\) 0.551283 + 12.3683i 0.0250842 + 0.562776i
\(484\) 0.761964 0.0346347
\(485\) −0.642231 0.999331i −0.0291622 0.0453773i
\(486\) 14.3313 6.13310i 0.650079 0.278203i
\(487\) 5.04845 11.0546i 0.228767 0.500930i −0.760086 0.649822i \(-0.774843\pi\)
0.988853 + 0.148892i \(0.0475707\pi\)
\(488\) 5.88049 1.72667i 0.266197 0.0781626i
\(489\) 36.0287 8.19580i 1.62927 0.370627i
\(490\) 3.61141 3.12930i 0.163147 0.141367i
\(491\) 30.4523 4.37837i 1.37429 0.197593i 0.584712 0.811241i \(-0.301208\pi\)
0.789580 + 0.613648i \(0.210299\pi\)
\(492\) 5.33854 + 2.84974i 0.240680 + 0.128476i
\(493\) −8.91804 7.72753i −0.401648 0.348030i
\(494\) 0.959021 + 0.616325i 0.0431484 + 0.0277298i
\(495\) 5.34172 + 7.97548i 0.240093 + 0.358471i
\(496\) −4.35323 + 5.02389i −0.195466 + 0.225579i
\(497\) 8.92179 + 2.61968i 0.400197 + 0.117508i
\(498\) 0.850145 13.7109i 0.0380959 0.614398i
\(499\) 14.0785 + 16.2475i 0.630241 + 0.727337i 0.977618 0.210389i \(-0.0674730\pi\)
−0.347377 + 0.937726i \(0.612928\pi\)
\(500\) −0.415415 0.909632i −0.0185779 0.0406800i
\(501\) −42.6917 + 3.46018i −1.90732 + 0.154589i
\(502\) −5.79581 2.64686i −0.258680 0.118135i
\(503\) 3.04247 21.1609i 0.135657 0.943516i −0.802338 0.596869i \(-0.796411\pi\)
0.937996 0.346647i \(-0.112680\pi\)
\(504\) −4.41297 + 0.720077i −0.196569 + 0.0320748i
\(505\) 11.2477i 0.500515i
\(506\) −14.5569 4.85519i −0.647131 0.215840i
\(507\) 4.50287 21.6865i 0.199980 0.963132i
\(508\) −10.5887 + 6.80493i −0.469797 + 0.301920i
\(509\) 0.606624 + 0.0872193i 0.0268881 + 0.00386593i 0.155746 0.987797i \(-0.450222\pi\)
−0.128858 + 0.991663i \(0.541131\pi\)
\(510\) 2.45020 3.33855i 0.108497 0.147834i
\(511\) 0.396376 + 1.34993i 0.0175346 + 0.0597175i
\(512\) −0.909632 + 0.415415i −0.0402004 + 0.0183589i
\(513\) 1.28138 + 12.7941i 0.0565744 + 0.564873i
\(514\) 0.960659 + 6.68153i 0.0423728 + 0.294710i
\(515\) 4.42798 15.0803i 0.195120 0.664518i
\(516\) 4.91873 3.75535i 0.216535 0.165320i
\(517\) −3.92541 + 6.10806i −0.172639 + 0.268632i
\(518\) 9.65003 15.0157i 0.423998 0.659754i
\(519\) −10.7340 + 8.19520i −0.471171 + 0.359729i
\(520\) −0.129791 + 0.442027i −0.00569170 + 0.0193842i
\(521\) −3.27469 22.7760i −0.143467 0.997834i −0.926618 0.376003i \(-0.877298\pi\)
0.783152 0.621831i \(-0.213611\pi\)
\(522\) 4.43985 + 14.1250i 0.194327 + 0.618235i
\(523\) −25.8751 + 11.8168i −1.13144 + 0.516711i −0.891023 0.453958i \(-0.850011\pi\)
−0.240417 + 0.970670i \(0.577284\pi\)
