Properties

Label 690.2.q.a.11.8
Level $690$
Weight $2$
Character 690.11
Analytic conductor $5.510$
Analytic rank $0$
Dimension $160$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.q (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(16\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 11.8
Character \(\chi\) \(=\) 690.11
Dual form 690.2.q.a.251.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.540641 - 0.841254i) q^{2} +(1.50109 + 0.864143i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.959493 + 0.281733i) q^{5} +(-0.0845842 - 1.72998i) q^{6} +(0.920755 - 0.797839i) q^{7} +(0.989821 - 0.142315i) q^{8} +(1.50651 + 2.59431i) q^{9} +O(q^{10})\) \(q+(-0.540641 - 0.841254i) q^{2} +(1.50109 + 0.864143i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.959493 + 0.281733i) q^{5} +(-0.0845842 - 1.72998i) q^{6} +(0.920755 - 0.797839i) q^{7} +(0.989821 - 0.142315i) q^{8} +(1.50651 + 2.59431i) q^{9} +(0.755750 + 0.654861i) q^{10} +(-0.473766 - 0.304471i) q^{11} +(-1.40963 + 1.00646i) q^{12} +(1.86571 - 2.15315i) q^{13} +(-1.16898 - 0.343244i) q^{14} +(-1.68374 - 0.406235i) q^{15} +(-0.654861 - 0.755750i) q^{16} +(1.73289 + 3.79449i) q^{17} +(1.36799 - 2.66995i) q^{18} +(6.59342 + 3.01111i) q^{19} +(0.142315 - 0.989821i) q^{20} +(2.07158 - 0.401960i) q^{21} +0.563167i q^{22} +(-4.34822 - 2.02311i) q^{23} +(1.60879 + 0.641721i) q^{24} +(0.841254 - 0.540641i) q^{25} +(-2.82002 - 0.405458i) q^{26} +(0.0195518 + 5.19612i) q^{27} +(0.343244 + 1.16898i) q^{28} +(3.46489 - 1.58236i) q^{29} +(0.568551 + 1.63608i) q^{30} +(0.639871 + 4.45040i) q^{31} +(-0.281733 + 0.959493i) q^{32} +(-0.448056 - 0.866438i) q^{33} +(2.25526 - 3.50925i) q^{34} +(-0.658681 + 1.02493i) q^{35} +(-2.98569 + 0.292659i) q^{36} +(0.307684 - 1.04788i) q^{37} +(-1.03156 - 7.17466i) q^{38} +(4.66122 - 1.61981i) q^{39} +(-0.909632 + 0.415415i) q^{40} +(-0.199823 - 0.680536i) q^{41} +(-1.45813 - 1.52541i) q^{42} +(12.6134 + 1.81353i) q^{43} +(0.473766 - 0.304471i) q^{44} +(-2.17639 - 2.06478i) q^{45} +(0.648883 + 4.75173i) q^{46} +3.93452i q^{47} +(-0.329926 - 1.70034i) q^{48} +(-0.784961 + 5.45952i) q^{49} +(-0.909632 - 0.415415i) q^{50} +(-0.677775 + 7.19332i) q^{51} +(1.18353 + 2.59156i) q^{52} +(-0.983002 - 1.13444i) q^{53} +(4.36068 - 2.82568i) q^{54} +(0.540354 + 0.158662i) q^{55} +(0.797839 - 0.920755i) q^{56} +(7.29524 + 10.2176i) q^{57} +(-3.20443 - 2.05936i) q^{58} +(-3.68301 - 3.19135i) q^{59} +(1.06897 - 1.36283i) q^{60} +(-4.64058 + 0.667214i) q^{61} +(3.39798 - 2.94436i) q^{62} +(3.45697 + 1.18677i) q^{63} +(0.959493 - 0.281733i) q^{64} +(-1.18353 + 2.59156i) q^{65} +(-0.486657 + 0.845361i) q^{66} +(-4.57140 - 7.11324i) q^{67} -4.17146 q^{68} +(-4.77880 - 6.79434i) q^{69} +1.21833 q^{70} +(-4.36783 - 6.79648i) q^{71} +(1.86039 + 2.35350i) q^{72} +(0.204923 - 0.448718i) q^{73} +(-1.04788 + 0.307684i) q^{74} +(1.72998 - 0.0845842i) q^{75} +(-5.47801 + 4.74672i) q^{76} +(-0.679141 + 0.0976457i) q^{77} +(-3.88272 - 3.04553i) q^{78} +(-3.10719 - 2.69240i) q^{79} +(0.841254 + 0.540641i) q^{80} +(-4.46084 + 7.81671i) q^{81} +(-0.464471 + 0.536028i) q^{82} +(4.05006 + 1.18921i) q^{83} +(-0.494930 + 2.05135i) q^{84} +(-2.73172 - 3.15258i) q^{85} +(-5.29367 - 11.5915i) q^{86} +(6.56848 + 0.618901i) q^{87} +(-0.512274 - 0.233948i) q^{88} +(-0.605041 + 4.20815i) q^{89} +(-0.560362 + 2.94720i) q^{90} -3.47106i q^{91} +(3.64660 - 3.11485i) q^{92} +(-2.88529 + 7.23337i) q^{93} +(3.30993 - 2.12716i) q^{94} +(-7.17466 - 1.03156i) q^{95} +(-1.25204 + 1.19682i) q^{96} +(-3.38569 - 11.5306i) q^{97} +(5.01722 - 2.29129i) q^{98} +(0.0761561 - 1.68778i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} + O(q^{10}) \) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} - 12q^{11} - 12q^{14} - 16q^{16} - 8q^{18} + 16q^{20} + 62q^{21} + 4q^{23} + 2q^{24} - 16q^{25} + 42q^{27} - 2q^{30} - 4q^{31} + 16q^{33} + 2q^{36} + 72q^{38} - 124q^{39} + 44q^{41} + 44q^{43} + 12q^{44} - 2q^{45} + 4q^{46} + 70q^{49} - 2q^{51} - 52q^{53} + 92q^{54} + 10q^{55} - 54q^{56} - 38q^{57} - 36q^{58} - 44q^{61} - 220q^{63} + 16q^{64} - 34q^{66} - 44q^{67} + 22q^{69} - 12q^{70} - 36q^{72} - 28q^{73} - 24q^{74} - 88q^{77} - 54q^{78} - 44q^{79} - 16q^{80} - 66q^{81} - 28q^{82} + 4q^{83} - 18q^{84} + 158q^{86} - 64q^{87} + 80q^{89} - 8q^{90} - 4q^{92} + 4q^{93} + 24q^{94} - 2q^{96} - 88q^{98} + 190q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{9}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.540641 0.841254i −0.382291 0.594856i
\(3\) 1.50109 + 0.864143i 0.866652 + 0.498913i
\(4\) −0.415415 + 0.909632i −0.207708 + 0.454816i
\(5\) −0.959493 + 0.281733i −0.429098 + 0.125995i
\(6\) −0.0845842 1.72998i −0.0345314 0.706263i
\(7\) 0.920755 0.797839i 0.348013 0.301555i −0.463260 0.886222i \(-0.653320\pi\)
0.811273 + 0.584668i \(0.198775\pi\)
\(8\) 0.989821 0.142315i 0.349955 0.0503159i
\(9\) 1.50651 + 2.59431i 0.502171 + 0.864768i
\(10\) 0.755750 + 0.654861i 0.238989 + 0.207085i
\(11\) −0.473766 0.304471i −0.142846 0.0918014i 0.467266 0.884117i \(-0.345239\pi\)
−0.610112 + 0.792315i \(0.708875\pi\)
\(12\) −1.40963 + 1.00646i −0.406924 + 0.290539i
\(13\) 1.86571 2.15315i 0.517456 0.597176i −0.435536 0.900171i \(-0.643441\pi\)
0.952992 + 0.302996i \(0.0979867\pi\)
\(14\) −1.16898 0.343244i −0.312424 0.0917359i
\(15\) −1.68374 0.406235i −0.434739 0.104889i
\(16\) −0.654861 0.755750i −0.163715 0.188937i
\(17\) 1.73289 + 3.79449i 0.420287 + 0.920299i 0.994804 + 0.101807i \(0.0324624\pi\)
−0.574518 + 0.818492i \(0.694810\pi\)
\(18\) 1.36799 2.66995i 0.322437 0.629312i
\(19\) 6.59342 + 3.01111i 1.51263 + 0.690796i 0.987119 0.159988i \(-0.0511457\pi\)
0.525514 + 0.850785i \(0.323873\pi\)
\(20\) 0.142315 0.989821i 0.0318226 0.221331i
\(21\) 2.07158 0.401960i 0.452056 0.0877148i
\(22\) 0.563167i 0.120068i
\(23\) −4.34822 2.02311i −0.906667 0.421847i
\(24\) 1.60879 + 0.641721i 0.328392 + 0.130991i
\(25\) 0.841254 0.540641i 0.168251 0.108128i
\(26\) −2.82002 0.405458i −0.553052 0.0795169i
\(27\) 0.0195518 + 5.19612i 0.00376275 + 0.999993i
\(28\) 0.343244 + 1.16898i 0.0648671 + 0.220917i
\(29\) 3.46489 1.58236i 0.643414 0.293837i −0.0668603 0.997762i \(-0.521298\pi\)
0.710274 + 0.703925i \(0.248571\pi\)
\(30\) 0.568551 + 1.63608i 0.103803 + 0.298706i
\(31\) 0.639871 + 4.45040i 0.114924 + 0.799316i 0.963012 + 0.269460i \(0.0868451\pi\)