\(524\) 0.934991 + 3.18429i 0.0408453 + 0.139106i
\(525\) −1.52740 + 2.08118i −0.0666613 + 0.0908302i
\(526\) −7.33909 1.05520i −0.320000 0.0460090i
\(527\) −13.3707 + 8.59282i −0.582436 + 0.374309i
\(528\) 1.12669 5.42630i 0.0490327 0.236149i
\(529\) −18.3950 13.8066i −0.799784 0.600287i
\(530\) 6.89677i 0.299577i
\(531\) −2.90775 17.8201i −0.126186 0.773325i
\(532\) 0.524881 3.65063i 0.0227565 0.158275i
\(533\) −1.46412 0.668642i −0.0634181 0.0289621i
\(534\) 17.7234 1.43649i 0.766967 0.0621630i
\(535\) 7.56264 + 16.5599i 0.326962 + 0.715946i
\(536\) 4.76763 + 5.50214i 0.205930 + 0.237656i
\(537\) −0.179260 + 2.89105i −0.00773565 + 0.124758i
\(538\) −24.8427 7.29448i −1.07105 0.314487i
\(539\) 10.0128 11.5554i 0.431282 0.497726i
\(540\) −4.81496 + 1.95349i −0.207203 + 0.0840648i
\(541\) 7.38317 + 4.74487i 0.317427 + 0.203998i 0.689646 0.724147i \(-0.257766\pi\)
−0.372218 + 0.928145i \(0.621403\pi\)
\(542\) −4.21009 3.64807i −0.180839 0.156698i
\(543\) 7.73965 + 4.13147i 0.332140 + 0.177298i
\(544\) −2.36658 + 0.340263i −0.101466 + 0.0145886i
\(545\) 11.8525 10.2703i 0.507707 0.439930i
\(546\) 1.15965 0.263797i 0.0496285 0.0112895i
\(547\) −15.7179 + 4.61518i −0.672048 + 0.197331i −0.599915 0.800064i \(-0.704799\pi\)
−0.0721330 + 0.997395i \(0.522981\pi\)
\(548\) −1.27403 + 2.78974i −0.0544239 + 0.119172i
\(549\) −15.6530 9.64551i −0.668056 0.411660i
\(550\) −1.72988 2.69175i −0.0737625 0.114777i
\(551\) −12.2130 −0.520291
\(552\) 4.17528 7.18102i 0.177712 0.305644i
\(553\) −12.4979 −0.531464
\(554\) 9.26422 + 14.4154i 0.393599 + 0.612452i
\(555\) 7.06437 19.5026i 0.299866 0.827841i
\(556\) 1.60613 3.51693i 0.0681151 0.149151i
\(557\) 2.42774 0.712847i 0.102866 0.0302043i −0.229894 0.973216i \(-0.573838\pi\)
0.332761 + 0.943011i \(0.392020\pi\)
\(558\) 19.9391 0.377846i 0.844090 0.0159955i
\(559\) −1.24395 + 1.07789i −0.0526136 + 0.0455899i
\(560\) 1.47527 0.212112i 0.0623417 0.00896339i
\(561\) 6.23984 11.6894i 0.263446 0.493525i
\(562\) 6.27241 + 5.43507i 0.264586 + 0.229265i
\(563\) −25.7404 16.5424i −1.08483 0.697178i −0.129162 0.991624i \(-0.541229\pi\)
−0.955668 + 0.294446i \(0.904865\pi\)
\(564\) −2.80537 2.75271i −0.118127 0.115910i
\(565\) −5.14524 + 5.93792i −0.216462 + 0.249810i
\(566\) −21.5997 6.34224i −0.907903 0.266584i
\(567\) 10.4632 + 8.39392i 0.439411 + 0.352511i
\(568\) −4.08548 4.71490i −0.171423 0.197833i
\(569\) 1.40975 + 3.08691i 0.0590997 + 0.129410i 0.936878 0.349658i \(-0.113702\pi\)
−0.877778 + 0.479068i \(0.840975\pi\)
\(570\) −0.346249 4.27202i −0.0145028 0.178935i
\(571\) −7.57671 3.46017i −0.317075 0.144803i 0.250519 0.968112i \(-0.419399\pi\)
−0.567595 + 0.823308i \(0.692126\pi\)
\(572\) −0.209781 + 1.45906i −0.00877136 + 0.0610062i
\(573\) −1.51000 3.93424i −0.0630813 0.164355i
\(574\) 5.20739i 0.217352i
\(575\) −1.18311 4.64761i −0.0493390 0.193819i
\(576\) 2.75202 + 1.19432i 0.114667 + 0.0497633i
\(577\) 31.2127 20.0592i 1.29940 0.835075i 0.306255 0.951950i \(-0.400924\pi\)
0.993147 + 0.116875i \(0.0372876\pi\)
\(578\) 11.1687 + 1.60581i 0.464555 + 0.0667930i
\(579\) −15.7267 11.5420i −0.653580 0.479670i
\(580\) −1.39048 4.73554i −0.0577365 0.196632i
\(581\) 10.7527 4.91061i 0.446099 0.203726i
\(582\) 1.79642 1.00313i 0.0744638 0.0415809i
\(583\) 3.14054 + 21.8429i 0.130068 + 0.904642i
\(584\) 0.265945 0.905724i 0.0110049 0.0374791i
\(585\) 1.24607 0.597846i 0.0515185 0.0247179i
\(586\) −16.4909 + 25.6604i −0.681234 + 1.06002i
\(587\) −22.7267 + 35.3634i −0.938030 + 1.45960i −0.0505680 + 0.998721i \(0.516103\pi\)
−0.887462 + 0.460882i \(0.847533\pi\)
\(588\) 5.02261 + 6.57858i 0.207129 + 0.271296i
\(589\) −4.63441 + 15.7833i −0.190957 + 0.650341i
\(590\) 0.856533 + 5.95732i 0.0352629 + 0.245259i
\(591\) 17.2085 + 30.8174i 0.707865 + 1.26766i
\(592\) −10.8936 + 4.97492i −0.447722 + 0.204468i
\(593\) 7.08148 + 24.1173i 0.290801 + 0.990379i 0.967237 + 0.253876i \(0.0817057\pi\)
−0.676435 + 0.736502i \(0.736476\pi\)
\(594\) −14.3600 + 8.37950i −0.589200 + 0.343815i
\(595\) 3.52726 + 0.507143i 0.144603 + 0.0207908i
\(596\) −6.52444 + 4.19300i −0.267251 + 0.171752i
\(597\) −2.80454 0.582320i −0.114782 0.0238328i
\(598\) −0.990203 + 1.97506i −0.0404924 + 0.0807662i
\(599\) 35.7148i 1.45927i 0.683838 + 0.729634i \(0.260309\pi\)
−0.683838 + 0.729634i \(0.739691\pi\)
\(600\) 1.61704 0.620637i 0.0660153 0.0253374i
\(601\) −1.44415 + 10.0443i −0.0589081 + 0.409715i 0.938936 + 0.344091i \(0.111813\pi\)
−0.997844 + 0.0656240i \(0.979096\pi\)
\(602\) 4.84396 + 2.21216i 0.197425 + 0.0901611i
\(603\) 2.69816 21.6738i 0.109877 0.882627i
\(604\) 4.80784 + 10.5277i 0.195628 + 0.428367i
\(605\) 0.498981 + 0.575854i 0.0202864 + 0.0234118i
\(606\) 19.4442 + 1.20564i 0.789867 + 0.0489759i
\(607\) 12.4598 + 3.65854i 0.505729 + 0.148496i 0.524638 0.851326i \(-0.324201\pi\)
−0.0189082 + 0.999821i \(0.506019\pi\)