−0.848087 + 0.529856i \(0.822246\pi\)
\(32\) −0.281733 + 0.959493i −0.0498038 + 0.169616i
\(33\) −0.448056 0.866438i −0.0779966 0.150828i
\(34\) 2.25526 3.50925i 0.386774 0.601832i
\(35\) −0.658681 + 1.02493i −0.111337 + 0.173244i
\(36\) −2.98569 + 0.292659i −0.497615 + 0.0487764i
\(37\) 0.307684 1.04788i 0.0505830 0.172270i −0.930327 0.366730i \(-0.880477\pi\)
0.980910 + 0.194460i \(0.0622955\pi\)
\(38\) −1.03156 7.17466i −0.167341 1.16388i
\(39\) 4.66122 1.61981i 0.746393 0.259378i
\(40\) −0.909632 + 0.415415i −0.143825 + 0.0656829i
\(41\) −0.199823 0.680536i −0.0312072 0.106282i 0.942417 0.334441i \(-0.108548\pi\)
−0.973624 + 0.228159i \(0.926729\pi\)
\(42\) −1.45813 1.52541i −0.224994 0.235375i
\(43\) 12.6134 + 1.81353i 1.92352 + 0.276561i 0.995407 0.0957329i \(-0.0305195\pi\)
0.928115 + 0.372294i \(0.121429\pi\)
\(44\) 0.473766 0.304471i 0.0714229 0.0459007i
\(45\) −2.17639 2.06478i −0.324437 0.307800i
\(46\) 0.648883 + 4.75173i 0.0956725 + 0.700605i
\(47\) 3.93452i 0.573909i 0.957944 + 0.286954i \(0.0926428\pi\)
−0.957944 + 0.286954i \(0.907357\pi\)
\(48\) −0.329926 1.70034i −0.0476207 0.245423i
\(49\) −0.784961 + 5.45952i −0.112137 + 0.779932i
\(50\) −0.909632 0.415415i −0.128641 0.0587486i
\(51\) −0.677775 + 7.19332i −0.0949075 + 1.00727i
\(52\) 1.18353 + 2.59156i 0.164126 + 0.359385i
\(53\) −0.983002 1.13444i −0.135026 0.155828i 0.684210 0.729285i \(-0.260147\pi\)
−0.819235 + 0.573457i \(0.805602\pi\)
\(54\) 4.36068 2.82568i 0.593413 0.384526i
\(55\) 0.540354 + 0.158662i 0.0728614 + 0.0213940i
\(56\) 0.797839 0.920755i 0.106616 0.123041i
\(57\) 7.29524 + 10.2176i 0.966279 + 1.35335i
\(58\) −3.20443 2.05936i −0.420762 0.270407i
\(59\) −3.68301 3.19135i −0.479488 0.415478i 0.381293 0.924454i \(-0.375479\pi\)
−0.860781 + 0.508976i \(0.830024\pi\)
\(60\) 1.06897 1.36283i 0.138004 0.175940i
\(61\) −4.64058 + 0.667214i −0.594165 + 0.0854280i −0.432836 0.901473i \(-0.642487\pi\)
−0.161329 + 0.986901i \(0.551578\pi\)
\(62\) 3.39798 2.94436i 0.431543 0.373935i
\(63\) 3.45697 + 1.18677i 0.435537 + 0.149518i
\(64\) 0.959493 0.281733i 0.119937 0.0352166i
\(65\) −1.18353 + 2.59156i −0.146798 + 0.321444i
\(66\) −0.486657 + 0.845361i −0.0599033 + 0.104057i
\(67\) −4.57140 7.11324i −0.558485 0.869020i 0.441110 0.897453i \(-0.354585\pi\)
−0.999596 + 0.0284325i \(0.990948\pi\)
\(68\) −4.17146 −0.505864
\(69\) −4.77880 6.79434i −0.575300 0.817943i
\(70\) 1.21833 0.145619
\(71\) −4.36783 6.79648i −0.518366 0.806594i 0.479098 0.877761i \(-0.340964\pi\)
−0.997464 + 0.0711677i \(0.977327\pi\)
\(72\) 1.86039 + 2.35350i 0.219249 + 0.277363i
\(73\) 0.204923 0.448718i 0.0239844 0.0525185i −0.897261 0.441501i \(-0.854446\pi\)
0.921245 + 0.388983i \(0.127173\pi\)
\(74\) −1.04788 + 0.307684i −0.121813 + 0.0357676i
\(75\) 1.72998 0.0845842i 0.199761 0.00976694i
\(76\) −5.47801 + 4.74672i −0.628371 + 0.544486i
\(77\) −0.679141 + 0.0976457i −0.0773953 + 0.0111278i
\(78\) −3.88272 3.04553i −0.439631 0.344838i
\(79\) −3.10719 2.69240i −0.349586 0.302918i 0.462312 0.886717i \(-0.347020\pi\)
−0.811898 + 0.583799i \(0.801566\pi\)
\(80\) 0.841254 + 0.540641i 0.0940550 + 0.0604455i
\(81\) −4.46084 + 7.81671i −0.495649 + 0.868523i
\(82\) −0.464471 + 0.536028i −0.0512922 + 0.0591943i
\(83\) 4.05006 + 1.18921i 0.444552 + 0.130532i 0.496344 0.868126i \(-0.334675\pi\)
−0.0517926 + 0.998658i \(0.516493\pi\)
\(84\) −0.494930 + 2.05135i −0.0540012 + 0.223821i
\(85\) −2.73172 3.15258i −0.296297 0.341945i
\(86\) −5.29367 11.5915i −0.570831 1.24995i
\(87\) 6.56848 + 0.618901i 0.704215 + 0.0663532i
\(88\) −0.512274 0.233948i −0.0546086 0.0249389i
\(89\) −0.605041 + 4.20815i −0.0641342 + 0.446063i 0.932300 + 0.361687i \(0.117799\pi\)
−0.996434 + 0.0843765i \(0.973110\pi\)
\(90\) −0.560362 + 2.94720i −0.0590674 + 0.310662i
\(91\) 3.47106i 0.363866i
\(92\) 3.64660 3.11485i 0.380184 0.324746i
\(93\) −2.88529 + 7.23337i −0.299190 + 0.750066i
\(94\) 3.30993 2.12716i 0.341393 0.219400i
\(95\) −7.17466 1.03156i −0.736105 0.105836i
\(96\) −1.25204 + 1.19682i −0.127786 + 0.122150i
\(97\) −3.38569 11.5306i −0.343765 1.17076i −0.932119 0.362152i \(-0.882042\pi\)
0.588354 0.808604i \(-0.299776\pi\)
\(98\) 5.01722 2.29129i 0.506816 0.231455i
\(99\) 0.0761561 1.68778i 0.00765397 0.169629i
\(100\) 0.142315 + 0.989821i 0.0142315 + 0.0989821i
\(101\) −1.23983 + 4.22248i −0.123368 + 0.420153i −0.997897 0.0648205i \(-0.979353\pi\)
0.874529 + 0.484973i \(0.161171\pi\)
\(102\) 6.41784 3.31882i 0.635460 0.328612i
\(103\) 6.27083 9.75760i 0.617883 0.961445i −0.381431 0.924397i \(-0.624568\pi\)
0.999314 0.0370471i \(-0.0117952\pi\)
\(104\) 1.54030 2.39675i 0.151039 0.235021i
\(105\) −1.87442 + 0.969308i −0.182925 + 0.0945948i
\(106\) −0.422905 + 1.44028i −0.0410761 + 0.139892i
\(107\) −0.865885 6.02237i −0.0837083 0.582204i −0.987902 0.155081i \(-0.950436\pi\)
0.904193 0.427123i \(-0.140473\pi\)
\(108\) −4.73468 2.14076i −0.455594 0.205995i
\(109\) 10.1682 4.64367i 0.973939 0.444783i 0.136097 0.990696i \(-0.456544\pi\)
0.837842 + 0.545912i \(0.183817\pi\)
\(110\) −0.158662 0.540354i −0.0151279 0.0515208i
\(111\) 1.36737 1.30707i 0.129785 0.124061i
\(112\) −1.20593 0.173387i −0.113950 0.0163835i
\(113\) 11.3026 7.26373i 1.06326 0.683314i 0.112627 0.993637i \(-0.464074\pi\)
0.950631 + 0.310323i \(0.100437\pi\)
\(114\) 4.65148 11.6612i 0.435651 1.09217i
\(115\) 4.74206 + 0.716119i 0.442200 + 0.0667784i
\(116\) 3.80911i 0.353667i
\(117\) 8.39664 + 1.59648i 0.776270 + 0.147595i
\(118\) −0.693547 + 4.82372i −0.0638461 + 0.444060i
\(119\) 4.62296 + 2.11123i 0.423786 + 0.193536i
\(120\) −1.72441 0.162479i −0.157417 0.0148323i
\(121\) −4.43781 9.71746i −0.403438 0.883405i
\(122\) 3.07018 + 3.54318i 0.277961 + 0.320784i
\(123\) 0.288129 1.19422i 0.0259797 0.107679i
\(124\) −4.31404 1.26672i −0.387412 0.113755i
\(125\) −0.654861 + 0.755750i −0.0585725 + 0.0675963i
\(126\) −0.870606 3.54980i −0.0775598 0.316241i
\(127\) −17.2310 11.0737i −1.52901 0.982633i −0.990115 0.140259i \(-0.955207\pi\)
−0.538892 0.842375i \(-0.681157\pi\)
\(128\) −0.755750 0.654861i −0.0667995 0.0578821i
\(129\) 17.3666 + 13.6220i 1.52904 + 1.19935i
\(130\) 2.82002 0.405458i 0.247332 0.0355610i
\(131\) −14.2773 + 12.3713i −1.24741 + 1.08089i −0.253893 + 0.967232i \(0.581711\pi\)
−0.993520 + 0.113658i \(0.963743\pi\)
\(132\) 0.974269 0.0476350i 0.0847993 0.00414609i