\(608\) −1.62048 + 1.87013i −0.0657191 + 0.0758439i
\(609\) −8.92350 + 9.09420i −0.361598 + 0.368516i
\(610\) 5.15583 + 3.31345i 0.208753 + 0.134158i
\(611\) 0.790046 + 0.684579i 0.0319619 + 0.0276951i
\(612\) 5.50882 + 4.59360i 0.222681 + 0.185685i
\(613\) 15.2521 2.19292i 0.616026 0.0885712i 0.172764 0.984963i \(-0.444730\pi\)
0.443262 + 0.896392i \(0.353821\pi\)
\(614\) −1.14536 + 0.992457i −0.0462228 + 0.0400523i
\(615\) 1.34231 + 5.90078i 0.0541271 + 0.237942i
\(616\) 4.57579 1.34357i 0.184364 0.0541341i
\(617\) 7.65030 16.7518i 0.307989 0.674403i −0.690828 0.723019i \(-0.742754\pi\)
0.998818 + 0.0486162i \(0.0154811\pi\)
\(618\) 25.5952 + 9.27125i 1.02959 + 0.372944i
\(619\) 1.24050 + 1.93026i 0.0498600 + 0.0775837i 0.865289 0.501274i \(-0.167135\pi\)
−0.815429 + 0.578858i \(0.803499\pi\)
\(620\) −6.64756 −0.266973
\(621\) −24.3915 + 5.10434i −0.978798 + 0.204830i
\(622\) 0.933816 0.0374426
\(623\) 8.27243 + 12.8722i 0.331428 + 0.515712i
\(624\) −0.750233 0.271754i −0.0300333 0.0108789i
\(625\) 0.415415 0.909632i 0.0166166 0.0363853i
\(626\) 27.1202 7.96321i 1.08394 0.318274i
\(627\) −3.04194 13.3724i −0.121483 0.534040i
\(628\) −2.38420 + 2.06592i −0.0951398 + 0.0824391i
\(629\) −28.3417 + 4.07491i −1.13006 + 0.162477i
\(630\) −3.43408 2.86355i −0.136817 0.114087i
\(631\) −25.6931 22.2632i −1.02283 0.886285i −0.0292650 0.999572i \(-0.509317\pi\)
−0.993562 + 0.113287i \(0.963862\pi\)
\(632\) 7.05419 + 4.53346i 0.280601 + 0.180331i
\(633\) −4.07143 + 4.14931i −0.161825 + 0.164920i
\(634\) −18.8967 + 21.8080i −0.750484 + 0.866105i
\(635\) −12.0769 3.54611i −0.479259 0.140723i
\(636\) −11.9227 0.739268i −0.472765 0.0293139i
\(637\) −1.44163 1.66373i −0.0571195 0.0659194i
\(638\) −6.56021 14.3649i −0.259721 0.568710i
\(639\) −2.31211 + 18.5728i −0.0914655 + 0.734727i
\(640\) −0.909632 0.415415i −0.0359564 0.0164207i
\(641\) 4.16956 28.9999i 0.164688 1.14543i −0.724963 0.688787i \(-0.758143\pi\)
0.889651 0.456641i \(-0.150948\pi\)
\(642\) −29.4382 + 11.2987i −1.16183 + 0.445925i
\(643\) 25.0540i 0.988034i 0.869452 + 0.494017i \(0.164472\pi\)
−0.869452 + 0.494017i \(0.835528\pi\)
\(644\) 7.14321 + 0.259633i 0.281482 + 0.0102310i
\(645\) 6.05919 + 1.25810i 0.238580 + 0.0495375i
\(646\) −4.97721 + 3.19866i −0.195826 + 0.125850i
\(647\) −34.5400 4.96610i −1.35791 0.195238i −0.575396 0.817875i \(-0.695152\pi\)
−0.782511 + 0.622637i \(0.786061\pi\)
\(648\) −2.86094 8.53317i −0.112388 0.335215i
\(649\) 5.42549 + 18.4775i 0.212969 + 0.725307i
\(650\) −0.419056 + 0.191377i −0.0164367 + 0.00750641i
\(651\) 8.36665 + 14.9831i 0.327915 + 0.587235i
\(652\) −3.03595 21.1155i −0.118897 0.826945i
\(653\) 1.01562 3.45889i 0.0397443 0.135357i −0.937231 0.348709i \(-0.886620\pi\)
0.976975 + 0.213352i \(0.0684383\pi\)
\(654\) 16.4841 + 21.5907i 0.644578 + 0.844264i
\(655\) −1.79423 + 2.79188i −0.0701066 + 0.109088i
\(656\) 1.88892 2.93922i 0.0737499 0.114757i
\(657\) −2.55322 + 1.22500i −0.0996106 + 0.0477919i
\(658\) 0.952842 3.24508i 0.0371457 0.126507i
\(659\) 0.272927 + 1.89825i 0.0106317 + 0.0739453i 0.994447 0.105243i \(-0.0335620\pi\)
−0.983815 + 0.179188i \(0.942653\pi\)
\(660\) 4.83874 2.70197i 0.188348 0.105174i
\(661\) 0.940382 0.429458i 0.0365766 0.0167040i −0.397043 0.917800i \(-0.629964\pi\)
0.433619 + 0.901096i \(0.357236\pi\)
\(662\) 7.83042 + 26.6680i 0.304338 + 1.03648i
\(663\) −1.53803 1.12878i −0.0597322 0.0438381i
\(664\) −7.85044 1.12872i −0.304656 0.0438030i
\(665\) 3.10268 1.99397i 0.120317 0.0773230i
\(666\) 32.9576 + 14.3029i 1.27708 + 0.554226i
\(667\) −2.51532 23.5356i −0.0973934 0.911302i
\(668\) 24.7289i 0.956789i
\(669\) 8.39248 + 21.8662i 0.324472 + 0.845395i
\(670\) −1.03611 + 7.20627i −0.0400283 + 0.278403i
\(671\) 17.8380 + 8.14633i 0.688628 + 0.314486i
\(672\) 0.208550 + 2.57309i 0.00804499 + 0.0992590i
\(673\) 12.9075 + 28.2635i 0.497548 + 1.08948i 0.977258 + 0.212052i \(0.0680145\pi\)
−0.479710 + 0.877427i \(0.659258\pi\)
\(674\) 17.9597 + 20.7266i 0.691780 + 0.798357i
\(675\) −4.62948 2.35964i −0.178189 0.0908227i
\(676\) −12.2698 3.60273i −0.471914 0.138567i
\(677\) −19.5229 + 22.5306i −0.750326 + 0.865923i −0.994600 0.103784i \(-0.966905\pi\)
0.244274 + 0.969706i \(0.421451\pi\)
\(678\) −9.71354 9.53122i −0.373046 0.366044i
\(679\) 1.48945 + 0.957210i 0.0571598 + 0.0367344i
\(680\) −1.80693 1.56572i −0.0692927 0.0600425i
\(681\) −11.1355 + 20.8606i −0.426713 + 0.799378i
\(682\) −21.0537 + 3.02706i −0.806186 + 0.115912i
\(683\) −26.4593 + 22.9271i −1.01244 + 0.877281i −0.992466 0.122519i \(-0.960903\pi\)
−0.0199702 + 0.999801i \(0.506357\pi\)
\(684\) 7.42229 0.140652i 0.283798 0.00537798i
\(685\) −2.94266 + 0.864042i −0.112433 + 0.0330134i
\(686\) −7.29274 + 15.9689i −0.278438 + 0.609695i
\(687\) −1.02098 + 2.81862i −0.0389528 + 0.107537i
\(688\) −1.93165 3.00570i −0.0736434 0.114591i
\(689\) 3.17726 0.121044