\(133\) 8.47330 2.48799i 0.734728 0.215736i
\(134\) −3.51255 + 7.69141i −0.303438 + 0.664437i
\(135\) −1.48267 4.98013i −0.127608 0.428621i
\(136\) 2.25526 + 3.50925i 0.193387 + 0.300916i
\(137\) −5.82234 −0.497436 −0.248718 0.968576i \(-0.580009\pi\)
−0.248718 + 0.968576i \(0.580009\pi\)
\(138\) −3.13215 + 7.69348i −0.266626 + 0.654913i
\(139\) −14.0348 −1.19042 −0.595209 0.803571i \(-0.702931\pi\)
−0.595209 + 0.803571i \(0.702931\pi\)
\(140\) −0.658681 1.02493i −0.0556687 0.0866222i
\(141\) −3.39999 + 5.90605i −0.286331 + 0.497379i
\(142\) −3.35613 + 7.34891i −0.281640 + 0.616707i
\(143\) −1.53948 + 0.452032i −0.128738 + 0.0378009i
\(144\) 0.974089 2.83745i 0.0811741 0.236455i
\(145\) −2.87874 + 2.49444i −0.239066 + 0.207152i
\(146\) −0.488275 + 0.0702034i −0.0404099 + 0.00581007i
\(147\) −5.89610 + 7.51689i −0.486302 + 0.619982i
\(148\) 0.825365 + 0.715183i 0.0678446 + 0.0587877i
\(149\) −14.0581 9.03458i −1.15168 0.740141i −0.181709 0.983352i \(-0.558163\pi\)
−0.969973 + 0.243211i \(0.921799\pi\)
\(150\) −1.00646 1.40963i −0.0821769 0.115095i
\(151\) −10.8338 + 12.5028i −0.881640 + 1.01747i 0.118061 + 0.993006i \(0.462332\pi\)
−0.999701 + 0.0244605i \(0.992213\pi\)
\(152\) 6.95483 + 2.04212i 0.564111 + 0.165638i
\(153\) −7.23345 + 10.2121i −0.584790 + 0.825598i
\(154\) 0.449316 + 0.518538i 0.0362069 + 0.0417850i
\(155\) −1.86778 4.08986i −0.150023 0.328505i
\(156\) −0.462907 + 4.91289i −0.0370622 + 0.393346i
\(157\) −1.69219 0.772798i −0.135052 0.0616760i 0.346743 0.937960i \(-0.387288\pi\)
−0.481795 + 0.876284i \(0.660015\pi\)
\(158\) −0.585114 + 4.06955i −0.0465491 + 0.323756i
\(159\) −0.495247 2.55235i −0.0392756 0.202415i
\(160\) 1.00000i 0.0790569i
\(161\) −5.61776 + 1.60640i −0.442742 + 0.126602i
\(162\) 8.98754 0.473334i 0.706128 0.0371886i
\(163\) −2.80126 + 1.80026i −0.219412 + 0.141008i −0.645730 0.763566i \(-0.723447\pi\)
0.426318 + 0.904573i \(0.359810\pi\)
\(164\) 0.702047 + 0.100939i 0.0548206 + 0.00788202i
\(165\) 0.674011 + 0.705109i 0.0524717 + 0.0548927i
\(166\) −1.18921 4.05006i −0.0923002 0.314346i
\(167\) 18.0731 8.25372i 1.39854 0.638692i 0.433586 0.901112i \(-0.357248\pi\)
0.964954 + 0.262421i \(0.0845208\pi\)
\(168\) 1.99329 0.692685i 0.153786 0.0534418i
\(169\) 0.694934 + 4.83337i 0.0534565 + 0.371798i
\(170\) −1.17524 + 4.00248i −0.0901364 + 0.306977i
\(171\) 2.12132 + 21.6416i 0.162221 + 1.65498i
\(172\) −6.88943 + 10.7202i −0.525314 + 0.817405i
\(173\) −8.44349 + 13.1383i −0.641946 + 0.998888i 0.355978 + 0.934494i \(0.384148\pi\)
−0.997925 + 0.0643939i \(0.979489\pi\)
\(174\) −3.03054 5.86036i −0.229744 0.444273i
\(175\) 0.343244 1.16898i 0.0259468 0.0883668i
\(176\) 0.0801470 + 0.557434i 0.00604130 + 0.0420182i
\(177\) −2.77073 7.97314i −0.208261 0.599298i
\(178\) 3.86723 1.76611i 0.289861 0.132375i
\(179\) 1.68055 + 5.72342i 0.125610 + 0.427788i 0.998153 0.0607488i \(-0.0193489\pi\)
−0.872543 + 0.488537i \(0.837531\pi\)
\(180\) 2.78230 1.12197i 0.207380 0.0836267i
\(181\) −7.73686 1.11239i −0.575076 0.0826835i −0.151360 0.988479i \(-0.548365\pi\)
−0.423716 + 0.905795i \(0.639274\pi\)
\(182\) −2.92004 + 1.87660i −0.216448 + 0.139103i
\(183\) −7.54247 3.00858i −0.557555 0.222400i
\(184\) −4.59188 1.38370i −0.338518 0.102007i
\(185\) 1.09211i 0.0802938i
\(186\) 7.64500 1.48340i 0.560559 0.108768i
\(187\) 0.334330 2.32531i 0.0244486 0.170044i
\(188\) −3.57896 1.63446i −0.261023 0.119205i
\(189\) 4.16366 + 4.76875i 0.302862 + 0.346876i
\(190\) 3.01111 + 6.59342i 0.218449 + 0.478337i
\(191\) −16.2061 18.7029i −1.17263 1.35329i −0.922929 0.384971i \(-0.874212\pi\)
−0.249706 0.968322i \(-0.580334\pi\)
\(192\) 1.68374 + 0.406235i 0.121513 + 0.0293175i
\(193\) −4.81827 1.41477i −0.346826 0.101837i 0.103680 0.994611i \(-0.466938\pi\)
−0.450506 + 0.892773i \(0.648756\pi\)
\(194\) −7.86972 + 9.08214i −0.565013 + 0.652060i
\(195\) −4.01605 + 2.86742i −0.287596 + 0.205340i
\(196\) −4.64007 2.98199i −0.331434 0.212999i
\(197\) 8.19024 + 7.09688i 0.583530 + 0.505632i 0.895857 0.444343i \(-0.146563\pi\)
−0.312326 + 0.949975i \(0.601108\pi\)
\(198\) −1.46103 + 0.848417i −0.103831 + 0.0602944i
\(199\) −16.4424 + 2.36405i −1.16557 + 0.167583i −0.697816 0.716277i \(-0.745845\pi\)
−0.467752 + 0.883860i \(0.654936\pi\)
\(200\) 0.755750 0.654861i 0.0534396 0.0463056i
\(201\) −0.715204 14.6279i −0.0504466 1.03177i
\(202\) 4.22248 1.23983i 0.297093 0.0872344i
\(203\) 1.92785 4.22139i 0.135308 0.296284i
\(204\) −6.26171 3.60474i −0.438408 0.252382i
\(205\) 0.383458 + 0.596673i 0.0267819 + 0.0416734i
\(206\) −11.5989 −0.808132
\(207\) −1.30210 14.3285i −0.0905023 0.995896i
\(208\) −2.84902 −0.197544
\(209\) −2.20694 3.43406i −0.152657 0.237539i
\(210\) 1.82882 + 1.05281i 0.126201 + 0.0726511i
\(211\) −6.63734 + 14.5337i −0.456933 + 1.00054i 0.531243 + 0.847220i \(0.321725\pi\)
−0.988176 + 0.153325i \(0.951002\pi\)
\(212\) 1.44028 0.422905i 0.0989189 0.0290452i
\(213\) −0.683355 13.9765i −0.0468227 0.957656i
\(214\) −4.59820 + 3.98437i −0.314327 + 0.272366i
\(215\) −12.6134 + 1.81353i −0.860225 + 0.123682i
\(216\) 0.758837 + 5.14044i 0.0516323 + 0.349763i
\(217\) 4.13987 + 3.58722i 0.281033 + 0.243516i
\(218\) −9.40386 6.04349i −0.636910 0.409317i
\(219\) 0.695363 0.496481i 0.0469883 0.0335491i
\(220\) −0.368796 + 0.425613i −0.0248642 + 0.0286948i
\(221\) 11.4032 + 3.34827i 0.767060 + 0.225229i
\(222\) −1.83883 0.443655i −0.123414 0.0297762i
\(223\) 10.3452 + 11.9390i 0.692766 + 0.799494i 0.987756 0.156006i \(-0.0498619\pi\)
−0.294990 + 0.955500i \(0.595316\pi\)
\(224\) 0.506114 + 1.10824i 0.0338162 + 0.0740471i
\(225\) 2.66995 + 1.36799i 0.177996 + 0.0911991i
\(226\) −12.2213 5.58127i −0.812947 0.371261i
\(227\) 1.22901 8.54794i 0.0815722 0.567347i −0.907515 0.420019i \(-0.862024\pi\)
0.989088 0.147328i \(-0.0470674\pi\)
\(228\) −12.3248 + 2.39145i −0.816230 + 0.158377i
\(229\) 12.7466i 0.842322i 0.906986 + 0.421161i \(0.138377\pi\)
−0.906986 + 0.421161i \(0.861623\pi\)
\(230\) −1.96132 4.37644i −0.129325 0.288574i
\(231\) −1.10383 0.440301i −0.0726266 0.0289696i
\(232\) 3.20443 2.05936i 0.210381 0.135204i
\(233\) 14.3276 + 2.06000i 0.938633 + 0.134955i 0.594617 0.804009i \(-0.297304\pi\)
0.344016 + 0.938964i \(0.388213\pi\)
\(234\) −3.19652 7.92683i −0.208963 0.518193i
\(235\) −1.10848 3.77514i −0.0723094 0.246263i
\(236\) 4.43293 2.02445i 0.288559 0.131781i