\(690\) 8.16128 1.54710i 0.310695 0.0588970i
\(691\) 40.0560 1.52380 0.761902 0.647693i \(-0.224266\pi\)
0.761902 + 0.647693i \(0.224266\pi\)
\(692\) 4.21538 + 6.55927i 0.160245 + 0.249346i
\(693\) −12.1801 7.50547i −0.462684 0.285109i
\(694\) 5.10042 11.1684i 0.193609 0.423945i
\(695\) 3.70971 1.08927i 0.140717 0.0413183i
\(696\) 8.33551 1.89616i 0.315957 0.0718737i
\(697\) 6.31316 5.47038i 0.239128 0.207206i
\(698\) 12.9711 1.86496i 0.490963 0.0705898i
\(699\) 22.8689 + 12.2076i 0.864982 + 0.461732i
\(700\) 1.12640 + 0.976034i 0.0425740 + 0.0368906i
\(701\) 11.1144 + 7.14280i 0.419786 + 0.269780i 0.733436 0.679759i \(-0.237915\pi\)
−0.313650 + 0.949539i \(0.601552\pi\)
\(702\) 0.899948 + 2.21820i 0.0339664 + 0.0837204i
\(703\) −19.4065 + 22.3963i −0.731931 + 0.844693i
\(704\) −3.07008 0.901458i −0.115708 0.0339750i
\(705\) 0.243234 3.92279i 0.00916071 0.147741i
\(706\) −14.9396 17.2412i −0.562258 0.648880i
\(707\) 6.96403 + 15.2491i 0.261909 + 0.573502i
\(708\) −10.3904 + 0.842148i −0.390496 + 0.0316499i
\(709\) 32.6447 + 14.9083i 1.22600 + 0.559894i 0.919918 0.392112i \(-0.128255\pi\)
0.306080 + 0.952006i \(0.400983\pi\)
\(710\) 0.887860 6.17520i 0.0333208 0.231751i
\(711\) −4.05120 24.8277i −0.151932 0.931110i
\(712\) 10.2662i 0.384741i
\(713\) −31.3705 5.68030i −1.17483 0.212729i
\(714\) −1.25480 + 6.04332i −0.0469598 + 0.226165i
\(715\) −1.24006 + 0.796937i −0.0463755 + 0.0298037i
\(716\) 1.65533 + 0.238001i 0.0618627 + 0.00889451i
\(717\) −25.8486 + 35.2203i −0.965334 + 1.31533i
\(718\) 5.00762 + 17.0544i 0.186883 + 0.636464i
\(719\) −28.3164 + 12.9317i −1.05602 + 0.482270i −0.866278 0.499563i \(-0.833494\pi\)
−0.189747 + 0.981833i \(0.560767\pi\)
\(720\) 0.899583 + 2.86195i 0.0335255 + 0.106659i
\(721\) 3.33376 + 23.1868i 0.124156 + 0.863522i
\(722\) 3.62777 12.3551i 0.135012 0.459807i
\(723\) 1.67866 1.28162i 0.0624301 0.0476641i
\(724\) 2.73850 4.26119i 0.101776 0.158366i
\(725\) 2.66831 4.15197i 0.0990985 0.154200i
\(726\) −1.04898 + 0.800877i −0.0389314 + 0.0297233i
\(727\) 5.52536 18.8176i 0.204924 0.697908i −0.791326 0.611394i \(-0.790609\pi\)
0.996251 0.0865140i \(-0.0275727\pi\)
\(728\) −0.0977176 0.679641i −0.00362165 0.0251892i
\(729\) −13.2833 + 23.5065i −0.491974 + 0.870610i
\(730\) 0.858657 0.392136i 0.0317803 0.0145136i
\(731\) −2.40669 8.19644i −0.0890147 0.303156i
\(732\) −6.28072 + 8.55787i −0.232142 + 0.316308i
\(733\) 52.1034 + 7.49134i 1.92448 + 0.276699i 0.995602 0.0936798i \(-0.0298630\pi\)
0.928881 + 0.370379i \(0.120772\pi\)
\(734\) 17.1796 11.0406i 0.634110 0.407517i
\(735\) −1.68265 + 8.10389i −0.0620654 + 0.298916i
\(736\) −3.93767 2.73766i −0.145144 0.100911i
\(737\) 23.2950i 0.858081i
\(738\) −10.3447 + 1.68798i −0.380795 + 0.0621355i
\(739\) −1.05168 + 7.31457i −0.0386865 + 0.269071i −0.999979 0.00645879i \(-0.997944\pi\)
0.961293 + 0.275530i \(0.0888532\pi\)
\(740\) −10.8936 4.97492i −0.400455 0.182882i
\(741\) −1.96807 + 0.159513i −0.0722988 + 0.00585985i
\(742\) −4.27016 9.35035i −0.156763 0.343262i
\(743\) 28.4811 + 32.8689i 1.04487 + 1.20584i 0.978113 + 0.208074i \(0.0667195\pi\)
0.0667563 + 0.997769i \(0.478735\pi\)
\(744\) 0.712555 11.4918i 0.0261235 0.421312i
\(745\) −7.44146 2.18501i −0.272634 0.0800525i
\(746\) 17.3177 19.9857i 0.634048 0.731730i
\(747\) 13.2407 + 19.7691i 0.484451 + 0.723312i
\(748\) −6.43576 4.13601i −0.235315 0.151227i
\(749\) −20.5062 17.7687i −0.749280 0.649255i
\(750\) 1.52798 + 0.815645i 0.0557940 + 0.0297831i
\(751\) −11.3818 + 1.63645i −0.415327 + 0.0597150i −0.346811 0.937935i \(-0.612735\pi\)
−0.0685159 + 0.997650i \(0.521826\pi\)
\(752\) −1.71493 + 1.48599i −0.0625370 + 0.0541886i
\(753\) 10.7610 2.44791i 0.392153 0.0892069i
\(754\) −2.18160 + 0.640576i −0.0794493 + 0.0233284i
\(755\) −4.80784 + 10.5277i −0.174975 + 0.383143i
\(756\) 5.31841 5.62966i 0.193429 0.204749i
\(757\) 3.02307 + 4.70399i 0.109875 + 0.170969i 0.891837 0.452358i \(-0.149417\pi\)
−0.781961 + 0.623327i \(0.785781\pi\)
\(758\) −2.84422 −0.103307
\(759\) 25.1433 8.61620i 0.912644 0.312748i
\(760\) −2.47454 −0.0897610
\(761\) −24.6505 38.3568i −0.893578 1.39043i −0.920477 0.390797i \(-0.872200\pi\)
0.0268989 0.999638i \(-0.491437\pi\)
\(762\) 7.42480 20.4977i 0.268972 0.742552i
\(763\) −9.71027 + 21.2625i −0.351536 + 0.769755i
\(764\) −2.33444 + 0.685453i −0.0844570 + 0.0247988i
\(765\) 0.135899 + 7.17146i 0.00491345 + 0.259285i
\(766\) 13.8599 12.0097i 0.500779 0.433927i
\(767\) 2.74446 0.394594i 0.0990968 0.0142480i
\(768\) 0.815645 1.52798i 0.0294320 0.0551362i
\(769\) −36.1389 31.3146i −1.30320 1.12923i −0.983342 0.181768i \(-0.941818\pi\)
−0.319862 0.947464i \(-0.603636\pi\)
\(770\) 4.01191 + 2.57830i 0.144579 + 0.0929154i
\(771\) −8.34527 8.18862i −0.300547 0.294906i
\(772\) −7.37553 + 8.51181i −0.265451 + 0.306347i
\(773\) 31.2031 + 9.16205i 1.12230 + 0.329536i 0.789676 0.613525i \(-0.210249\pi\)
0.332621