\(237\) −2.33754 6.72657i −0.151840 0.436938i
\(238\) −0.723276 5.03050i −0.0468830 0.326079i
\(239\) 1.25937 4.28902i 0.0814619 0.277434i −0.908682 0.417490i \(-0.862910\pi\)
0.990144 + 0.140056i \(0.0447282\pi\)
\(240\) 0.795602 + 1.53851i 0.0513559 + 0.0993105i
\(241\) 11.6120 18.0686i 0.747994 1.16390i −0.233491 0.972359i \(-0.575015\pi\)
0.981484 0.191542i \(-0.0613488\pi\)
\(242\) −5.77558 + 8.98698i −0.371268 + 0.577705i
\(243\) −13.4509 + 7.87874i −0.862873 + 0.505421i
\(244\) 1.32085 4.49839i 0.0845585 0.287980i
\(245\) −0.784961 5.45952i −0.0501493 0.348796i
\(246\) −1.16041 + 0.403254i −0.0739853 + 0.0257105i
\(247\) 18.7848 8.57872i 1.19525 0.545851i
\(248\) 1.26672 + 4.31404i 0.0804366 + 0.273942i
\(249\) 5.05184 + 5.28493i 0.320147 + 0.334919i
\(250\) 0.989821 + 0.142315i 0.0626018 + 0.00900078i
\(251\) −14.0110 + 9.00435i −0.884369 + 0.568349i −0.902116 0.431493i \(-0.857987\pi\)
0.0177473 + 0.999843i \(0.494351\pi\)
\(252\) −2.51560 + 2.65157i −0.158468 + 0.167033i
\(253\) 1.44406 + 2.28239i 0.0907875 + 0.143492i
\(254\) 20.4826i 1.28519i
\(255\) −1.37627 7.09289i −0.0861854 0.444174i
\(256\) −0.142315 + 0.989821i −0.00889468 + 0.0618638i
\(257\) 6.47300 + 2.95612i 0.403775 + 0.184398i 0.606942 0.794746i \(-0.292396\pi\)
−0.203167 + 0.979144i \(0.565123\pi\)
\(258\) 2.07049 21.9743i 0.128903 1.36806i
\(259\) −0.552734 1.21032i −0.0343452 0.0752056i
\(260\) −1.86571 2.15315i −0.115707 0.133533i
\(261\) 9.32503 + 6.60514i 0.577205 + 0.408848i
\(262\) 18.1263 + 5.32237i 1.11985 + 0.328817i
\(263\) 13.7197 15.8334i 0.845994 0.976329i −0.153937 0.988081i \(-0.549195\pi\)
0.999931 + 0.0117515i \(0.00374070\pi\)
\(264\) −0.566803 0.793854i −0.0348843 0.0488583i
\(265\) 1.26279 + 0.811548i 0.0775728 + 0.0498530i
\(266\) −6.67404 5.78309i −0.409212 0.354584i
\(267\) −4.54466 + 5.79395i −0.278129 + 0.354584i
\(268\) 8.36946 1.20335i 0.511246 0.0735061i
\(269\) 4.13264 3.58095i 0.251971 0.218334i −0.519712 0.854342i \(-0.673961\pi\)
0.771683 + 0.636007i \(0.219415\pi\)
\(270\) −3.38796 + 3.93977i −0.206184 + 0.239767i
\(271\) −10.1206 + 2.97167i −0.614781 + 0.180516i −0.574274 0.818663i \(-0.694716\pi\)
−0.0405072 + 0.999179i \(0.512897\pi\)
\(272\) 1.73289 3.79449i 0.105072 0.230075i
\(273\) 2.99949 5.21035i 0.181538 0.315345i
\(274\) 3.14779 + 4.89806i 0.190165 + 0.295903i
\(275\) −0.563167 −0.0339602
\(276\) 8.16554 1.52448i 0.491507 0.0917628i
\(277\) 21.1122 1.26851 0.634255 0.773124i \(-0.281307\pi\)
0.634255 + 0.773124i \(0.281307\pi\)
\(278\) 7.58780 + 11.8068i 0.455086 + 0.708127i
\(279\) −10.5817 + 8.36461i −0.633512 + 0.500776i
\(280\) −0.506114 + 1.10824i −0.0302461 + 0.0662297i
\(281\) 30.1367 8.84894i 1.79781 0.527883i 0.800374 0.599501i \(-0.204634\pi\)
0.997432 + 0.0716177i \(0.0228162\pi\)
\(282\) 6.80666 0.332798i 0.405331 0.0198178i
\(283\) −16.2386 + 14.0708i −0.965285 + 0.836424i −0.986568 0.163349i \(-0.947770\pi\)
0.0212831 + 0.999773i \(0.493225\pi\)
\(284\) 7.99676 1.14976i 0.474520 0.0682257i
\(285\) −9.87836 7.74840i −0.585144 0.458976i
\(286\) 1.21258 + 1.05071i 0.0717014 + 0.0621296i
\(287\) −0.726946 0.467180i −0.0429103 0.0275768i
\(288\) −2.91365 + 0.714588i −0.171689 + 0.0421075i
\(289\) −0.262637 + 0.303100i −0.0154492 + 0.0178294i
\(290\) 3.65482 + 1.07315i 0.214618 + 0.0630176i
\(291\) 4.88189 20.2341i 0.286181 1.18615i
\(292\) 0.323040 + 0.372808i 0.0189045 + 0.0218170i
\(293\) −1.93621 4.23971i −0.113115 0.247687i 0.844605 0.535390i \(-0.179835\pi\)
−0.957720 + 0.287704i \(0.907108\pi\)
\(294\) 9.51128 + 0.896180i 0.554709 + 0.0522663i
\(295\) 4.43293 + 2.02445i 0.258095 + 0.117868i
\(296\) 0.155424 1.08100i 0.00903384 0.0628317i
\(297\) 1.57280 2.46769i 0.0912633 0.143190i
\(298\) 16.7109i 0.968034i
\(299\) −12.4686 + 5.58783i −0.721076 + 0.323153i
\(300\) −0.641721 + 1.60879i −0.0370498 + 0.0928833i
\(301\) 13.0607 8.39362i 0.752808 0.483800i
\(302\) 16.3752 + 2.35440i 0.942289 + 0.135481i
\(303\) −5.50993 + 5.26691i −0.316537 + 0.302576i
\(304\) −2.04212 6.95483i −0.117124 0.398887i
\(305\) 4.26462 1.94759i 0.244192 0.111519i
\(306\) 12.5017 + 0.564099i 0.714672 + 0.0322474i
\(307\) −4.63928 32.2669i −0.264778 1.84157i −0.495573 0.868566i \(-0.665042\pi\)
0.230795 0.973002i \(-0.425867\pi\)
\(308\) 0.193304 0.658332i 0.0110145 0.0375119i
\(309\) 17.8450 9.22809i 1.01517 0.524968i
\(310\) −2.43081 + 3.78242i −0.138061 + 0.214827i
\(311\) −5.74031 + 8.93210i −0.325503 + 0.506493i −0.964982 0.262316i \(-0.915514\pi\)
0.639479 + 0.768809i \(0.279150\pi\)
\(312\) 4.38325 2.26669i 0.248153 0.128326i
\(313\) −4.10535 + 13.9815i −0.232048 + 0.790282i 0.758327 + 0.651874i \(0.226017\pi\)
−0.990375 + 0.138408i \(0.955801\pi\)
\(314\) 0.264749 + 1.84137i 0.0149406 + 0.103914i
\(315\) −3.65129 0.164753i −0.205727 0.00928279i
\(316\) 3.73986 1.70794i 0.210384 0.0960790i
\(317\) 3.00389 + 10.2303i 0.168715 + 0.574592i 0.999829 + 0.0184893i \(0.00588567\pi\)
−0.831114 + 0.556103i \(0.812296\pi\)
\(318\) −1.87943 + 1.79653i −0.105393 + 0.100745i
\(319\) −2.12333 0.305289i −0.118884 0.0170929i
\(320\) −0.841254 + 0.540641i −0.0470275 + 0.0302227i
\(321\) 3.90442 9.78833i 0.217923 0.546331i
\(322\) 4.38858 + 3.85748i 0.244566 + 0.214969i
\(323\) 30.2366i 1.68241i
\(324\) −5.25723 7.30490i −0.292068 0.405828i
\(325\) 0.405458 2.82002i 0.0224908 0.156427i
\(326\) 3.02896 + 1.38328i 0.167758 + 0.0766127i
\(327\) 19.2762 + 1.81626i 1.06597 + 0.100439i
\(328\) −0.294640 0.645171i −0.0162688 0.0356236i
\(329\) 3.13911 + 3.62273i 0.173065 + 0.199727i
\(330\) 0.228778 0.948225i 0.0125938 0.0521981i
\(331\) −33.4474 9.82105i −1.83844 0.539814i −0.838451 0.544977i \(-0.816538\pi\)
−0.999987 + 0.00516315i \(0.998357\pi\)
\(332\) −2.76419 + 3.19005i −0.151705 + 0.175077i
\(333\) 3.18204 0.780412i 0.174375 0.0427663i
\(334\) −16.7145 10.7418i −0.914578 0.587764i
\(335\) 6.39026 + 5.53719i 0.349137 + 0.302529i
\(336\) −1.66038 1.30237i −0.0905809 0.0710500i
\(337\) −22.2437 + 3.19817i −1.21169 + 0.174215i −0.718389 0.695641i \(-0.755120\pi\)
−0.493305 + 0.869857i \(0.664211\pi\)
\(338\) 3.69038 3.19773i 0.200730 0.173934i
\(339\) 23.2430 1.13642i 1.26239 0.0617220i
\(340\) 4.00248 1.17524i 0.217065 0.0637361i
\(341\) 1.05187 2.30327i 0.0569619 0.124729i
\(342\) 17.0592 13.4849i 0.922456 0.729180i
\(343\) 8.24383 + 12.8276i 0.445125 + 0.692628i
\(344\) 12.7431 0.687061
\(345\) 6.49941 + 5.17278i 0.349917 + 0.278493i
\(346\) 15.6176 0.839605
\(347\) −18.8845 29.3849i −1.01377 1.57746i −0.799480 0.600692i \(-0.794892\pi\)
−0.214293 0.976769i \(-0.568745\pi\)
\(348\) −3.29162 + 5.71780i −0.176449 + 0.306506i
\(349\) 10.7656 23.5734i 0.576271 1.26186i −0.367120 0.930174i \(-0.619656\pi\)
0.943391 0.331684i \(-0.107617\pi\)
\(350\) −1.16898 + 0.343244i −0.0624847 + 0.0183472i
\(351\) 11.2245 + 9.65236i 0.599118 + 0.515205i
\(352\) 0.425613 0.368796i 0.0226852 0.0196569i
\(353\) 10.0903 1.45076i 0.537050 0.0772162i 0.131547 0.991310i \(-0.458005\pi\)
0.405503 + 0.914094i \(0.367096\pi\)
\(354\) −5.20946 + 6.64149i −0.276880 + 0.352991i
\(355\) 6.10569 + 5.29061i 0.324057 + 0.280797i
\(356\) −3.57653 2.29849i −0.189555 0.121820i
\(357\) 5.11504 + 7.16404i 0.270717 + 0.379161i
\(358\) 3.90627 4.50808i 0.206453 0.238259i
\(359\) 33.4629 + 9.82558i 1.76610 + 0.518574i 0.993248 0.116009i \(-0.0370103\pi\)
0.772854 + 0.634584i \(0.218828\pi\)
\(360\) −2.44809 1.73404i −0.129025 0.0913917i
\(361\) 21.9640 + 25.3478i 1.15600 + 1.33409i
\(362\) 3.24706 + 7.11007i 0.170662 + 0.373697i
\(363\) 1.73574 18.4216i 0.0911027 0.966885i
\(364\) 3.15739 + 1.44193i 0.165492 + 0.0755777i
\(365\) −0.0702034 + 0.488275i −0.00367461 + 0.0255575i
\(366\) 1.54679 + 7.97169i 0.0808520 + 0.416687i
\(367\) 5.68817i 0.296920i −0.988918 0.148460i \(-0.952568\pi\)
0.988918 0.148460i \(-0.0474316\pi\)
\(368\) 1.31852 + 4.61102i 0.0687326 + 0.240366i
\(369\) 1.46448 1.54364i 0.0762379 0.0803586i
\(370\) 0.918745 0.590441i 0.0477633 0.0306956i
\(371\) −1.81021 0.260269i −0.0939813 0.0135125i
\(372\) −5.38112 5.62940i −0.278998 0.291871i
\(373\) 0.212425 + 0.723452i 0.0109989 + 0.0374589i 0.964810 0.262949i \(-0.0846952\pi\)
−0.953811 + 0.300408i \(0.902877\pi\)
\(374\) −2.13693 + 0.975903i −0.110498 + 0.0504628i
\(375\) −1.63608 + 0.568551i −0.0844867 + 0.0293598i
\(376\) 0.559941 + 3.89447i 0.0288767 + 0.200842i
\(377\) 3.05743 10.4127i 0.157466 0.536279i
\(378\) 1.76068 6.08088i 0.0905597 0.312767i
\(379\) 0.664670 1.03425i 0.0341418 0.0531257i −0.823763 0.566934i \(-0.808129\pi\)
0.857905 + 0.513808i \(0.171766\pi\)
\(380\) 3.91880 6.09778i 0.201030 0.312809i
\(381\) −16.2960 31.5127i −0.834868 1.61444i
\(382\) −6.97216 + 23.7450i −0.356727 + 1.21490i
\(383\) −2.58249 17.9616i −0.131959 0.917794i −0.942997 0.332801i \(-0.892006\pi\)
0.811038 0.584993i \(-0.198903\pi\)
\(384\) −0.568551 1.63608i −0.0290137 0.0834907i
\(385\) 0.624121 0.285026i 0.0318081 0.0145263i
\(386\) 1.41477 + 4.81827i 0.0720099 + 0.245243i
\(387\) 14.2974 + 35.4551i 0.726776 + 1.80228i
\(388\) 11.8951 + 1.71025i 0.603881 + 0.0868250i
\(389\) 9.53793 6.12965i 0.483592 0.310786i −0.276032 0.961149i \(-0.589019\pi\)
0.759624 + 0.650363i \(0.225383\pi\)
\(390\) 4.58347 + 1.82828i 0.232093 + 0.0925784i
\(391\) 0.141679 20.0051i 0.00716501 1.01170i
\(392\) 5.51566i 0.278583i
\(393\) −32.1221 + 6.23281i −1.62034 + 0.314404i
\(394\) 1.54230 10.7269i 0.0777000 0.540415i
\(395\) 3.73986 + 1.70794i 0.188173 + 0.0859357i
\(396\) 1.50362 + 0.770404i 0.0755600 + 0.0387143i
\(397\) 0.601762 + 1.31767i 0.0302015 + 0.0661322i 0.924132 0.382074i \(-0.124790\pi\)
−0.893930 + 0.448207i \(0.852063\pi\)
\(398\) 10.8782 + 12.5541i 0.545274 + 0.629280i
\(399\) 14.8691 + 3.58747i 0.744387 + 0.179598i
\(400\) −0.959493 0.281733i −0.0479746 0.0140866i
\(401\) 24.8022 28.6232i 1.23856 1.42938i 0.373561 0.927605i \(-0.378137\pi\)
0.865000 0.501771i \(-0.167318\pi\)
\(402\) −11.9191 + 8.51012i −0.594472 + 0.424446i
\(403\) 10.7762 + 6.92544i 0.536800 + 0.344981i
\(404\) −3.32586 2.88188i −0.165468 0.143379i
\(405\) 2.07792 8.75684i 0.103253 0.435131i
\(406\) −4.59353 + 0.660450i −0.227973 + 0.0327776i
\(407\) −0.464818 + 0.402767i −0.0230402 + 0.0199644i
\(408\) 0.352839 + 7.21656i 0.0174682 + 0.357273i
\(409\) 22.1746 6.51105i 1.09646 0.321951i 0.317017 0.948420i \(-0.397319\pi\)
0.779446 + 0.626469i \(0.215501\pi\)
\(410\) 0.294640 0.645171i 0.0145512 0.0318627i
\(411\) −8.73982 5.03133i −0.431104 0.248177i
\(412\) 6.27083 + 9.75760i 0.308941 + 0.480722i
\(413\) −5.93734 −0.292157
\(414\) −11.3499 + 8.84194i −0.557817 + 0.434558i
\(415\) −4.22104 −0.207203
\(416\) 1.54030 + 2.39675i 0.0755193 + 0.117510i
\(417\) −21.0675 12.1281i −1.03168 0.593916i
\(418\) −1.69576 + 3.71319i −0.0829422 + 0.181618i
\(419\) −2.63036 + 0.772344i −0.128502 + 0.0377315i −0.345351 0.938474i \(-0.612240\pi\)
0.216849 + 0.976205i \(0.430422\pi\)
\(420\) −0.103052 2.10770i −0.00502841 0.102845i
\(421\) 6.39971 5.54538i 0.311903 0.270265i −0.484815 0.874617i \(-0.661113\pi\)
0.796718 + 0.604351i \(0.206568\pi\)
\(422\) 15.8150 2.27385i 0.769861 0.110689i
\(423\) −10.2073 + 5.92740i −0.496298 + 0.288200i
\(424\) −1.13444 0.983002i −0.0550935 0.0477388i
\(425\) 3.50925 + 2.25526i 0.170224 + 0.109396i
\(426\) −11.3884 + 8.13116i −0.551767 + 0.393956i
\(427\) −3.74050 + 4.31677i −0.181016 + 0.208903i
\(428\) 5.83784 + 1.71414i 0.282183 + 0.0828563i
\(429\) −2.70151 0.651793i −0.130430 0.0314689i
\(430\) 8.34495 + 9.63058i 0.402429 + 0.464428i
\(431\) 5.80199 + 12.7046i 0.279472 + 0.611958i 0.996361 0.0852286i \(-0.0271621\pi\)
−0.716889 + 0.697187i \(0.754435\pi\)
\(432\) 3.91416 3.41751i 0.188320 0.164425i
\(433\) 11.7804 + 5.37991i 0.566128 + 0.258542i 0.677854 0.735197i \(-0.262910\pi\)
−0.111725 + 0.993739i \(0.535638\pi\)
\(434\) 0.779577 5.42208i 0.0374209 0.260268i
\(435\) −6.47678 + 1.25672i −0.310538 + 0.0602553i
\(436\) 11.1784i 0.535348i
\(437\) −22.5778 26.4322i −1.08004 1.26442i
\(438\) −0.793608 0.316558i −0.0379201 0.0151257i
\(439\) −5.99600 + 3.85339i −0.286173 + 0.183912i −0.675850 0.737039i \(-0.736223\pi\)
0.389676 + 0.920952i \(0.372587\pi\)
\(440\) 0.557434 + 0.0801470i 0.0265746 + 0.00382086i
\(441\) −15.3462 + 6.18841i −0.730772 + 0.294686i
\(442\) −3.34827 11.4032i −0.159261 0.542393i
\(443\) −4.55328 + 2.07941i −0.216333 + 0.0987958i −0.520634 0.853780i \(-0.674304\pi\)
0.304301 + 0.952576i \(0.401577\pi\)
\(444\) 0.620922 + 1.78678i 0.0294677 + 0.0847970i
\(445\) −0.605041 4.20815i −0.0286817 0.199485i
\(446\) 4.45069 15.1576i 0.210746 0.717735i
\(447\) −13.2952 25.7099i −0.628841 1.21603i
\(448\) 0.658681 1.02493i 0.0311197 0.0484233i
\(449\) −2.56158 + 3.98589i −0.120888 + 0.188106i −0.896424 0.443198i \(-0.853844\pi\)
0.775535 + 0.631304i \(0.217480\pi\)
\(450\) −0.292659 2.98569i −0.0137961 0.140747i
\(451\) −0.112534 + 0.383255i −0.00529901 + 0.0180468i
\(452\) 1.91206 + 13.2987i 0.0899357 + 0.625516i
\(453\) −27.0667 + 9.40589i −1.27170 + 0.441927i
\(454\) −7.85544 + 3.58746i −0.368674 + 0.168368i
\(455\) 0.977910 + 3.33046i 0.0458451 + 0.156134i
\(456\) 8.67510 + 9.07537i 0.406249 + 0.424993i
\(457\) −6.84751 0.984523i −0.320313 0.0460540i −0.0197169 0.999806i \(-0.506276\pi\)
−0.300596 + 0.953752i \(0.597186\pi\)
\(458\) 10.7232 6.89136i 0.501060 0.322012i
\(459\) −19.6827 + 9.07847i −0.918711 + 0.423746i
\(460\) −2.62133 + 4.01605i −0.122220 + 0.187249i
\(461\) 10.0040i 0.465934i 0.972485 + 0.232967i \(0.0748434\pi\)
−0.972485 + 0.232967i \(0.925157\pi\)
\(462\) 0.226370 + 1.16664i 0.0105317 + 0.0542772i
\(463\) 2.48353 17.2733i 0.115419 0.802760i −0.847078 0.531469i \(-0.821640\pi\)
0.962497 0.271291i \(-0.0874507\pi\)
\(464\) −3.46489 1.58236i −0.160854 0.0734593i
\(465\) 0.730534 7.75325i 0.0338777 0.359548i
\(466\) −6.01311 13.1669i −0.278552 0.609944i
\(467\) 13.5764 + 15.6680i 0.628242 + 0.725030i 0.977250 0.212089i \(-0.0680268\pi\)
−0.349008 + 0.937120i \(0.613481\pi\)
\(468\) −4.94030 + 6.97465i −0.228366 + 0.322403i
\(469\) −9.88436 2.90231i −0.456417 0.134016i
\(470\) −2.57656 + 2.97351i −0.118848 + 0.137158i
\(471\) −1.87231 2.62233i −0.0862717 0.120831i
\(472\) −4.09970 2.63472i −0.188704 0.121273i
\(473\) −5.42362 4.69959i −0.249378 0.216088i
\(474\) −4.39498 + 5.60312i −0.201868 + 0.257360i
\(475\) 7.17466 1.03156i 0.329196 0.0473313i
\(476\) −3.84089 + 3.32815i −0.176047 + 0.152546i
\(477\) 1.46219 4.25926i 0.0669491 0.195018i
\(478\) −4.28902 + 1.25937i −0.196175 + 0.0576022i
\(479\) −12.7635 + 27.9481i −0.583177 + 1.27698i 0.356301 + 0.934371i \(0.384038\pi\)
−0.939478 + 0.342609i \(0.888689\pi\)
\(480\) 0.864143 1.50109i 0.0394426 0.0685148i
\(481\) −1.68218 2.61752i −0.0767008 0.119349i
\(482\) −21.4782 −0.978305
\(483\) −9.82089 2.44321i −0.446866 0.111170i
\(484\) 10.6828 0.485584
\(485\) 6.49710 + 10.1097i 0.295018 + 0.459057i
\(486\) 13.9001 + 7.05601i 0.630521 + 0.320067i
\(487\) −1.61871 + 3.54448i −0.0733508 + 0.160616i −0.942755 0.333485i \(-0.891775\pi\)
0.869405 + 0.494101i \(0.164503\pi\)
\(488\) −4.49839 + 1.32085i −0.203632 + 0.0597919i
\(489\) −5.76062 + 0.281654i −0.260504 + 0.0127369i
\(490\) −4.16846 + 3.61199i −0.188312 + 0.163173i
\(491\) −20.1205 + 2.89289i −0.908024 + 0.130554i −0.580473 0.814280i \(-0.697132\pi\)
−0.327551 + 0.944834i \(0.606223\pi\)
\(492\) 0.966606 + 0.758187i 0.0435780 + 0.0341817i
\(493\) 12.0085 + 10.4054i 0.540837 + 0.468638i
\(494\) −17.3727 11.1648i −0.781635 0.502326i
\(495\) 0.402432 + 1.64087i 0.0180880 + 0.0737517i
\(496\) 2.94436 3.39798i 0.132206 0.152574i
\(497\) −9.44420 2.77307i −0.423630 0.124389i
\(498\) 1.71473 7.10713i 0.0768391 0.318478i
\(499\) 19.5319 + 22.5410i 0.874367 + 1.00907i 0.999856 + 0.0169785i \(0.00540468\pi\)
−0.125489 + 0.992095i \(0.540050\pi\)
\(500\) −0.415415 0.909632i −0.0185779 0.0406800i
\(501\) 34.2617 + 3.22823i 1.53070 + 0.144227i
\(502\) 15.1499 + 6.91872i 0.676172 + 0.308798i
\(503\) 4.58698 31.9032i 0.204523 1.42249i −0.586125 0.810221i \(-0.699347\pi\)
0.790648 0.612271i \(-0.209744\pi\)
\(504\) 3.59067 + 0.682708i 0.159941 + 0.0304102i
\(505\) 4.40075i 0.195831i
\(506\) 1.13935 2.44877i 0.0506501 0.108861i
\(507\) −3.13357 + 7.85582i −0.139167 + 0.348889i
\(508\) 17.2310 11.0737i 0.764504 0.491317i
\(509\) −20.6038 2.96238i −0.913249 0.131305i −0.330358 0.943856i \(-0.607169\pi\)
−0.582891 + 0.812550i \(0.698079\pi\)
\(510\) −5.22285 + 4.99250i −0.231272 + 0.221071i
\(511\) −0.169321 0.576654i −0.00749032 0.0255097i
\(512\) 0.909632 0.415415i 0.0402004 0.0183589i
\(513\) −15.5172 + 34.3190i −0.685100 + 1.51522i
\(514\) −1.01272 7.04364i −0.0446693 0.310681i
\(515\) −3.26778 + 11.1290i −0.143996 + 0.490404i
\(516\) −19.6054 + 10.1384i −0.863079 + 0.446319i
\(517\) 1.19795 1.86404i 0.0526856 0.0819804i
\(518\) −0.719355 + 1.11934i −0.0316066 + 0.0491809i
\(519\) −24.0278 + 12.4254i −1.05470 + 0.545413i
\(520\) −0.802662 + 2.73362i −0.0351991 + 0.119877i
\(521\) 4.17743 + 29.0547i 0.183017 + 1.27291i 0.849580 + 0.527460i \(0.176856\pi\)
−0.666563 + 0.745448i \(0.732235\pi\)
\(522\) 0.515100 11.4157i 0.0225453 0.499653i
\(523\) 19.9378 9.10528i 0.871818 0.398146i 0.0713004 0.997455i \(-0.477285\pi\)
0.800518 + 0.599309i \(0.204558\pi\)
\(524\) −5.32237 18.1263i −0.232509 0.791852i
\(525\) 1.52541 1.45813i 0.0665742 0.0636380i
\(526\) −20.7373 2.98158i −0.904191 0.130003i
\(527\) −15.7782 + 10.1400i −0.687309 + 0.441707i
\(528\) −0.361396 + 0.906015i −0.0157277 + 0.0394292i
\(529\) 14.8141 + 17.5938i 0.644091 + 0.764949i
\(530\) 1.50109i 0.0652030i
\(531\) 2.73083 14.3627i 0.118508 0.623287i
\(532\) −1.25679 + 8.74113i −0.0544885 + 0.378976i
\(533\) −1.83811 0.839435i −0.0796172 0.0363600i
\(534\) 7.33121 + 0.690768i 0.317253 + 0.0298924i
\(535\) 2.52751 + 5.53447i 0.109274 + 0.239276i
\(536\) −5.53719 6.39026i −0.239170 0.276017i
\(537\) −2.42321 + 10.0436i −0.104569 + 0.433412i
\(538\) −5.24676 1.54059i −0.226204 0.0664195i
\(539\) 2.03415 2.34754i 0.0876172 0.101116i
\(540\) 5.14601 + 0.720132i 0.221449 + 0.0309895i
\(541\) 5.02505 + 3.22940i 0.216044 + 0.138843i 0.644187 0.764868i \(-0.277196\pi\)
−0.428143 + 0.903711i \(0.640832\pi\)
\(542\) 7.97152 + 6.90736i 0.342406 + 0.296697i
\(543\) −10.6524 8.35555i −0.457139 0.358571i
\(544\) −4.12900 + 0.593660i −0.177029 + 0.0254530i
\(545\) −8.44806 + 7.32029i −0.361875 + 0.313567i
\(546\) −6.00488 + 0.293597i −0.256985 + 0.0125648i
\(547\) −43.3465 + 12.7277i −1.85336 + 0.544197i −0.853635 + 0.520871i \(0.825607\pi\)
−0.999728 + 0.0233251i \(0.992575\pi\)
\(548\) 2.41869 5.29618i 0.103321 0.226242i
\(549\) −8.72204 11.0339i −0.372248 0.470916i
\(550\) 0.304471 + 0.473766i 0.0129827 + 0.0202014i
\(551\) 27.6101 1.17623
\(552\) −5.69709 6.04509i −0.242484 0.257296i
\(553\) −5.00906 −0.213007
\(554\) −11.4141 17.7607i −0.484940 0.754581i
\(555\) −0.943743 + 1.63936i −0.0400597 + 0.0695868i
\(556\) 5.83028 12.7665i 0.247259 0.541421i
\(557\) 12.5222 3.67685i 0.530582 0.155793i −0.00545847 0.999985i \(-0.501737\pi\)
0.536041 + 0.844192i \(0.319919\pi\)
\(558\) 12.7577 + 4.37967i 0.540075 + 0.185406i
\(559\) 27.4377 23.7749i 1.16049 1.00557i
\(560\) 1.20593 0.173387i 0.0509600 0.00732694i
\(561\) 2.51126 3.20158i 0.106026 0.135171i
\(562\) −23.7373 20.5685i −1.00130 0.867631i
\(563\) 3.64724 + 2.34394i 0.153713 + 0.0987853i 0.615236 0.788343i \(-0.289061\pi\)
−0.461523 + 0.887128i \(0.652697\pi\)
\(564\) −3.95992 5.54620i −0.166743 0.233537i
\(565\) −8.79832 + 10.1538i −0.370148 + 0.427174i
\(566\) 20.6164 + 6.05352i 0.866572 + 0.254448i
\(567\) 2.12913 + 10.7563i 0.0894151 + 0.451722i
\(568\) −5.29061 6.10569i −0.221989 0.256189i
\(569\) 18.4639 + 40.4303i 0.774046 + 1.69492i 0.717535 + 0.696523i \(0.245271\pi\)
0.0565116 + 0.998402i \(0.482002\pi\)
\(570\) −1.17772 + 12.4993i −0.0493293 + 0.523538i
\(571\) −18.6469 8.51574i −0.780347 0.356373i −0.0149147 0.999889i \(-0.504748\pi\)
−0.765433 + 0.643516i \(0.777475\pi\)
\(572\) 0.228340 1.58814i 0.00954739 0.0664036i
\(573\) −8.16482 42.0790i −0.341090 1.75788i
\(574\) 0.864123i 0.0360678i
\(575\) −4.75173 + 0.648883i −0.198161 + 0.0270603i
\(576\) 2.17639 + 2.06478i 0.0906829 + 0.0860327i
\(577\) −4.89256 + 3.14426i −0.203680 + 0.130897i −0.638505 0.769618i \(-0.720447\pi\)
0.434825 + 0.900515i \(0.356810\pi\)
\(578\) 0.396976 + 0.0570765i 0.0165120 + 0.00237407i
\(579\) −6.01006 6.28736i −0.249770 0.261294i
\(580\) −1.07315 3.65482i −0.0445602 0.151758i
\(581\) 4.67791 2.13633i 0.194072 0.0886298i
\(582\) −19.6614 + 6.83250i −0.814991 + 0.283216i
\(583\) 0.120307 + 0.836757i 0.00498263 + 0.0346549i
\(584\) 0.138978 0.473314i 0.00575093 0.0195859i
\(585\) −8.50630 + 0.833791i −0.351692 + 0.0344730i
\(586\) −2.51988 + 3.92101i −0.104095 + 0.161975i
\(587\) −16.9258 + 26.3370i −0.698601 + 1.08704i 0.292798 + 0.956174i \(0.405414\pi\)
−0.991399 + 0.130871i \(0.958223\pi\)
\(588\) −4.38827 8.48591i −0.180969 0.349953i
\(589\) −9.18172 + 31.2701i −0.378326 + 1.28846i
\(590\) −0.693547 4.82372i −0.0285529 0.198590i
\(591\) 6.16152 + 17.7306i 0.253451 + 0.729338i
\(592\) −0.993422 + 0.453681i −0.0408294 + 0.0186462i
\(593\) 6.07647 + 20.6946i 0.249531 + 0.849824i 0.985042 + 0.172312i \(0.0551237\pi\)
−0.735512 + 0.677512i \(0.763058\pi\)
\(594\) −2.92628 + 0.0110109i −0.120067 + 0.000451784i
\(595\) −5.03050 0.723276i −0.206230 0.0296514i
\(596\) 14.0581 9.03458i 0.575841 0.370071i
\(597\) −26.7243 10.6599i −1.09375 0.436281i
\(598\) 11.4418 + 7.46822i 0.467890 + 0.305398i
\(599\) 24.8744i 1.01634i −0.861257 0.508170i \(-0.830322\pi\)
0.861257 0.508170i \(-0.169678\pi\)
\(600\) 1.70034 0.329926i 0.0694160 0.0134692i
\(601\) 1.82768 12.7118i 0.0745526 0.518525i −0.917988 0.396609i \(-0.870187\pi\)
0.992540 0.121916i \(-0.0389039\pi\)
\(602\) −14.1223 6.44945i −0.575583 0.262860i
\(603\) 11.5670 22.5758i 0.471046 0.919357i
\(604\) −6.87247 15.0486i −0.279637 0.612319i
\(605\) 6.99577 + 8.07355i 0.284419 + 0.328237i
\(606\) 7.40970 + 1.78774i 0.300999 + 0.0726218i
\(607\) −33.8299 9.93335i −1.37311 0.403182i −0.489747 0.871865i \(-0.662911\pi\)
−0.883367 + 0.468682i \(0.844729\pi\)
\(608\) −4.74672 + 5.47801i −0.192505 + 0.222163i
\(609\) 6.54175 4.67073i 0.265085 0.189268i
\(610\) −3.94405 2.53468i −0.159690 0.102626i
\(611\) 8.47160 + 7.34068i 0.342724 + 0.296972i
\(612\) −6.28435 10.8220i −0.254030 0.437455i
\(613\) −2.30533 + 0.331457i −0.0931116 + 0.0133874i −0.188713 0.982032i \(-0.560432\pi\)
0.0956015 + 0.995420i \(0.469523\pi\)
\(614\) −24.6365 + 21.3476i −0.994246 + 0.861519i
\(615\) 0.0599927 + 1.22702i 0.00241914 + 0.0494782i
\(616\) −0.658332 + 0.193304i −0.0265249 + 0.00778843i
\(617\) −6.19843 + 13.5727i −0.249540 + 0.546415i −0.992403 0.123027i \(-0.960740\pi\)
0.742864 + 0.669443i \(0.233467\pi\)
\(618\) −17.4109 10.0231i −0.700369 0.403188i
\(619\) 1.87484 + 2.91731i 0.0753563 + 0.117257i 0.876886 0.480698i \(-0.159617\pi\)
−0.801530 + 0.597955i \(0.795980\pi\)
\(620\) 4.49617 0.180570
\(621\) 10.4273 22.6334i 0.418432 0.908248i
\(622\) 10.6176 0.425727
\(623\) 2.80033 + 4.35740i 0.112193 + 0.174576i
\(624\) −4.27662 2.46196i −0.171202 0.0985574i
\(625\) 0.415415 0.909632i 0.0166166 0.0363853i
\(626\) 13.9815 4.10535i 0.558814 0.164083i
\(627\) −0.345279 7.06193i −0.0137891 0.282026i
\(628\) 1.40592 1.21824i 0.0561024 0.0486130i
\(629\) 4.50934 0.648345i 0.179799 0.0258512i
\(630\) 1.83543 + 3.16073i 0.0731255 + 0.125926i
\(631\) −8.36594 7.24913i −0.333043 0.288583i 0.472245 0.881467i \(-0.343444\pi\)
−0.805288 + 0.592884i \(0.797989\pi\)
\(632\) −3.45873 2.22279i −0.137581 0.0884179i
\(633\) −22.5225 + 16.0808i −0.895187 + 0.639154i
\(634\) 6.98226 8.05796i 0.277301 0.320023i
\(635\) 19.6529 + 5.77061i 0.779901 + 0.229000i
\(636\) 2.52743 + 0.609793i 0.100219 + 0.0241799i
\(637\) 10.2906 + 11.8760i 0.407730 + 0.470546i
\(638\) 0.891134 + 1.95131i 0.0352803 + 0.0772531i
\(639\) 11.0519 21.5705i 0.437208 0.853315i
\(640\) 0.909632 + 0.415415i 0.0359564 + 0.0164207i
\(641\) −0.545196 + 3.79192i −0.0215339 + 0.149772i −0.997752 0.0670211i \(-0.978651\pi\)
0.976218 + 0.216793i \(0.0695596\pi\)
\(642\) −10.3454 + 2.00737i −0.408299 + 0.0792244i
\(643\) 20.5051i 0.808643i 0.914617 + 0.404322i \(0.132492\pi\)
−0.914617 + 0.404322i \(0.867508\pi\)
\(644\) 0.872472 5.77742i 0.0343802 0.227662i
\(645\) −20.5009 8.17750i −0.807222 0.321989i
\(646\) 25.4366 16.3471i 1.00079 0.643169i
\(647\) 14.6619 + 2.10807i 0.576420 + 0.0828767i 0.424358 0.905494i \(-0.360500\pi\)
0.152062 + 0.988371i \(0.451409\pi\)
\(648\) −3.30300 + 8.37199i −0.129754 + 0.328883i
\(649\) 0.773213 + 2.63332i 0.0303513 + 0.103367i
\(650\) −2.59156 + 1.18353i −0.101649 + 0.0464217i
\(651\) 3.11443 + 8.96216i 0.122064 + 0.351255i
\(652\) −0.473890 3.29598i −0.0185590 0.129080i
\(653\) 6.24943 21.2836i 0.244559 0.832892i −0.742127 0.670259i \(-0.766183\pi\)
0.986687 0.162633i \(-0.0519987\pi\)
\(654\) −8.89355 17.1981i −0.347765 0.672498i
\(655\) 10.2136 15.8926i 0.399077 0.620975i
\(656\) −0.383458 + 0.596673i −0.0149715 + 0.0232962i
\(657\) 1.47283 0.144367i 0.0574606 0.00563231i
\(658\) 1.35050 4.59938i 0.0526480 0.179303i
\(659\) −5.14004 35.7497i −0.200227 1.39261i −0.803608 0.595159i \(-0.797089\pi\)
0.603381 0.797453i \(-0.293820\pi\)
\(660\) −0.921384 + 0.320189i −0.0358648 + 0.0124633i
\(661\) −19.0946 + 8.72019i −0.742692 + 0.339176i −0.750568 0.660793i \(-0.770220\pi\)
0.00787622 + 0.999969i \(0.497493\pi\)
\(662\) 9.82105 + 33.4474i 0.381706 + 1.29997i
\(663\) 14.2237 + 14.8800i 0.552404 + 0.577892i
\(664\) 4.17808 + 0.600717i 0.162141 + 0.0233123i
\(665\) −7.42913 + 4.77441i −0.288089 + 0.185144i
\(666\) −2.37686 2.25498i −0.0921016 0.0873787i
\(667\) −18.2674 0.129372i −0.707317 0.00500931i
\(668\) 19.8686i 0.768739i
\(669\) 5.21202 + 26.8612i 0.201508 + 1.03851i
\(670\) 1.20335 8.36946i 0.0464893 0.323340i
\(671\) 2.40169 + 1.09682i 0.0927163 + 0.0423421i
\(672\) −0.197954 + 2.10091i −0.00763623 + 0.0810444i
\(673\) −0.130673 0.286134i −0.00503707 0.0110296i 0.907097 0.420922i \(-0.138293\pi\)
−0.912134 + 0.409893i \(0.865566\pi\)
\(674\) 14.7163 + 16.9836i 0.566852 + 0.654183i
\(675\) 2.82568 + 4.36068i 0.108760 + 0.167843i
\(676\) −4.68528 1.37572i −0.180203 0.0529123i
\(677\) −11.3998 + 13.1560i −0.438129 + 0.505628i −0.931274 0.364319i \(-0.881302\pi\)
0.493145 + 0.869947i \(0.335847\pi\)
\(678\) −13.5222 18.9389i −0.519315 0.727344i
\(679\) −12.3170 7.91563i −0.472682 0.303774i
\(680\) −3.15258 2.73172i −0.120896 0.104757i
\(681\) 9.23149 11.7692i 0.353752 0.450995i
\(682\) −2.50632 + 0.360354i −0.0959719 + 0.0137987i
\(683\) −29.1743 + 25.2796i −1.11632 + 0.967298i −0.999665 0.0258739i \(-0.991763\pi\)
−0.116657 + 0.993172i \(0.537218\pi\)
\(684\) −20.5671 7.06063i −0.786404 0.269970i
\(685\) 5.58649 1.64034i 0.213449 0.0626742i
\(686\) 6.33435 13.8703i 0.241847 0.529570i
\(687\) −11.0149 + 19.1338i −0.420246 + 0.730000i
\(688\) −6.88943 10.7202i −0.262657 0.408702i
\(689\) −4.27663 −0.162926
\(690\) 0.837771 8.26427i 0.0318934 0.314615i
\(691\) 19.2194 0.731141 0.365571 0.930784i \(-0.380874\pi\)
0.365571 + 0.930784i \(0.380874\pi\)
\(692\) −8.44349 13.1383i −0.320973 0.499444i
\(693\) −1.27646 1.61479i −0.0484886 0.0613410i
\(694\) −14.5104 + 31.7733i −0.550807 + 1.20610i
\(695\) 13.4663 3.95407i 0.510806 0.149986i
\(696\) 6.58970 0.322191i 0.249782 0.0122126i
\(697\) 2.23602 1.93752i 0.0846952 0.0733888i
\(698\) −25.6516 + 3.68814i −0.970927 + 0.139598i
\(699\) 19.7268 + 15.4733i 0.746137 + 0.585256i
\(700\) 0.920755 + 0.797839i 0.0348013 + 0.0301555i
\(701\) 22.3626 + 14.3716i 0.844624 + 0.542807i 0.889894 0.456168i \(-0.150778\pi\)
−0.0452697 + 0.998975i \(0.514415\pi\)
\(702\) 2.05167 14.6611i 0.0774353 0.553347i
\(703\) 5.18396 5.98261i 0.195517 0.225638i
\(704\) −0.540354 0.158662i −0.0203654 0.00597981i
\(705\) 1.59834 6.62470i 0.0601969 0.249501i
\(706\) −6.67566 7.70413i −0.251242 0.289949i
\(707\) 2.22728 + 4.87706i 0.0837654 + 0.183421i
\(708\) 8.40363 + 0.791814i 0.315828 + 0.0297582i
\(709\) −8.06137 3.68150i −0.302751 0.138262i 0.258247 0.966079i \(-0.416855\pi\)
−0.560998 + 0.827817i \(0.689582\pi\)
\(710\) 1.14976 7.99676i 0.0431497 0.300113i
\(711\) 2.30388 12.1171i 0.0864021 0.454428i
\(712\) 4.25142i 0.159329i
\(713\) 6.22133 20.6459i 0.232991 0.773194i
\(714\) 3.26137 8.17622i 0.122054 0.305987i
\(715\) 1.34977 0.867444i 0.0504785 0.0324406i
\(716\) −5.90433 0.848914i −0.220655 0.0317254i
\(717\) 5.59675 5.34991i 0.209014 0.199796i
\(718\) −9.82558 33.4629i −0.366687 1.24882i
\(719\) 31.1391 14.2208i 1.16129 0.530345i 0.260876 0.965372i \(-0.415988\pi\)
0.900417 + 0.435027i \(0.143261\pi\)
\(720\) −0.135228 + 2.99695i −0.00503966 + 0.111690i
\(721\) −2.01109 13.9875i −0.0748970 0.520920i
\(722\) 9.44929 32.1813i 0.351666 1.19766i
\(723\) 33.0444 17.0881i 1.22894 0.635513i
\(724\) 4.22588 6.57559i 0.157053 0.244380i
\(725\) 2.05936 3.20443i 0.0764828 0.119010i
\(726\) −16.4357 + 8.49929i −0.609985 + 0.315438i
\(727\) −2.47429 + 8.42666i −0.0917663 + 0.312527i −0.992566 0.121707i \(-0.961163\pi\)
0.900800 + 0.434235i \(0.142981\pi\)
\(728\) −0.493983 3.43573i −0.0183082 0.127337i
\(729\) −26.9992 + 0.203187i −0.999972 + 0.00752545i
\(730\) 0.448718 0.204923i 0.0166078 0.00758453i
\(731\) 14.9761 + 51.0040i 0.553912 + 1.88645i
\(732\) 5.86995 5.61106i 0.216960 0.207391i
\(733\) 31.5746 + 4.53974i 1.16624 + 0.167679i 0.698115 0.715986i \(-0.254022\pi\)
0.468120 + 0.883665i \(0.344931\pi\)
\(734\) −4.78519 + 3.07526i −0.176625 + 0.113510i
\(735\) 3.53952 8.87353i 0.130557 0.327305i
\(736\) 3.16619 3.60212i 0.116707 0.132776i
\(737\) 4.76187i 0.175406i
\(738\) −2.09035 0.397446i −0.0769468 0.0146302i
\(739\) 3.69974 25.7323i 0.136097 0.946577i −0.801287 0.598280i \(-0.795851\pi\)
0.937384 0.348297i \(-0.113240\pi\)
\(740\) −0.993422 0.453681i −0.0365189 0.0166776i
\(741\) 35.6108 + 3.35535i 1.30820 + 0.123262i
\(742\) 0.759721 + 1.66356i 0.0278902 + 0.0610711i
\(743\) −13.6407 15.7422i −0.500429 0.577526i 0.448193 0.893937i \(-0.352068\pi\)
−0.948622 + 0.316411i \(0.897522\pi\)
\(744\) −1.82650 + 7.57037i −0.0669628 + 0.277543i
\(745\) 16.0340 + 4.70799i 0.587439 + 0.172488i
\(746\) 0.493761 0.569831i 0.0180779 0.0208630i
\(747\) 3.01631 + 12.2986i 0.110361 + 0.449984i
\(748\) 1.97629 + 1.27009i 0.0722605 + 0.0464390i
\(749\) −5.60215 4.85429i −0.204698 0.177372i
\(750\) 1.36283 + 1.06897i 0.0497634 + 0.0390334i
\(751\) −41.3667 + 5.94764i −1.50949 + 0.217032i −0.846821 0.531877i \(-0.821487\pi\)
−0.662672 + 0.748910i \(0.730578\pi\)
\(752\) 2.97351 2.57656i 0.108433 0.0939576i
\(753\) −28.8128 + 1.40875i −1.05000 + 0.0513376i
\(754\) −10.4127 + 3.05743i −0.379206 + 0.111345i
\(755\) 6.87247 15.0486i 0.250115 0.547675i
\(756\) −6.06746 + 1.80639i −0.220671 + 0.0656979i
\(757\) −17.4891 27.2135i −0.635650 0.989091i −0.998363 0.0571904i \(-0.981786\pi\)
0.362713 0.931901i \(-0.381851\pi\)
\(758\) −1.22941 −0.0446542
\(759\) 0.195354 + 4.67393i 0.00709089 + 0.169653i
\(760\) −7.24844 −0.262929
\(761\) 22.9033 + 35.6382i 0.830243 + 1.29188i 0.954071 + 0.299580i \(0.0968466\pi\)
−0.123828 + 0.992304i \(0.539517\pi\)
\(762\) −17.6999 + 30.7461i −0.641199 + 1.11381i
\(763\) 5.65754 12.3883i 0.204817 0.448486i
\(764\) 23.7450 6.97216i 0.859064 0.252244i
\(765\) 4.06337 11.8363i 0.146912 0.427943i
\(766\) −13.7140 + 11.8833i −0.495509 + 0.429361i
\(767\) −13.7429 + 1.97593i −0.496227 + 0.0713467i
\(768\) −1.06897 + 1.36283i −0.0385733 + 0.0491767i
\(769\) 6.66390 + 5.77430i 0.240306 + 0.208227i 0.766685 0.642024i \(-0.221905\pi\)
−0.526378 + 0.850250i \(0.676450\pi\)
\(770\) −0.577205 0.370947i −0.0208010 0.0133680i
\(771\) 7.16202 + 10.0310i 0.257934 + 0.361257i
\(772\) 3.28850 3.79513i 0.118356 0.136590i
\(773\) 22.5824 + 6.63079i 0.812232 + 0.238493i 0.661368 0.750062i \(-0.269976\pi\)